The Adhesive Strength of Epoxy/Sol-Gel Materials Modified by Various Ratio of γ-Al2O3 Nanoparticles

Authors

  • Balhassn Ali Faculty of Energy & Mining Engineering, Sebha University, Sebha, Libya
  • Mousa May College of Petroleum Engineering, Al-Jafra University, Zalla, Libya
  • Heming Wang Materials and Engineering Research Institute, Sheffield Hallam University, Sheffield, UK
  • Robert Akid School of Materials, The University of Manchester, Manchester, UK

DOI:

https://doi.org/10.6000/2369-3355.2018.05.01.3

Keywords:

?-Al2O3 Nano-Particles, Sol-Gel/Epoxy, Adhesive Strength.

Abstract

In this study, the use of sol-gel/epoxy adhesive based on the combination of organic and inorganic components within the adhesive matrix have been studied. The combination of different amounts of ᵞ-Al2O3 nano-particles to the adhesive matrix was evaluated. Mild steel specimens were prepared for lap joints, which were cured in an oven at 200°C for 16 hours.

The bond strength of the sol-gel/epoxy matrix was investigated using a universal tensile test machine. The presence of Al-OH and/or Si-OH bonds increases causing an increase in the strength of the bulk material. This process is seen through the appearance of an absorption peak shoulder which appears in the range of ~ 1088 to1100 cm-1 which corresponds to Al-O-Si or Si-O-Si. The maximum adhesive strength of composite sol-gel/epoxy adhesive recorded was 23±0.4 MPa. This was obtained when small amounts of γ-Al2O3 nano-particles (4.0 wt%), were incorporated within the matrix. However, as the level of these inorganic materials in the adhesive matrix increased further, the adhesive shear strength gradually decreased. At a high ratio of γ-Al2O3 particles, poor interfacial bonding or adhesion between the filler and the adhesive matrix is recorded. Scanning Electron Microscopy (SEM) is used to investigate the fracture surface with 4.0 wt% γ-Al2O3, the scanning shows a very small distance of cracks, suggesting the material may act as a barrier to crack propagation and thus increases the energy required for fracture.

References

modulus graded bondline subjected to axial loads. Int J Adhesion Adhesives 2009; 29(8): 785-795. https://doi.org/10.1016/j.ijadhadh.2009.06.006 DOI: https://doi.org/10.1016/j.ijadhadh.2009.06.006

Benson RC, Farrar D, Miragliotta JA. Polymer Adhesives and Encapsulants for Microelectronic Applications. Johns Hopkins APL Technical Digest 2008; 28(1): 58-71.

Park SJ, Jin FL, Lee JR. Synthesis and characterization of a novel silicon-containing epoxy resin. Macromolecular Research 2005; 13(1): 8-13. https://doi.org/10.1007/BF03219009 DOI: https://doi.org/10.1007/BF03219009

Domun N, Hadavinia H, Zhang T, Sainsbury T, Liaghata GH, Vahida S. Improving the fracture toughness and the strength of epoxy using nanomaterials – a review of the current status. Nanoscale 2015; 7: 10294-10329. https://doi.org/10.1039/C5NR01354B DOI: https://doi.org/10.1039/C5NR01354B

Samanta BC, Maity T, Dalai S, Banthia AK. Toughening of epoxy resin with solid amine-terminated poly (ethylene glycol) benzoate and effect of red mud waste particles. J Mat Sci Technol 2008; 24(2).

Uhlmann DR, Suratwala T, Davidson K, Boulton JM, Teowee G, Sol-gel derived coatings on glass. Journal of Non-Crystalline Solids 1997; 218: 113-122. https://doi.org/10.1016/S0022-3093(97)00162-2 DOI: https://doi.org/10.1016/S0022-3093(97)00162-2

Hamdy AS. Advanced nano-particles anti-corrosion ceria-based sol-gel coatings for aluminum alloys. Materials Letters 2006; 60: 2633-2637. https://doi.org/10.1016/j.matlet.2006.01.049 DOI: https://doi.org/10.1016/j.matlet.2006.01.049

Dorigato A, Pegoretti A. The role of alumina nanoparticles in epoxy adhesives. J Nanopart Res 2011; 13: 2429-2441. https://doi.org/10.1007/s11051-010-0130-0 DOI: https://doi.org/10.1007/s11051-010-0130-0

Harper EJ, Bonfield W. Tensile Characteristics of Ten Commercial Acrylic Bone Cements. J Biomed Mater Res 2000; 53: 605-616. https://doi.org/10.1002/1097-4636(200009)53:5<605::AID-JBM22>3.0.CO;2-5 DOI: https://doi.org/10.1002/1097-4636(200009)53:5<605::AID-JBM22>3.0.CO;2-5

Mousa WF, Kobayashi M, Shinzato S, Kamimura M, Neo M, Yoshihara S, Nakamura T. Biological and Mechanical Properties of PMMA-based Bioactive Bone Cements. Biomaterials 2000; 21: 2137-2146. https://doi.org/10.1016/S0142-9612(00)00097-1 DOI: https://doi.org/10.1016/S0142-9612(00)00097-1

Hu K, Kulkarni DD, Choi I, Tsukruk VV. Graphene polymer nano-composites for structural and functional applications. Progress in Polymer Science 2014; 39: 1934-1972. https://doi.org/10.1016/j.progpolymsci.2014.03.001 DOI: https://doi.org/10.1016/j.progpolymsci.2014.03.001

