New Flame Retardant and Antimicrobial Paints Based on Epoxy Paint Incorporated by Hexachlorocylodiphosphazane Derivatives for Protective Coating

Authors

  • H. Abd El-Wahab Chemistry Department, Faculty of Science Al-Azhar University, Cairo, Egypt
  • Salah A.A. Mohamed Packaging Materials Department, National Research Centre, El Behooth St., Dokki, P.O. 12622, Giza, Egypt
  • Islam Gomaa Chemistry Department, Faculty of Science Al-Azhar University, Cairo, Egypt

DOI:

https://doi.org/10.6000/2369-3355.2018.05.03.3

Keywords:

Protective coatings, flame retardant additives hexachlorocylodiphosphazane, Epoxy paint.

Abstract

Flame retardants can be incorporated into polymeric material either as additives or as reactive materials. Additive type flame retardants are widely used by means of blending them with a specific polymeric material. In this particular research, hexachlorocylodiphosphazane derivatives type (I-II) were synthesized for use as flame retardant and antimicrobial additives with epoxy varnish. These additives are physically incorporated into the epoxy varnish formula. Experimental coatings were manufactured on a laboratory scale and applied by brush on wood and steel panels. The fire retardant ability of each coating type was characterized using the limiting oxygen index (LOI) test. The mechanical properties of these flame retardants were also examined to evaluate the drawbacks of the additives. Results of the LOI indicated that coating with these compounds containing chlorine, nitrogen and phosphorus exhibit a very good retardant effect, when blended with epoxy varnish comparing with the blanket sample which not contain on the hexachlorocylodiphosphazane derivative as a additives. The hexachlorocylodiphosphazane derivative also exhibit mild results as preservative against microbiological attack. The mechanical properties of the painted dry films were investigated acordinting to ASTM.

References

Rufo M, Raymond W, Monaghan S, Vedage G, Shah D. New Developments in 2K Waterborne Epoxy Coatings. Air Products and Chemicals, Inc, 2007; pp. 1-14.

Gérard C, Fontaine G, Bourbigot S. New trends in reaction and resistance to fire of fire-retardant epoxies. Materials 2010; 3(8): 4476-4499. https://doi.org/10.3390/ma3084476 DOI: https://doi.org/10.3390/ma3084476

Bourbigot S, Flambard X. Heat resistance and flammability of high performance fibres: a review. Fire Mater 2002; 26(4-5): 155-168. https://doi.org/10.1002/fam.799 DOI: https://doi.org/10.1002/fam.799

Chen DQ, Wang YZ, Hu XP, Wang DY, Qu MH, Yang B. Flame-retardant and anti-dripping effects of a novel char-forming flame retardant for the treatment of poly(ethylene terephthalate) fabrics. Polym Degrad Stab 2005; 88(2): 349-356. https://doi.org/10.1016/j.polymdegradstab.2004.11.010 DOI: https://doi.org/10.1016/j.polymdegradstab.2004.11.010

Choi J, Yee AF, Laine RM. Organic/inorganic hybrid composites from cubic silsesquioxanes. Epoxy resins of octa(dimethylsiloxyethyl-cyclohexylepoxide) silsesquioxane. Macromolecules 2003; 36(15): 5666-5682. https://doi.org/10.1021/ma030172r DOI: https://doi.org/10.1021/ma030172r

Lu SY, Hamerton I. Recent developments in the chemistry of halogen-free flame retardant polymers. Prog Polym Sci 2002; 27(8): 1661-1712. https://doi.org/10.1016/S0079-6700(02)00018-7 DOI: https://doi.org/10.1016/S0079-6700(02)00018-7

Levchik SV, Weil ED. Thermal decomposition, combustion and flame-retardancy of epoxy resins—a review of the recent literature. Polym Int 2004; 53(2): 1901-1929. https://doi.org/10.1002/pi.1473 DOI: https://doi.org/10.1002/pi.1473

Abd El-Wahab H. Synthesis and characterization the flame retardant properties and corrosion resistance of the Schiff’s base monomers incorporated into an organic coating. Pigm Resin Technol 2015; 44(2): 101-108. https://doi.org/10.1108/PRT-05-2014-0042 DOI: https://doi.org/10.1108/PRT-05-2014-0042

