New Simple Modification of Dip, Spray and Cathodic Electrodeposition Coating Methods for Wire Coating (3D Coating)

Authors

  • Hisham R. Sadig Nanjing University of Aeronautics and Astronautics, Material Science and Technology, Nanjing 210016, China
  • Li Cheng Nanjing University of Aeronautics and Astronautics, Material Science and Technology, Nanjing 210016, China
  • Xiang Tengfei Nanjing University of Aeronautics and Astronautics, Material Science and Technology, Nanjing 210016, China

DOI:

https://doi.org/10.6000/2369-3355.2018.05.03.1

Keywords:

Capillary-gravitational, environmental, modification, evaluation, spray, coating.

Abstract

In the current paper three most applied coating methods modified to suit wire coating (three dimensional coating). Capillary-gravitational coating (CGM) with natural motions considered to compensate the lifting of substrates, which normally occurs in the dip coating method. Besides a new economic-environmental friendly spray coating (EESM) assisted by the motor rotating to coat different wires, and branched cathodic electrodeposition (BCE) used also for the same mission. Thoroughly, several tests and evaluations carried out for those applied techniques. Remarkably, easy application detected for all modified methods. Unusually perfect morphology output and functional layers were synthesized. Comparison of all mentioned methods carried out considering loses and the number of coating time. Evaluation analysis has been comprehensively considered to find out capability of using these methods later on in the future.

References

Molin J, MP, Gimeno MJ, Izquierdo R, Gracenea JJ, Suay JJ. Influence of zinc molybdenum phosphate pigment on coatings performance studied by electrochemical methods. Prog Org Coat 2016; 97: 244-253. https://doi.org/10.1016/j.porgcoat.2016.04.029 DOI: https://doi.org/10.1016/j.porgcoat.2016.04.029

Veg J, HS, Andersohn G, Oechsner M. Experimental studies of the effect of Ti interlayers on the corrosion resistance of TiN PVD coatings by using electrochemical methods. Corros Sci 2018; 133: 240-250. https://doi.org/10.1016/j.corsci.2018.01.010 DOI: https://doi.org/10.1016/j.corsci.2018.01.010

Hernández LS, del Amo B, Romagnoli R. Accelerated and EIS tests for anticorrosive paints pigmented with ecological pigments. Anti-Corrosion Methods and Materials1999; 46(3): 194-204. https://doi.org/10.1108/00035599910273331 DOI: https://doi.org/10.1108/00035599910273331

Hofman R, JGFW, Pouwel I, Fransen T, Gellings PJ. FTIR and XPS Studies on Corrosion-resistant Si02 Coatings as a Function of the Humidity during Deposit ion. Stud Surf Sci Catal 1996; 24:1-6. DOI: https://doi.org/10.1002/(SICI)1096-9918(199601)24:1<1::AID-SIA73>3.0.CO;2-I

Vesna B. MI Kovi, S. The mechanism of cathodic electrodeposition of epoxy coatings and the corrosion behaviour of the electrodeposited coatings. J Serb Chem Soc 2002; 67(5): 305-324. https://doi.org/10.2298/JSC0205305M DOI: https://doi.org/10.2298/JSC0205305M

Aziz F, AFI. Spray coating methods for polymer solar cells fabrication: A review. Mater Sci Semicond Process 2015; 39: 416-425. https://doi.org/10.1016/j.mssp.2015.05.019 DOI: https://doi.org/10.1016/j.mssp.2015.05.019

Hau SKY, Hin-Lap Z, Jingyu J, Alex KY. Indium tin oxide-free semi-transparent inverted polymer solar cells using conducting polymer as both bottom and top electrodes. Org Electron 2009; 10(7): 1401-1407. https://doi.org/10.1016/j.orgel.2009.06.019 DOI: https://doi.org/10.1016/j.orgel.2009.06.019

Mashreghi A, MG. Investigating the effect of molar ratio between TiO2 nanoparticles and titanium alkoxide in Pechini based TiO2 paste on photovoltaic performance of dye-sensitized solar cells. Renewable Energy 2015; 75: 481-488. https://doi.org/10.1016/j.renene.2014.10.033 DOI: https://doi.org/10.1016/j.renene.2014.10.033