Sezavar A, Zebarjad SM, Sajjadi SA. A Study on the Effect of Nano Alumina Particles on Fracture Behavior of PMMA. Technologies 2015; 3: 94-102. https://doi.org/10.3390/technologies3020094 DOI: https://doi.org/10.3390/technologies3020094

Lewandowska J, Staszewska M, Kepczynski M, Ski MS, Latkiewicz A, Olejniczak Z, Nowakowska M. Sol-gel synthesis of iron oxide–silica composite microstructures. J Sol-Gel Sci Technol 2012; 64: 67-77. https://doi.org/10.1007/s10971-012-2828-1 DOI: https://doi.org/10.1007/s10971-012-2828-1

Chaturvedi S, Dave PN, Shah NK. Applications of nano-catalyst in new era. Journal of Saudi Chemical Society 2012; 16(3): 07-325. https://doi.org/10.1016/j.jscs.2011.01.015 DOI: https://doi.org/10.1016/j.jscs.2011.01.015

Ghezelbash Z, Ashouri D, Mousazvian S, Ghandi AH, Rahnama Y. Surface modified Al2O3 in fluorinated polyimide/Al2O3 nanocomposites: Synthesis and characterization. Bull Mater Sci 2012; 35(6): 925-931. https://doi.org/10.1007/s12034-012-0385-4 DOI: https://doi.org/10.1007/s12034-012-0385-4

May M, Wang H, Akid R. Bond strength of hybrid sol-gel coatings with different additives. J Coat Technol Res 2013; 10(3): 407-413. https://doi.org/10.1007/s11998-012-9450-6 DOI: https://doi.org/10.1007/s11998-012-9450-6

Wang DY, Liu JC, Chen YW, Li SH, Wei HZ, Xia M. Advances on Manufacturing of POSS Reinforced Resin Matrix Composites. International Conference on Material Science and Application (ICMSA 2015), 2015; pp. 358-363. https://doi.org/10.2991/icmsa-15.2015.66 DOI: https://doi.org/10.2991/icmsa-15.2015.66

May M, Wang HM, Akid R. Effects of the addition of inorganic nanoparticles on the adhesive strength of a hybrid sol-gel epoxy system. International Journal of Adhesion & Adhesives 2010; 30: 505-512. https://doi.org/10.1016/j.ijadhadh.2010.05.002 DOI: https://doi.org/10.1016/j.ijadhadh.2010.05.002

Liu J, Chaudhury MK, Berry DH, Seebergh JE, Osborne JH, Blohowiak KY. Effect of Surface Morphology on Crack Growth at a Sol-Gel Reinforced Epoxy/Aluminum Interface. The Journal of Adhesion 2006; 82(5): 487-516. https://doi.org/10.1080/00218460600713725 DOI: https://doi.org/10.1080/00218460600713725

Giachino M, Dubois G, Dauskardt RH. Heterogeneous Solution Deposition of High-Performance Adhesive Hybrid Films. Appl Mater Interfaces 2013; 5(20): 9891-9895. https://doi.org/10.1021/am403032v DOI: https://doi.org/10.1021/am403032v

Ji Q, Zhang MQ, Rong MZ, Wetzel B, Friedrich K. Tribological properties of surface modified nano-alumina/epoxy composites. J Mater Sci 2004; 39: 6487-6493. https://doi.org/10.1023/B:JMSC.0000044887.27884.1e DOI: https://doi.org/10.1023/B:JMSC.0000044887.27884.1e

Lambert R, Vasconcelos WL. Sol-Gel Transition and Structural Evolution on Multi component Gels Derived from the Alumina-Silica System. Journal of Sol-Gel Science and Technology 1997; 9(3): 239-249. https://doi.org/10.1007/BF02437187 DOI: https://doi.org/10.1007/BF02437187

Kuo MC, Tsai CM, Huang JC, Chen M. PEEK composites reinforced by nano-sized SiO2 and Al2O3 particulates. Materials Chemistry and Physics 2005; 90: 185-195. https://doi.org/10.1016/j.matchemphys.2004.10.009 DOI: https://doi.org/10.1016/j.matchemphys.2004.10.009

Uddin MA, Alam MO, Chan YC, Chan HP. Adhesion strength and contact resistance of flip chip on flex packages - effect of curing degree of anisotropic conductive film. Microelectronics Reliability 2004; 44(3): 505-514. https://doi.org/10.1016/S0026-2714(03)00185-9 DOI: https://doi.org/10.1016/S0026-2714(03)00185-9

Inoue M, Suganuma K. Influential factors in determining the adhesive strength of ACF joints. J Mater Sci Mater Electron 2009; 20: 1247-1254. https://doi.org/10.1007/s10854-009-9860-0 DOI: https://doi.org/10.1007/s10854-009-9860-0

Downloads

Published

2018-08-16

How to Cite

Ali, B., May, M., Wang, H., & Akid, R. (2018). The Adhesive Strength of Epoxy/Sol-Gel Materials Modified by Various Ratio of γ-Al2O3 Nanoparticles. Journal of Coating Science and Technology, 5(1), 19–26. https://doi.org/10.6000/2369-3355.2018.05.01.3

Issue

Section

Articles