Determination of Thermal Barrier Coatings Layers Optimum Thickness via PSO-SA Hybrid Optimization Method concerning Thermal Stress
DOI:
https://doi.org/10.6000/2369-3355.2019.06.01.1Keywords:
Thermal barrier coating, Thickness, Optimization, PSO-SA, Thermal stress.Abstract
Turbine entry temperature of turbo-engines has been increased to improve proficiency. Consequently, protecting the hot section elements experiencing aggressive service conditions necessitates the applying of thermal barrier coatings (TBC). Developing TBC systems and improving performance is an ongoing endeavour to prolong the lifetime. Thus, various studies have been conducted to find the optimum properties and dimensions. In this paper, the optimum thickness of intermediate bond coat (BC) and top coat (TC) have been determined via a novel hybrid particle swarm and simulated annealing stochastic optimization method. The optimum thicknesses have been achieved under the constraint of thermal stress induced by thermal fatigue, creep, and oxidation in the TC while minimizing the weight during twenty cycles. The solutions for BC and TC thicknesses are respectively 50 μm and 450 μm. Plane stress condition has been adopted for theoretical and finite element stress analysis, and the results are successfully compared.
References
Cernuschi F, Lorenzoni L, Ahmaniemi S, Vuoristo P, Mäntylä T. Studies of the sintering kinetics of thick thermal barrier coatings by thermal diffusivity measurements. Journal of the European Ceramic Society 2005; 25(4): 393-400. https://doi.org/10.1016/j.jeurceramsoc.2004.01.009 DOI: https://doi.org/10.1016/j.jeurceramsoc.2004.01.009
Osorio JD, Toro A, Hernandez-Ortiz JP. Thermal barrier coatings for gas turbine applications: failure mechanisms and key microstructural features. Dyna 2012; 79(176): 149-158.
Lim JG, Seo S, Koo JM, Seok CS, Choi JB, Kim MK. Parametric study for optimal design of an air plasma sprayed thermal barrier coating system with respect to thermal stress. Surface and Coatings Technology 2017; 315: 105-111. https://doi.org/10.1016/j.surfcoat.2017.02.012 DOI: https://doi.org/10.1016/j.surfcoat.2017.02.012
Koushali AG, Sameezadeh M, Vaseghi M, Safarpour P. Analytical and numerical investigations of the crack behavior in thermal barrier coatings under the trip thermal load. Surface and Coatings Technology 2018; 337: 90-96. https://doi.org/10.1016/j.surfcoat.2018.01.010 DOI: https://doi.org/10.1016/j.surfcoat.2018.01.010
Koushali AG, Sameezadeh M, Vaseghi M, Safarpour P. Modeling and simulation of thermal fatigue crack in EB-PVD TBCs under non-uniform temperature. Ceramics International 2017; 43(16): 13140-13145. https://doi.org/10.1016/j.ceramint.2017.07.006 DOI: https://doi.org/10.1016/j.ceramint.2017.07.006
Kumar V, Balasubramanian K. Progress update on failure mechanisms of advanced thermal barrier coatings: A review, Progress in Organic Coatings 2016; 90: 54-82. https://doi.org/10.1016/j.porgcoat.2015.09.019 DOI: https://doi.org/10.1016/j.porgcoat.2015.09.019
Naraparaju R, Hüttermann M, Schulz U, Mechnich P. Tailoring the EB-PVD columnar microstructure to mitigate the infiltration of CMAS in 7YSZ thermal barrier coatings. Journal of the European Ceramic Society 2017; 37(1): 261-270. https://doi.org/10.1016/j.jeurceramsoc.2016.07.027 DOI: https://doi.org/10.1016/j.jeurceramsoc.2016.07.027