Reza Elyasi SMN, Namaghi HA, Ramezanian N. Preparation and characterization of absorbing tubes with spectrally selective coatings using economical methods for low-tomid-temperature solar thermal collectors. Sol Energy Mater Sol Cells 2015; 141: 57-70. https://doi.org/10.1016/j.solmat.2015.05.021 DOI: https://doi.org/10.1016/j.solmat.2015.05.021

Inyoung Jang CK, Kim S, Yoon H. Fabrication of thin films on an anode support with surface modification for high-efficiency intermediate-temperature solid oxide fuel cells via a dip-coating method. Electrochim Acta 2016; 217: 150-155. https://doi.org/10.1016/j.electacta.2016.09.065 DOI: https://doi.org/10.1016/j.electacta.2016.09.065

Mirzaei A, KJ, Hashemi B, Bonyani M, Leonardi SG, Neri G. Highly stable and selective ethanol sensor based on α-Fe2O3 nanoparticles prepared by Pechinisol–gel method. Ceramics International 2016; 42: 6136-6144. https://doi.org/10.1016/j.ceramint.2015.12.176 DOI: https://doi.org/10.1016/j.ceramint.2015.12.176

Wei L, JD, Qiuyun F, Dongxiang Z, Yunxiang H, Shuping G, Zhiping ZS. Nanocrystalline SnO2 film prepared by the aqueous sol–gel methodand its application as sensing films of the resistance and SAW H2S sensor. Sens Actuators B 2015; 217: 119-128. https://doi.org/10.1016/j.snb.2014.10.078 DOI: https://doi.org/10.1016/j.snb.2014.10.078

Libu M, KC, Jan K, Krzysztof Z, Dorota Szwagierczak GS. Sensing mechanism of RuO2–SnO2 thick film pH sensors studied by potentiometric method and electrochemical impedance spectroscopy. J Electroanal Chem 2015; 759: 82-90. https://doi.org/10.1016/j.jelechem.2015.10.036 DOI: https://doi.org/10.1016/j.jelechem.2015.10.036

Pedro S, FJG-G, Francisco Y, Jorge G-R, González-Elipe AR. Characterization and application of a new pH sensor based on magnetron sputtered porous WO3 thin films deposited at oblique angles. Electrochim Acta 2016; 193: 24-31. https://doi.org/10.1016/j.electacta.2016.02.040 DOI: https://doi.org/10.1016/j.electacta.2016.02.040

Th. Pauporte, AG, Kahn-Harari A, de Tacconic N, Chenthamarakshanc R, Rajeshwarc DLK. Cathodic electrodeposition of mixed oxide thin films. J Phys Chem Solids 2003; 64: 1737-1742. https://doi.org/10.1016/S0022-3697(03)00122-7 DOI: https://doi.org/10.1016/S0022-3697(03)00122-7

Casell IG, MC, Rosanna T. Anodic electrodeposition of iridium oxide particles on glassy carbon surfaces and their electrochemical/SEM/ XPS characterization. J Electroanal Chem 2015 736: 147-152. https://doi.org/10.1016/j.jelechem.2014.11.012 DOI: https://doi.org/10.1016/j.jelechem.2014.11.012

Kyung-Hwa K, KSK, Gil-Pyo K, Sung-Hyeon B. Electrodeposition of mesoporous ruthenium oxide using an aqueous mixture of CTAB and SDS as a templating agent. Current Applied Physics 2012; 12: 36-39. https://doi.org/10.1016/j.cap.2011.04.029 DOI: https://doi.org/10.1016/j.cap.2011.04.029

Balzarotti R, Cristiani C, Francis LF. Spin coating deposition on complex geometry substrates: Influence of operative parameters. Surface and Coatings Technology 2017; 330: 1-9. https://doi.org/10.1016/j.surfcoat.2017.09.077 DOI: https://doi.org/10.1016/j.surfcoat.2017.09.077

Baranowsk-Korczyc A, ARB, Kamil S, Tomasz Wojciechowski KF. The synthesis, characterization and ZnS surface passivation of polycrystalline ZnO films obtained by the spin-coating method. J Alloys Compd 2016; 295: 1-9.