Abd El-Wahab H, Abd El-Fattah M, Gabr MY. Preparation and characterization of flame retardant solvent base and emulsion paints. Prog Org Coat 2010; 69(3): 272-277. https://doi.org/10.1016/j.porgcoat.2010.06.005 DOI: https://doi.org/10.1016/j.porgcoat.2010.06.005

Abd El-Wahab H, Abd El-Fattah M, Abd El-Khalik N, Carmen M. Sharaby, Synthesis and performance of flame retardant additives based on cyclodiphosph(V)azane of sulfaguanidine, 1,3-di-[N/-2-pyrimidinylsulfanilamide]-2,2,2.4,4,4 hexachlorocyclodiphosph(V)azane and 1,3-di-[N/-2-pyrimidinylsulfanilamide]-2,4-di[aminoacetic acid]-2,4-dichlorocyclodiphosph(V)azane incorporated into polyurethane varnish. Prog Org Coat 2012; 74(3): 615-621. https://doi.org/10.1016/j.porgcoat.2012.02.010 DOI: https://doi.org/10.1016/j.porgcoat.2012.02.010

Ahmed T, Nishat N. New antimicrobial epoxy-resin-bearing schiff-base metal complexes. J Appl Polym Sci 2007; 107(4): 2280-2288. https://doi.org/10.1002/app.27234 DOI: https://doi.org/10.1002/app.27234

Mu˜noz-Bonilla A, Fernández-García M. Polymeric materials with antimicrobial activity. Prog Polym Sci 2012; 37(2): 281-339. https://doi.org/10.1016/j.progpolymsci.2011.08.005 DOI: https://doi.org/10.1016/j.progpolymsci.2011.08.005

Sharmin E, Ashraf SM, Ahmad S. Synthesis, characterization, antibacterial and corrosion protective properties of epoxies, epoxy-polyols and epoxy-polyurethane coatings from linseed and Pongamia glabra seed oils. Int J Biol Macromol 2007; 40(5): 407-422. https://doi.org/10.1016/j.ijbiomac.2006.10.002 DOI: https://doi.org/10.1016/j.ijbiomac.2006.10.002

Almeida E, Diamantino TC, de Sousa O. Marine paints: the particular case of antifouling paints. Prog Org Coat 2007; 59(1): 2-20. https://doi.org/10.1016/j.porgcoat.2007.01.017 DOI: https://doi.org/10.1016/j.porgcoat.2007.01.017

Abd El-Wahab H. The synthesis and characterization of the hydrazone ligand and its metal complexes and their performance in epoxy formulation surface coatings. Progress in Organic Coatings 2015; 89: 106-113. https://doi.org/10.1016/j.porgcoat.2015.08.001 DOI: https://doi.org/10.1016/j.porgcoat.2015.08.001

Randoux Th, Vanovervelt JCl, Van den Bergen H, Camino G. “Halogen-free flame retardant radiation curable coatings. Progress in Organic Coatings 2002; 45(2/3): 281-289. https://doi.org/10.1016/S0300-9440(02)00051-6 DOI: https://doi.org/10.1016/S0300-9440(02)00051-6

Levchik V, Weil D. A review of recent progress in phosphorus-based flame retardants. Journal of Fire Science 2006; 24(5): 345-364. https://doi.org/10.1177/0734904106068426 DOI: https://doi.org/10.1177/0734904106068426

Hoang D, Kim J, Jang BN. Synthesis and performance of cyclic phosphorus-containing flame retardants. Polymer Degradation and Stability 2008; 93(11): 2042-2047. https://doi.org/10.1016/j.polymdegradstab.2008.02.017 DOI: https://doi.org/10.1016/j.polymdegradstab.2008.02.017

Green J. Mechanisms for flame retardancy and smoke suppression-A review. Journal of fire Sciences 1996; 14(6): 426-442. https://doi.org/10.1177/073490419601400602 DOI: https://doi.org/10.1177/073490419601400602

Lejeune N, Dez I, Jaffres PA, Lohier JF, Madec PJ, Sopkova-de Oliveira Santos J. Synthesis, crystal structure and thermal properties of phosphorylated cyclotriphazenes. European Journal of Inorganic Chemistry 2008; 2008(1): 138-143. https://doi.org/10.1002/ejic.200700785 DOI: https://doi.org/10.1002/ejic.200700785