Lv B, Fan X, Li D, Wang T. Towards enhanced sintering resistance: Air-plasma-sprayed thermal barrier coating system with porosity gradient. Journal of the European Ceramic Society 2017. https://doi.org/10.1016/j.jeurceramsoc.2017.12.008 DOI: https://doi.org/10.1016/j.jeurceramsoc.2017.12.008
Ozgurluk Y, Doleker KM, Karaoglanli AC. Hot corrosion behavior of YSZ, Gd2Zr2O7 and YSZ/Gd2Zr2O7 thermal barrier coatings exposed to molten sulfate and vanadate salt. Applied Surface Science 2017. https://doi.org/10.1016/j.apsusc.2017.09.047 DOI: https://doi.org/10.1016/j.apsusc.2017.09.047
Li B, Fan X, Li D, Jiang P. Design of Thermal Barrier Coatings Thickness for Gas Turbine Blade Based on Finite Element Analysis. Mathematical Problems in Engineering 2017; 2017. https://doi.org/10.1155/2017/2147830 DOI: https://doi.org/10.1155/2017/2147830
Abedi H, Salehi M, Shafyei A. Microstructural, Mechanical and Thermal Shock Properties of Triple-layer TBCs with Different Thicknesses of Bond Coat and Ceramic Top Coat Deposited onto Polyimide Matrix Composite. Ceramics International 2018. https://doi.org/10.1016/j.ceramint.2018.01.006 DOI: https://doi.org/10.1016/j.ceramint.2018.01.006
Fang X, Zhang G, Feng X. Performance of TBCs system due to the different thicknesses of top ceramic layer. Ceramics International 2015; 41(2): 2840-2846. https://doi.org/10.1016/j.ceramint.2014.10.105 DOI: https://doi.org/10.1016/j.ceramint.2014.10.105
Javidrad F, Nazari M. A new hybrid particle swarm and simulated annealing stochastic optimization method. Applied Soft Computing 2017; 60: 634-654. https://doi.org/10.1016/j.asoc.2017.07.023 DOI: https://doi.org/10.1016/j.asoc.2017.07.023
Ali M, Nusier S, Newaz G. Creep effects on early damage initiation in a TBC system. Journal of Materials Science 2004; 39(10): 3383-3390. https://doi.org/10.1023/B:JMSC.0000026940.56103.d3 DOI: https://doi.org/10.1023/B:JMSC.0000026940.56103.d3
Hetnarski RB, Eslami MR, Gladwell G. Thermal stresses: advanced theory and applications: Springer 2009.
Asghari S, Salimi M. Finite element simulation of thermal barrier coating performance under thermal cycling. Surface and Coatings Technology 2010; 205(7): 2042-2050. https://doi.org/10.1016/j.surfcoat.2010.08.099 DOI: https://doi.org/10.1016/j.surfcoat.2010.08.099
Xu H, Guo H. Thermal barrier coatings: Elsevier 2011. https://doi.org/10.1533/9780857090829 DOI: https://doi.org/10.1533/9780857090829
Liebert CH, Gaugler RE. The significance of thermal contact resistance in two-layer thermal-barrier-coated turbine vanes. Thin Solid Films 1980; 73(2): 471-475. https://doi.org/10.1016/0040-6090(80)90516-7 DOI: https://doi.org/10.1016/0040-6090(80)90516-7
Javidrad F, Nazari M, Javidrad H. Optimum stacking sequence design of laminates using a hybrid PSO-SA method. Composite Structures 2017. https://doi.org/10.1016/j.compstruct.2017.11.074 DOI: https://doi.org/10.1016/j.compstruct.2017.11.074
Dong H, Yang G-J, Cai H-N, Ding H, Li C-X, Li C-J. The influence of temperature gradient across YSZ on thermal cyclic lifetime of plasma-sprayed thermal barrier coatings. Ceramics International 2015; 41(9): 11046-11056. https://doi.org/10.1016/j.ceramint.2015.05.049 DOI: https://doi.org/10.1016/j.ceramint.2015.05.049
Mao W, Zhou Y, Yang L, Yu X. Modeling of residual stresses variation with thermal cycling in thermal barrier coatings. Mechanics of Materials 2006; 38(12): 1118-1127. https://doi.org/10.1016/j.mechmat.2006.01.002 DOI: https://doi.org/10.1016/j.mechmat.2006.01.002
