Characteristics of CVD Grown Diamond Films on Langasite Substrates

Authors

  • Awadesh Kumar Mallik CSIR – Central Glass & Ceramic Research Institute, Kolkata 700032, West Bengal, India
  • Snigdha Roy CSIR – Central Glass & Ceramic Research Institute, Kolkata 700032, West Bengal, India
  • Vamsi Krishna Balla CSIR – Central Glass & Ceramic Research Institute, Kolkata 700032, West Bengal, India
  • Sandip Bysakh CSIR – Central Glass & Ceramic Research Institute, Kolkata 700032, West Bengal, India
  • Radhaballabh Bhar Department of Instrumentation Science, Jadavpur University, Kolkata 700032, West Bengal, India

DOI:

https://doi.org/10.6000/2369-3355.2019.06.02.2

Keywords:

Microwave plasma CVD, polycrystalline, diamond, langasite, SAW

Abstract

Surface acoustic wave (SAW) devices consist of a piezoelectric substrate with interdigitated (IDT) electrodes. These devices can be used to fabricate wireless and passive sensors that can be mounted in remote and/or inaccessible places. If encapsulated with CVD diamond, the SAW devices can be made to operate under extremely hostile conditions. The piezoelectric layer (AlN, ZnO etc.) deposited on the diamond or an inverse system can increase the frequency of the SAW device. Most piezoelectric materials (such as quartz) show phase transition temperatures below diamond deposition temperature (650o-1100ºC), preventing their use as a substrate for diamond growth. Langasite La3Ga5SiO14 (LGS) is recently fabricated piezoelectric material that can withstand high temperatures without being deteriorated. LGS does not have phase transitions up to its melting point of 1470 °C.

Here we report the deposition of diamond films by microwave plasma CVD in methane-hydrogen gas mixtures on polished and rough surfaces of the LGS substrates seeded with nanodiamonds. No buffer layer between the substrate and the coating had been used. The effect of substrate pretreatment (PT) was also investigated on the growth behaviour of diamond films on LGS. The resulting films are characterised by Raman spectroscopy, X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS). The effect of substrate roughness on the growth behaviour was found to favour bigger grain sizes on the unpolished substrates. Whereas, the effect of substrate pretreatment (PT) was found to produce unique microstructural features with better polycrystalline diamond (PCD) quality than on the substrates without PT. Raman signals confirm the deposition of PCD in all the cases but the X-ray results interestingly show new phase formation of hcp and rhombohedral diamond lattice structures under CVD growth environment.

References

Hauser R, Reind L, Biniasch J. High –temperature stability of LiNbO3 based SAW devices. IEEE Ultrasonics Symp 2003; 1: 192.

Bulst W, Fischerauer G, Reind L. State of the art in wireless sensing with surface acoustic waves. IEEE Trans Ind Elect 2001; 48: 265. https://doi.org/10.1109/41.915404 DOI: https://doi.org/10.1109/41.915404

Ostermayer G, Pohl A, Steindl R, Seifert F. SAW sensors and correlative signal processing – a method providing multiple access capability. Proc IEEE 5th Int Symp Spread Spectrum Tech Appl 1998; 3: 902. https://doi.org/10.1109/ISSSTA.1998.722509 DOI: https://doi.org/10.1109/ISSSTA.1998.722509

Mukherjee D, Oliveira F, Silva R, Carreira J, Rino L, Correia M, Rotter S, Alves L, Mendes J. Diamond-SAW devices: a reverse fabrication method. Phys Stat Sol (C) 2015; 13: 53-8. https://doi.org/10.1002/pssc.201510313 DOI: https://doi.org/10.1002/pssc.201510313

Jagannadham K, Lance M, Watkins T. Growth of diamond film on single crystal lithium niobate for surface acoustic wave devices. J Vac Sc Tech 2004; A22: 1105. https://doi.org/10.1116/1.1740770 DOI: https://doi.org/10.1116/1.1740770

Jagannadham K, Watkins T, Lance M. Interfacial characterization and residual stress analysis in diamond films on LiNbO3. J Vac Sc Tech 2006; A 24: 2105. https://doi.org/10.1116/1.2356479 DOI: https://doi.org/10.1116/1.2356479

Thiele J, Cunha M. High temperature SAW gas sensor on langasite. Proc IEEE Sensors 2003; 2: 769. https://doi.org/10.1109/ICSENS.2003.1279045 DOI: https://doi.org/10.1109/ICSENS.2003.1279045

Seh H, Tuller H, Fritze H. Langasite for high-temperature acoustic wave gas sensors. Sensors and Actuators B 2003; 93: 169-74. https://doi.org/10.1016/S0925-4005(03)00189-8 DOI: https://doi.org/10.1016/S0925-4005(03)00189-8

Thiele J, Cunha M. High temperature LGS SAW gas sensor. Sensors and Actuators B 2006; 113: 816-22. https://doi.org/10.1016/j.snb.2005.03.071 DOI: https://doi.org/10.1016/j.snb.2005.03.071

Tortissier G, Blanc L, Tetelin A, Lachaud L, Benoit M, Conedera V. Langasite based surface acoustic wave sensors for high temperature chemical detection in harsh environment. Proc Chemist 2009; 1: 963-66. https://doi.org/10.1016/j.proche.2009.07.240 DOI: https://doi.org/10.1016/j.proche.2009.07.240

Rotter S, Madaleno J. Diamond CVD by a combined plasma pretreatment and seeding procedure. J Chem Vap Dep 2009; 15: 209-16. https://doi.org/10.1002/cvde.200806745