Zhang R, et al. Soap-film coating: high-speed deposition of multilayer nanofilms. Sci Rep 2013; 3: 1477. https://doi.org/10.1038/srep01477 DOI: https://doi.org/10.1038/srep01477

Dip-coating. Available from: "https : // en .wikipedia .org / w / index. Php ? title = Dip-coating and oldid = 81448491"8.

Toktam R, MHE. Achieving to a superhydrophobic glass with high transparency by a simple solgel- dip-coating method. Surf Coat Technol 2015; 276: 557-564. https://doi.org/10.1016/j.surfcoat.2015.06.015 DOI: https://doi.org/10.1016/j.surfcoat.2015.06.015

Jungchan K, DS, Choonsoo K, Youngbin B, Byeongho L, Hee JK, Jong-Chan Lee JY. A high-performance and fouling resistant thin-film composite membrane prepared via coating TiO2 nanoparticles by sol-gel-derived spray method for PRO applications. Desalination 2016; 397: 157-164. https://doi.org/10.1016/j.desal.2016.07.002 DOI: https://doi.org/10.1016/j.desal.2016.07.002

Soltani-Kordshuli F, FZ, Eslamian M. Graphene-doped PEDOT:PSS nanocomposite thin films fabricated by conventional and substrate vibration-assisted spray coating (SVASC). Engineering Science and Technology an International Journal 2016; 19: 1216-1223. https://doi.org/10.1016/j.jestch.2016.02.003 DOI: https://doi.org/10.1016/j.jestch.2016.02.003

Jayakumar M, KAV, Sudha R, Srinivasan TG, Vasudeva Rao PR. Electrodeposition of ruthenium, rhodium and palladium from nitric acid and ionic liquid media: Recovery and surface morphology of the deposits. Mater. Chem. Phys. Materials Chemistry and Physics 2011; 128: 141-150. https://doi.org/10.1016/j.matchemphys.2011.02.049 DOI: https://doi.org/10.1016/j.matchemphys.2011.02.049

Nur Kıcıra, Tunc¸ Tükena, Ozge Erkenb, Cebrail Gumusc, Yuksel UfuktepecaChemistry, Nanostructured ZnO films in forms of rod, plate and flower: Electrodeposition mechanisms and characterization. Appl Surf Sci 2016; 377: 191-199. https://doi.org/10.1016/j.apsusc.2016.03.111 DOI: https://doi.org/10.1016/j.apsusc.2016.03.111

Kwang MK, JHK, Yun YL, Kyoo YK. Electrodeposition of ruthenium oxide on ferritic stainless steel bipolar plate for polymer electrolyte membrane fuel cells. International Journal of Hydrogen Energy 2012; 37: 1653-1660. https://doi.org/10.1016/j.ijhydene.2011.10.028 DOI: https://doi.org/10.1016/j.ijhydene.2011.10.028

Jianggao LS, Pengyang L, Mengjie F, Xinwang Y. A modified dip-coating method to prepare BN coating on SiC fiber by introducing the sol–gel process. Surf Coat Technol 2016; 286: 57-63. https://doi.org/10.1016/j.surfcoat.2015.12.023 DOI: https://doi.org/10.1016/j.surfcoat.2015.12.023

Yu Z, GC, Yanyun Z. Investigation of different coating application methods on the performance of edible coatings on Mozzarella cheese. LWT - Food Sci Technol Int 2014; 56: 1-9. https://doi.org/10.1016/j.lwt.2013.11.006 DOI: https://doi.org/10.1016/j.lwt.2013.11.006

Glynn C, et al. Linking Precursor Alterations to Nanoscale Structure and Optical Transparency in Polymer Assisted Fast-Rate Dip-Coating of Vanadium Oxide Thin Films Sci Rep 2015; 5: 11574. DOI: https://doi.org/10.1038/srep11574

Mousavi SH, et al. A novel wet coating method using small amounts of solution on large flat substrates. Appl Surf Sci 2017; 419: 753-757. https://doi.org/10.1016/j.apsusc.2017.05.109 DOI: https://doi.org/10.1016/j.apsusc.2017.05.109

Patake VD, CDL, Oh Shim J. Electrodeposited ruthenium oxide thin films for supercapacitor: Effect of surface treatments. Appl Surf Sci 2009; 255: 4192-4196. https://doi.org/10.1016/j.apsusc.2008.11.005 DOI: https://doi.org/10.1016/j.apsusc.2008.11.005