Busso EP, Qian Z, Taylor M, Evans H. The influence of bondcoat and topcoat mechanical properties on stress development in thermal barrier coating systems. Acta Materialia 2009; 57(8): 2349-2361. https://doi.org/10.1016/j.actamat.2009.01.017 DOI: https://doi.org/10.1016/j.actamat.2009.01.017
Bäker M. Finite element simulation of interface cracks in thermal barrier coatings. Computational Materials Science 2012; 64: 79-83. https://doi.org/10.1016/j.commatsci.2012.02.044 DOI: https://doi.org/10.1016/j.commatsci.2012.02.044
Ranjbar-Far M, Absi J, Mariaux G, Smith D. Crack propagation modeling on the interfaces of thermal barrier coating system with different thickness of the oxide layer and different interface morphologies. Materials & Design 2011; 32(10): 4961-4969. https://doi.org/10.1016/j.matdes.2011.05.039 DOI: https://doi.org/10.1016/j.matdes.2011.05.039
Rösler J, Bäker M, Aufzug K. A parametric study of the stress state of thermal barrier coatings: Part I: creep relaxation. Acta Materialia 2004; 52(16): 4809-4817. https://doi.org/10.1016/j.actamat.2004.06.046 DOI: https://doi.org/10.1016/j.actamat.2004.06.046
Bose S. High temperature coatings: Butterworth-Heinemann, 2011.
Norouzi S, Nazari M, Farahani MV. A Novel Hybrid Particle Swarm Optimization-Simulated Annealing Approach for CO2-Oil Minimum Miscibility Pressure (MMP) Prediction, in Proceeding of in Proceeding of 81st EAGE Conference and Exhibition, 2019. DOI: https://doi.org/10.3997/2214-4609.201901671
Xue Z, Evans A, Hutchinson J. Delamination Susceptibility of coatings under high thermal flux. Journal of Applied Mechanics 2009; 76(4): 041008. https://doi.org/10.1115/1.3086590 DOI: https://doi.org/10.1115/1.3086590
Shao F, Zhao H, Zhong X, Zhuang Y, Cheng Z, Wang L, Tao S. Characteristics of thick columnar YSZ coatings fabricated by plasma spray-physical vapor deposition. Journal of the European Ceramic Society 2017. https://doi.org/10.1016/j.jeurceramsoc.2017.10.059 DOI: https://doi.org/10.1016/j.jeurceramsoc.2017.10.059
Ma R, Cheng X, Ye W. SiC fiber and yttria-stabilized zirconia composite thick thermal barrier coatings fabricated by plasma spray. Applied Surface Science 2015; 357: 407-412. https://doi.org/10.1016/j.apsusc.2015.09.028 DOI: https://doi.org/10.1016/j.apsusc.2015.09.028
Wang L, Li D, Yang J, Shao F, Zhong X, Zhao H, Yang K, Tao S, Wang Y. Modeling of thermal properties and failure of thermal barrier coatings with the use of finite element methods: A review. Journal of the European Ceramic Society 2016; 36(6): 1313-1331. https://doi.org/10.1016/j.jeurceramsoc.2015.12.038 DOI: https://doi.org/10.1016/j.jeurceramsoc.2015.12.038
Fleck N, Cocks A, Lampenscherf S. Thermal shock resistance of air plasma sprayed thermal barrier coatings. Journal of the European Ceramic Society 2014; 34(11): 2687-2694. https://doi.org/10.1016/j.jeurceramsoc.2014.01.002 DOI: https://doi.org/10.1016/j.jeurceramsoc.2014.01.002
Zhao X, Wang X, Xiao P. Sintering and failure behaviour of EB-PVD thermal barrier coating after isothermal treatment. Surface and Coatings Technology 2006; 200(20): 5946-5955. https://doi.org/10.1016/j.surfcoat.2005.09.006 DOI: https://doi.org/10.1016/j.surfcoat.2005.09.006
Downloads
Published
How to Cite
Issue
Section
License
Policy for Journals/Articles with Open Access
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work
Policy for Journals / Manuscript with Paid Access
Authors who publish with this journal agree to the following terms:
- Publisher retain copyright .
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work .