Plasma Cleaning of Metallic Mirrors from Carbon-Containing Films – New Possibilities for In Situ Monitoring of the Efficiency of Wall Conditioning in Fusion Devices

Authors

  • V.S. Voitsenya National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, 61108, Ukraine
  • V.G. Konovalov National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, 61108, Ukraine
  • A.I. Timoshenko National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, 61108, Ukraine
  • S.I. Solodovchenko National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, 61108, Ukraine
  • I.V. Ryzhkov National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, 61108, Ukraine
  • A.F. Shtan National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, 61108, Ukraine
  • A.N. Shapoval National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, 61108, Ukraine

DOI:

https://doi.org/10.6000/2369-3355.2018.05.03.2

Keywords:

Fusion devices, plasma, wall cleaning, electrical resistance, carbon film thickness.

Abstract

The method proposed for measuring the erosion rate of the carbon film, pre-deposited on the mirror-like surface of the test metallic samples, directly during wall conditioning procedures in a fusion device. The practical realization of the method provided at the DSM-2 stand where deuterium plasma produced in conditions of electron resonance at frequency 2.45 GHz used for cleaning the samples. For controlling C-film thickness the time variation of electrical conductivity of the circuit ‘film+plasma+entire scheme’ was measured. The final cleaning stage sets according to the saturation section corresponding to the resistance of the entire measuring scheme. To check the state of full purification of samples from a carbon-containing film the reflectance at normal incidence in the wavelength 220-650 nm was measured before C-film deposition, just after C-film deposition, and after finishing the cleaning procedure. In all cases (16 experiments) the approach of total resistance to the ‘entire resistance’ of the scheme in use was supported by restoration of the reflectance of stainless steel samples to its initial value.

The method can be reversed, i.e. allows one to control in situ the appearance of a contaminating layer growing on the surface of a metal sample, preliminary cleaned before being installed in a vacuum vessel

References

Voitsenya VS, Konovalov VG, Ryzhkov IV et al., First results with collecting probes in U-2M torsatron. Problems of Atomic Science and Technology. 2018, №6. Series: Plasma Physics (118), p. 17-20. http://vant.kipt.kharkov.ua/ARTICLE/VANT_2018_6/article_2018_6_17.pdf

Orlinski DV, Voitsenya VS, and Vukolov KYu. First mirrors for diagnostic systems of an experimental fusion reactor I. Simulation mirror tests under neutron and ion bombardment. Plasma Devices Oper 2007; 15: 33-75. http://www.tandfonline.com/loi/gpdo20 DOI: https://doi.org/10.1080/10519990601160075

Tymoshenko AI, Taran VS, Tereshin VI. Plasma characteristics of two-step vacuum-arc discharge and its application for a coatings deposition. Probl. Atom. Sci. Techn., series: Plasma Phys 2007; 1: 179-81. http://vant.kipt.kharkov.ua/ARTICLE/VANT_2007_1/article_ 2007_1_179.pdf

Voitsenya VS, Bardamid AF, Donné AJH. Experimental simulation of the behaviour of diagnostic first mirrors fabricated of different metals for ITER conditions. Open Physics J 2016; 3: 23-54. https://pure.tue.nl/ws/portalfiles/portal/37530269 DOI: https://doi.org/10.2174/1874843001603010023

Babaev VG, Guseva MV, Savchenko NF, Novikov ND, Khvostov VV, Flad P. High oriented sp1-carbon film. Journal of Surface Investigation: X-ray, synchrotron and neutron studies 2004; issue 3: 16-27 (in Russian).

Dasgupta D, Demichelis F, Tagliaferro A. Electrical conductivity of amorphous carbon and amorphous hydrogenated carbon. Phil Mag 1991; 63: 1255-66.

http://dx.doi.org/10.1080/13642819108205558 DOI: https://doi.org/10.1080/13642819108205558

Konshina EA. Amorphous hydrogenated carbon and its use in optical devices. Monograph. St. Petersburg, 2010 (in Russian). Available at https://books.ifmo.ru/book/599/amorfnyy_gidrogenizirovannyy_uglerod_i_ego_primenenie_v_opticheskih_ustroystvah.htm

Sinel’nikov BM, Tarala VA, Prokhoda TN. Synthesis and study of the properties of diamond-like carbon films obtained from methane in RF plasma. Bulletin of the Southern Scientific Center of the Russian Academy of Sciences 2009; 5 (issue 2): 120-4 (in Russian). http://www.ssc-ras.ru/files/files/120-124_sin.pdf

Fantz U, Wünderlich D. Franck–Condon factors, transition probabilities and radiative lifetimes for hydrogen molecules and their isotopomeres. INDC(NDS)-457 (Reproduced by the IAEA in Vienna, Austria May 2004). https://inis.iaea.org/collection/NCLCollectionStore/ _Public/37/088/37088524.pdf

Weinert M, Wimmer E, Freeman AJ. Chemical sputtering of carbon materials due to combined bombardment by ions and atomic hydrogen. Phys Rev 1986; B26: 4571-8. https://journals.aps.org/ prb/pdf/10.1103/PhysRevB.26.4571