Kumar D, Khullar M, Gupta AD. Synthesis and characterization of novel Cyclotriphosphazene-containing poly (ether imide)s. Polymer 1993; 34(14): 3025-3029. https://doi.org/10.1016/0032-3861(93)90630-S

Levchik SV, Camino G, Luda MP, Costa L, Lindsay A, Stevenson D. Thermal decopmposition of cyclotriphosphazne. Journal of Applied Polymer Science 1998; 67(3): 461-472. https://doi.org/10.1002/(SICI)1097-4628(19980118)67:3<461::AID-APP9>3.0.CO;2-K DOI: https://doi.org/10.1002/(SICI)1097-4628(19980118)67:3<461::AID-APP9>3.3.CO;2-B

Potin P, Jaeger RD. Polyphosphazenes: Synthesis, structure, properties, application. European Polymer Journal 1991; 27(4-5): 341-348. https://doi.org/10.1016/0014-3057(91)90185-Q DOI: https://doi.org/10.1016/0014-3057(91)90185-Q

Kumar D, Gupta AD, Khullar M. Synthesis and characterization of novel cyclotriphosphazene-containing poly (ether imides)s. Polymer 1993; 34(14): 3025-3029. https://doi.org/10.1016/0032-3861(93)90630-S DOI: https://doi.org/10.1016/0032-3861(93)90630-S

Kumar D, Gupta AD. Aromatic cyclolinear phosphazene polyimides based on a novel bis-spiro substituted cyclotriphosphazene diamine. Macromolecules 1995; 28(18): 6323-6329. https://doi.org/10.1021/ma00122a045 DOI: https://doi.org/10.1021/ma00122a045

Ding J, Shi W. Thermal degradation and flame retardancy of hexaacrylated/hexaethoxy cyclophosphazene and their blends with epoxy acrylate. Polymer Degradation and Stability 2004; 84(1): 159-165. https://doi.org/10.1016/j.polymdegradstab.2003.10.006 DOI: https://doi.org/10.1016/j.polymdegradstab.2003.10.006

Allen CW. Regio- and stereochemical control in substitution reactions of cyclophosphazenes. Chem Rev 1991; 91(2): 119-135. https://doi.org/10.1021/cr00002a002 DOI: https://doi.org/10.1021/cr00002a002

Kumar D, Fohlen GM, Parker JA. Fire-and heat-resistant laminating resins based on malemido-substitued aromatic cyclotriphosphazenes. Macromolecules 1983; 16(8): 1250-1257. https://doi.org/10.1021/ma00242a002 DOI: https://doi.org/10.1021/ma00242a002

Orme CJ, Klaehn JR, Harrup MK, Lash RP, Stewart FF. Characterization of 2-(2-methoxyethoxy) ethanol-substituted phosphazene polymers using pervaporation, solubility parameters, and sorption studies. Journal of Applied Polymer Science 2005; 97(3): 939-945. https://doi.org/10.1002/app.21898 DOI: https://doi.org/10.1002/app.21898

Chang JY, Rhee SB, Cheong S, Yoon M. Synthesis and thermal reaction of acetylenic group substituted poly(organophosphazenes) and cyclotriphosphazene. Macromolecules 1992; 25(10): 2666-2670. https://doi.org/10.1021/ma00036a017 DOI: https://doi.org/10.1021/ma00036a017

Allcock HR, Austin PE. Schiff base coupling of cyclic and high-polymeric phosphazenes to aldehydes and amines: Chemotherapeutic models. Macromolecules 1981; 14(6): 1616-1622. https://doi.org/10.1021/ma50007a002 DOI: https://doi.org/10.1021/ma50007a002

Chen S, Zheng QK, Ye GD, Zheng GK. Fire-retardant properties of the viscose rayon containing alkoxycyclotriphosphazene. Journal of Applied Polymer Science 2006; 102(1): 698-702. https://doi.org/10.1002/app.24217 DOI: https://doi.org/10.1002/app.24217

Conner DA, Welna DT, Chang Y, Allcock HR. Influence of terminal phenyl groups on the side chains of phosphazene polymers: structure-property relationships and polymer electrolyte behaviour. Macromolecules 2007; 40(2): 322-328. https://doi.org/10.1021/ma061916e DOI: https://doi.org/10.1021/ma061916e

