Reactively Magnetron Sputter-Deposited Ti (C,N) Nanocomposite Thin Films: Composition and Thermal Stability

Authors

  • Osama A. Fouad Central Metallurgical Research and Development Institute, CMRDI. P.O. Box: 87 Helwan 11421, Cairo, Egypt
  • Hong-Ying Lin Department of Civil and Environmental Engineering, University of Delaware, Newark DE, 19716
  • S. Ismat Shah Department of Physics and Astronomy and Material Science and Engineering, University of Delaware, Newark DE, 19716, USA

DOI:

https://doi.org/10.6000/2369-3355.2018.05.02.2

Keywords:

Titanium carbonitride, Nanocomposite thin films, Reactive magnetron sputtering, Thermal stability.

Abstract

Titanium carbonitride thin films were grown by reactive magnetron sputtering deposition of titanium carbide target in Ar/N2 gas mixture on p-type silicon (100) substrates. With the increase of sputtering power up to 125W, the deposition rate and films thickness reached a maximum of 14nm/min and 430nm, respectively. A thick film of about 2200nm could be deposited for 120 min at the optimum deposition pressure of 20mTorr. Cathode current decreased from about 290mA to reach a value of about 235mA as the N2 flow percentage increased from 0 to 100%. X-ray diffraction analyses of the deposited films confirmed the formation of titanium carbide and carbonitride layers as the nitrogen gas concentrations in the process gas were increased. SEM image of the deposited titanium carbonitride thin film for 5 min deposition time showed that the film started to grow as tiny particles of size as low as about 140nm, which in later stage coalesced together to form bigger grains and finally a continuous film. The deposited film shows good thermal stability upon annealing in air and in vacuum at 700oC for 2 hours.

References

Safi I. Recent aspects concerning DC reactive magnetron sputtering of thin films: a review. Surf Coat Technol 2000; 127: 203-218. https://doi.org/10.1016/S0257-8972(00)00566-1 DOI: https://doi.org/10.1016/S0257-8972(00)00566-1

Kelly PJ, Arnell RD. Magnetron sputtering: a review of recent developments and applications. Vacuum 2000; 56: 159-172. https://doi.org/10.1016/S0042-207X(99)00189-X DOI: https://doi.org/10.1016/S0042-207X(99)00189-X

Stueber M, Holleck H, Leiste H, Seemann K, Ulrich S, Ziebert C. Concepts for the design of advanced nanoscale PVD multilayer protective thin films. J Alloys Compd 2009; 483: 321-333. https://doi.org/10.1016/j.jallcom.2008.08.133 DOI: https://doi.org/10.1016/j.jallcom.2008.08.133

Pierson HO. Handbook of refractory carbides and nitrides. Noyes Publications 1996. DOI: https://doi.org/10.1016/B978-081551392-6.50001-5

Fouad OA, Ali B, Shah SI. Hysteresis, structural and composition characteristics of deposited thin films by reactively sputtered titanium target in Ar/CH4/N2 gas mixture. Mater Sci Technol 2013; 29: 985-989. https://doi.org/10.1179/1743284713Y.0000000240 DOI: https://doi.org/10.1179/1743284713Y.0000000240

Sproul WD, Chritie DJ, Carter DC. Control of reactive sputtering processes. Thin Solid Films 2005; 491: 1-17. https://doi.org/10.1016/j.tsf.2005.05.022 DOI: https://doi.org/10.1016/j.tsf.2005.05.022

Eklund P, Ph.D. Thesis, Linköping University, Linköping, Sweden, 2007.

Waite MM, Shah SI. Reactive sputtering of silicon with oxygen and nitrogen. Mater Sci Eng B 2007; 140: 64-68. https://doi.org/10.1016/j.mseb.2007.04.001 DOI: https://doi.org/10.1016/j.mseb.2007.04.001

Banerjee R, Chandra R, Ayyub P. Influence of the sputtering gas on the preferred orientation of nanocrystalline titanium nitride thin films. Thin Solid Films 2002; 405: 64-72. https://doi.org/10.1016/S0040-6090(01)01705-9 DOI: https://doi.org/10.1016/S0040-6090(01)01705-9

Senna LF, Achete CA, Hirsch T, Freire FL Jr. Structural, chemical, mechanical and corrosion resistance characterization of TiCN coatings prepared by magnetron sputtering. Surf Coat Technol 1997; 94-95; 390-397. https://doi.org/10.1016/S0257-8972(97)00447-7 DOI: https://doi.org/10.1016/S0257-8972(97)00447-7

Chen JY, Yu GP, Huang JH. Corrosion behavior and adhesion of ion-plated TiN films on AISI 304 steel. Mater Chem Phys 2000; 65: 310-315. https://doi.org/10.1016/S0254-0584(00)00255-8 DOI: https://doi.org/10.1016/S0254-0584(00)00255-8

Kim SK, Kim TH, Whole J, Rie K-T. TiCN Coatings on aluminum alloy formed by MO-PACVD. Surf Coat Technol 2000; 131: 121-126. https://doi.org/10.1016/S0257-8972(00)00831-8 DOI: https://doi.org/10.1016/S0257-8972(00)00831-8

Ren CS, Mu ZX, Wang YN, Yu H. Surf Coat Technol 2004; 185: 210. https://doi.org/10.1016/j.surfcoat.2003.12.030 DOI: https://doi.org/10.1016/j.surfcoat.2003.12.030

Yang Y, Guo JH, Yan MF, Zhu YD, Zhang YX, Wang YX. Improvement of wear resistance for carburised steel by Ti depositing and plasma nitriding. J Surf Eng 2018; 34: 132-138. https://doi.org/10.1080/02670844.2016.1231863 DOI: https://doi.org/10.1080/02670844.2016.1231863

Fouad OA, Abdul Rumaiz K, Ismat Shah S. Reactive sputtering of titanium in Ar/CH4 gas mixture: Target poisoning and film characteristics. Thin Solid Films 2009; 517: 5689-5694. https://doi.org/10.1016/j.tsf.2009.02.119 DOI: https://doi.org/10.1016/j.tsf.2009.02.119

Li TQ, Noda S, Tsuji Y, Ohsawa T, Komiyama H. Initial growth and texture formation during reactive magnetron sputtering of TiN on Si.(111). J Vac Sci Technol A 2002; 20: 583-588. https://doi.org/10.1116/1.1458944 DOI: https://doi.org/10.1116/1.1458944

Fouad OA, Yamazato M, Ichinose H, Nagano M. Titanium disilicide formation by rf plasma enhanced chemical vapor deposition and film properties. Appl Surf Sci 2003; 206: 159-166. https://doi.org/10.1016/S0169-4332(02)01210-2 DOI: https://doi.org/10.1016/S0169-4332(02)01210-2

Downloads

Published

2018-11-12

How to Cite

Fouad, O. A., Lin, H.-Y., & Shah, S. I. (2018). Reactively Magnetron Sputter-Deposited Ti (C,N) Nanocomposite Thin Films: Composition and Thermal Stability . Journal of Coating Science and Technology, 5(2), 42–49. https://doi.org/10.6000/2369-3355.2018.05.02.2

Issue

Section

Articles