Jacob W, Hopf C, Schlüter M. Chemical sputtering of carbon materials due to combined bombardment by ions and atomic hydrogen. Phys Scr 2006; T124: 32–6. http://iopscience.iop.org/ article/10.1088/0031-8949/2006/T124/007/pdf DOI: https://doi.org/10.1088/0031-8949/2006/T124/007

Arumainayagam Christopher, Lee Hsiao-Lu, Nelson Rachel B, Haines David R, Gunawardane Richard P. Low-energy electron-induced reactions in condensed matter. Surf Sci Rep 2010; 65: 1-44. https://doi.org/10.1016/j.surfrep.2009.09.001 DOI: https://doi.org/10.1016/j.surfrep.2009.09.001

Wang Chao, Diao Dongfeng, Fan Xue, Chen Cheng. Graphene sheets embedded carbon film prepared by electron irradiation in electron cyclotron resonance plasma. Appl Phys Lets 2012; 100: 231909. https://doi.org/10.1063/1.4727894 DOI: https://doi.org/10.1063/1.4727894

Shepperd Kristin R. Low-energy electron induced processes in hydrocarbon films adsorbed on silicon surfaces. Ph D. Thesis. https://smartech.gatech.edu/bitstream/handle/1853/29648/shepperd_kristin_r_200908_phd.pdf

Fischer R, Dose V. Electron energy distribution reconstraction in low-pressure helium plasmas from optical measurements. Plasma Phys Control Fusion 1999; 41: 1109-23. http://citeseerx.ist.psu.edu/ viewdoc/download?doi=10.1.1.10.6295&rep=rep1&type=pdf DOI: https://doi.org/10.1088/0741-3335/41/9/304

Aleiferis S, Svarnas P. Automated electrostatic probe device of high resolution and accuracy. Rev Sci Instr 2014; 85: 123504. https://doi.org/10.1063/1.4903354 DOI: https://doi.org/10.1063/1.4903354

Aleiferis Spyridon. Experimental study of H- negative ion production by electron cyclotron resonance plasmas. Ph. D. Thesis, Université Grenoble Alpes, 2016.

https://tel.archives-ouvertes.fr/tel-01492954/document

Kurutz U, Friedl R, Fantz U. Investigations on Cs-free alternatives for negative ion formation in a low pressure hydrogen discharge at ion source relevant parameters. Plasma Phys Contr Fusion 2017; 59: 075008. https://doi.org/10.1088/1361-6587/aa7120 DOI: https://doi.org/10.1088/1361-6587/aa7120

Yang Peng, Yang Wantai. Surface chemoselective phototransformation of C−H bonds on organic polymeric materials and related high-tech applications. Chem Rev 2013; 113: 5547-94. https://doi.org/10.1021/cr300246p DOI: https://doi.org/10.1021/cr300246p

Chen Mao, Zhong Mingjiang, Johnson Jeremiah A. Light-controlled radical polymerization: mechanisms, methods, and applications. Chem Rev 2016; 116: 10167−211, Special Issue: Photochemistry in Organic Synthesis. https://doi.org/10.1021/acs.chemrev.5b00671 DOI: https://doi.org/10.1021/acs.chemrev.5b00671

Skurat Vladimir E, DorofeevYurij I. The transformations of organic polymers during the illumination by 147.0 and 123.6 nm light. Die Angewandte Makromolekulare Chemie 1994; 216: 205-24 (3877). https://doi.org/10.1002/apmc.1994.052160114 DOI: https://doi.org/10.1002/apmc.1994.052160114

Fozza AC, Roth J, Klemberg-Sapieha JE, Kruse A, Holländer A, Wertheimer MR. Oxidation and ablation of polymers by vacuum-UV radiation from low pressure plasmas. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater At 1997; 131: 205-10. https://doi.org/10.1016/S0168-583X(97)00154-7 DOI: https://doi.org/10.1016/S0168-583X(97)00154-7

Sakamoto Y, Ishii S, Yano V, et al. Electron cyclotron resonance discharge cleaning of JFT-2 tokamak (JAERI). J Nucl Mater 1980; 93&94: 333-7. https://doi.org/10.1016/0022-3115(80)90344-X DOI: https://doi.org/10.1016/0022-3115(80)90344-X

Janev RK, Langer WD, Evans K Jr, Post DE Jr. Elementary Processes in Hydrogen-Helium Plasmas. Cross Sections and Reaction Rate Coefficients. Springer-Verlag Berlin Heidelberg New York London Paris Tokyo. 1987. 326 p. http://b-ok.cc/book/ 2124621/df22e7

Downloads

Published

2019-03-12

How to Cite

Voitsenya, V., Konovalov, V., Timoshenko, A., Solodovchenko, S., Ryzhkov, I., Shtan, A., & Shapoval, A. (2019). Plasma Cleaning of Metallic Mirrors from Carbon-Containing Films – New Possibilities for In Situ Monitoring of the Efficiency of Wall Conditioning in Fusion Devices. Journal of Coating Science and Technology, 5(3), 79–84. https://doi.org/10.6000/2369-3355.2018.05.03.2

Issue

Section

Articles