Abd El-Fattah M, Abd El-Wahab H, Bashandy MS, El-Eisawy RA, Abd El-hai F. Saeed M. Potential application of some coumarin derivatives incorporated thiazole ring as ecofriendly antimicrobial, flame retardant and corrosion inhibitor additives for polyurethane coating. Progress in Organic Coatings 2017; 111: 57-66. https://doi.org/10.1016/j.porgcoat.2017.05.005 DOI: https://doi.org/10.1016/j.porgcoat.2017.05.005

Cloutier M, Mantovani D, Rosei F. Review Antibacterial Coatings: Challenges, Perspectives, and Opportunities. Trends in Biotechnology 2015; 33(11). https://doi.org/10.1016/j.tibtech.2015.09.002 DOI: https://doi.org/10.1016/j.tibtech.2015.09.002

Vasilev K, Cavallaro A, Zilm P. Special Issue: Antibacterial Materials and Coatings. Molecules 2018; 23: 585. https://doi.org/10.3390/molecules23030585 DOI: https://doi.org/10.3390/molecules23030585

Chapmann AC, Paddock NL, Searle HT. Journal of Chemical Society 1961; 1825-1827.

Zhnurova IN, Kirsanov AV, Zh. Obshchei Khimii 1962; 32: 2576-2580, C.A. 58(1963) 7848.

Sharaby CM. Preparation, characterization and biological activity of Fe(III), Fe(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and UO2(II) complexes of new cyclodiphosph (V) azane of sulfaguanidine. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2005; 62(1-3): 326-334. https://doi.org/10.1016/j.saa.2004.12.047 DOI: https://doi.org/10.1016/j.saa.2004.12.047

Sharaby CM, Mohamed G, Omar MM. Preparation and spectroscopic characterization of novel cyclodiphosph (V) azane of N' -2- pyrimidinylsulfanilamide complexes: magnetic, thermal and biological activity studies. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2007; 66(4-5): 935-948. https://doi.org/10.1016/j.saa.2006.04.032 DOI: https://doi.org/10.1016/j.saa.2006.04.032

Radhakishnan Nair P, Reghunadhan Nair CP, Francis DJ. Phosphazene-modified polyurethane: synthesis, mechanical and thermal characteristics. European Polymer Journal 1996; 32(12): 1415-1420. https://doi.org/10.1016/S0014-3057(96)00079-1 DOI: https://doi.org/10.1016/S0014-3057(96)00079-1

Spirckel M, Regnier N, Mortaigne B, Youssef B, Bunel C. Thermal degradation and fire performance of new phosphonate polyurethane. Polymer Degradation and Stability 2002; 78(2): 211-218. https://doi.org/10.1016/S0141-3910(02)00135-0 DOI: https://doi.org/10.1016/S0141-3910(02)00135-0

El-Sakhawy M, Awad HM, Madkour HMF, El-Ziaty AK, Nassar MA, Mohamed SA. Preparation and application of organophosphorus dimers as antimicrobial agents for bagasse packaging paper. Cellulose Chem Technol 2018; 52(7-8): 655-662.

El-Sakhawy M, Awad HM, Madkour HMF, El-Ziaty AK, Nassar MA, Mohamed SA. Improving the antimicrobial activity of bagasse packaging paper using organophosphorus dimers. International Journal of Technology 2016; 6: 932-942. https://doi.org/10.14716/ijtech.v7i6.4008 DOI: https://doi.org/10.14716/ijtech.v7i6.4008

Syakur A, Hermawan, Sutanto H. Determination of Hydrophobic Contact Angle of Epoxy Resin Compound Silicon Rubber and Silica. IOP Conf Ser: Mater Sci Eng 2017; 190: 012025. https://doi.org/10.1088/1757-899X/190/1/012025 DOI: https://doi.org/10.1088/1757-899X/190/1/012025

Downloads

Published

2019-06-20

How to Cite

El-Wahab, H. A., Mohamed, S. A., & Gomaa, I. (2019). New Flame Retardant and Antimicrobial Paints Based on Epoxy Paint Incorporated by Hexachlorocylodiphosphazane Derivatives for Protective Coating. Journal of Coating Science and Technology, 5(3), 85–96. https://doi.org/10.6000/2369-3355.2018.05.03.3

Issue

Section

Articles