Metikoˇs-Hukovi´ M, Babi´c R, Jovi´c F, Grubaˇ Z. Anodically formed oxide films and oxygen reduction on electrodeposited ruthenium in acid solution. Electrochim Acta 2006; 51: 1157-1164. https://doi.org/10.1016/j.electacta.2005.05.029 DOI: https://doi.org/10.1016/j.electacta.2005.05.029

Winiarski J, AL, Pohl P, Szczygieł B. The effect of pH of plating bath on electrodeposition and properties of protective ternary Zn–Fe–Mo alloy coatings. Surf Coat Technol 2016; 299: 81-89. https://doi.org/10.1016/j.surfcoat.2016.04.073 DOI: https://doi.org/10.1016/j.surfcoat.2016.04.073

Shmychkova O, TLy, Amadelli R, Velichenko A. Electrodeposition of Ni2+-doped PbO2 and physicochemical properties of the coating. J Electroanal Chem 2016; 774: 88-94. https://doi.org/10.1016/j.jelechem.2016.05.017 DOI: https://doi.org/10.1016/j.jelechem.2016.05.017

Bush PJWM, Capillary R. 18.357 Interfacial Phenomena, 2013.

Emad El-Deen M, El-Giar DOW. Microparticle-based iridium oxide ultramicroelectrodes for pH sensing and imaging. J Electroanal Chem 2007; 609: 147-154. https://doi.org/10.1016/j.jelechem.2007.06.022 DOI: https://doi.org/10.1016/j.jelechem.2007.06.022

Kuo L-M, et al. A precise pH microsensor using RF-sputtering IrO2 and Ta2O5 films on Pt-electrode. Sens Actuators B 2014; 193: 687-691. https://doi.org/10.1016/j.snb.2013.11.109 DOI: https://doi.org/10.1016/j.snb.2013.11.109

Jongman P, MK, Shinseon KM. Surface renewable nano-iridium oxide polymeric composite pHelectrodes. Sens Actuators B 2014; 204: 197-202. https://doi.org/10.1016/j.snb.2014.07.104 DOI: https://doi.org/10.1016/j.snb.2014.07.104

Xiao-Rong H, Q-qR, Xiao-Jun Y, Wei W, Wei C, Dong-Ping Z. Iridium oxide based coaxial pH ultramicroelectrode. Electrochemistry Communications 2014; 40: 35-37. https://doi.org/10.1016/j.elecom.2013.12.012 DOI: https://doi.org/10.1016/j.elecom.2013.12.012

Libu M, KC, Jan K, Krzysztof Z, Dorota S, Robert PS. Fabrication of thick film sensitive RuO2-TiO2and Ag/AgCl/KCl reference electrodes and their application for pH measurements. Sens Actuators B 2014; 204: 57-67. https://doi.org/10.1016/j.snb.2014.07.067 DOI: https://doi.org/10.1016/j.snb.2014.07.067

Sardarinejad A, Maurya DK, Alameh K. The effects of sensing electrode thickness on ruthenium oxide thin-film pH sensor. Sens Actuators A 2014; 214: 15-19. https://doi.org/10.1016/j.sna.2014.04.007 DOI: https://doi.org/10.1016/j.sna.2014.04.007

Capillarity and Wetting Phenomena. Springer Science, 2004.

Sadig HR, Cheng L, Xiang T. Using sol-gel supported by novel economic and environment-friendly spray-coating in the fabrication of nanostructure tri-system metal oxide-based pH sensor applications. J Electroanal Chem 2018; 827: 93-102. https://doi.org/10.1016/j.jelechem.2018.09.017 DOI: https://doi.org/10.1016/j.jelechem.2018.09.017

Downloads

Published

2018-03-14

How to Cite

Sadig, H. R., Cheng, L., & Tengfei, X. (2018). New Simple Modification of Dip, Spray and Cathodic Electrodeposition Coating Methods for Wire Coating (3D Coating). Journal of Coating Science and Technology, 5(3), 70–78. https://doi.org/10.6000/2369-3355.2018.05.03.1

Issue

Section

Articles