Shenderova O, Hens S, McGuire G. Seeding slurries based on detonation nanodiamond in DMSO. Diamond Relat Mat 2010; 19: 260-67. https://doi.org/10.1016/j.diamond.2009.10.008 DOI: https://doi.org/10.1016/j.diamond.2009.10.008

Bi B, Huang W, Asmussen J, Golding B. Surface acoustic waves on nanocrystalline diamond. Diamond Relat Mat 2002; 11: 677-80. https://doi.org/10.1016/S0925-9635(01)00621-5 DOI: https://doi.org/10.1016/S0925-9635(01)00621-5

Kulha P, Kromka A, Babchenko O, Vanecek M, Husak M, Williams O, Haenen K. Nanocrystalline diamond piezoresistive sensor. Vacuum 2010, 84: 53-6. https://doi.org/10.1016/j.vacuum.2009.04.023 DOI: https://doi.org/10.1016/j.vacuum.2009.04.023

Yamamoto A, Sutsumoto T. Nanocrystalline diamond piezoresistive sensor. Diamond Relat Mat 2004; 13: 863-66. https://doi.org/10.1016/j.diamond.2003.12.017 DOI: https://doi.org/10.1016/j.diamond.2003.12.017

Yamamoto A, Nawachi N, Tsutsumoto T, Terayama A. Pressure sensor using p-type polycrystalline diamond piezoresistors. Diamond Relat Mat 2005; 14: 657-60. https://doi.org/10.1016/j.diamond.2004.09.001 DOI: https://doi.org/10.1016/j.diamond.2004.09.001

Sahli S, Aslam D. Ultra-high sensitivity intra-grain poly-diamond piezoresistors. Sensors and Actuators A 1998; 71: 193-97. https://doi.org/10.1016/S0924-4247(98)00181-2 DOI: https://doi.org/10.1016/S0924-4247(98)00181-2

Tibrewala A, Peiner E, Bandor R, Biehl S, Lüthj H. Longitudinal and transversal piezoresistive effect in hydrogenated amorphous carbon films. Thin Solid Films 2007; 515: 8028-33. https://doi.org/10.1016/j.tsf.2007.03.046 DOI: https://doi.org/10.1016/j.tsf.2007.03.046

Shikata S, Nakahata H. Diamond surface acoustic wave device, Chapter 8. Semicond Semimet 2004; 77: 339-58. https://doi.org/10.1016/S0080-8784(04)80020-6 DOI: https://doi.org/10.1016/S0080-8784(04)80020-6

Chen J, Zeng F, Li D, Niu J, Pan F. Deposition of high-quality zinc oxide thin films on diamond substrates for high-frequency surface acoustic wave filter applications. Thin Solid Films 2005; 485: 257-61. https://doi.org/10.1016/j.tsf.2005.04.028 DOI: https://doi.org/10.1016/j.tsf.2005.04.028

Benedic F, Assouar M, Mohasseb F, Elmazria O, Alnot P, Gicquel A. Surface acoustic wave devices based on nanocrystalline diamond and aluminium nitride. Diamond Relat Mat 2004; 13: 347-53. https://doi.org/10.1016/j.diamond.2003.10.020 DOI: https://doi.org/10.1016/j.diamond.2003.10.020

Lamara T, Belmahi M, Elmazria O, LeBrizoual L, Bougdira J, Remy M, Alnot P. Freestanding CVD diamond elaborated by pulsed-microwave-plasma for ZnO/diamond SAW devices. Diamond Relat Mat 2004; 13: 581-84. https://doi.org/10.1016/j.diamond.2003.10.075 DOI: https://doi.org/10.1016/j.diamond.2003.10.075

Hakiki M, Elmazria O, Assouar M, Mortet V, Brizouaa L, Vanecek M, Alnot P. ZnO/AlN/diamond layered structure for SAW devices combining high velocity and high electromechanical coupling coefficient. Diamond Relat Mat 2005; 14: 1175-78. https://doi.org/10.1016/j.diamond.2005.01.002 DOI: https://doi.org/10.1016/j.diamond.2005.01.002

Mill B, Pisarevsky Y. Langasite-type materials from discovery to present state. Proc of the Annual IEEE Int Freq Control Symp 2000; 133-40.

Kosinski J. New piezoelectric substrates for SAW devices. Adv SAW Tech Syst Appl 2001; 20: 151-202. https://doi.org/10.1142/9789812811561_0003 DOI: https://doi.org/10.1142/9789812811561_0003

Cunha M, Fagundes S. Investigation on recent quartz like materials for SAW applications. IEEE Tran Ultrasonics, Ferroelectrics, and Frequency Control 1999; 46: 1583-90. https://doi.org/10.1109/58.808884 DOI: https://doi.org/10.1109/58.808884

Krempl P, Reiter C, Wallnofer W, Neubig J. Temperature sensors based on GaPO4. Proc IEEE Ultrasonics Symp 2002; 1: 949-52.

Honal M, Fachberger R, Holzheu T, Riha E, Born E, Pongratz P, Bausewein A. Langasite surface acoustic wave sensors for high temperatures. Proc Ann IEEE Int Freq Control Symp 2000; 113-8.

Fritze H, Tuller H, Borchardt G, Fukuda T. High temperature properties of langasite. Proc Mat Res Soc Symp 2000; 604: 65-70. https://doi.org/10.1557/PROC-604-65 DOI: https://doi.org/10.1557/PROC-604-65

Thiele J, Cunha M. High temperature surface acoustic wave devices: fabrication and characterization. Elect Lett 2003; 39: 818-9. https://doi.org/10.1049/el:20030511 DOI: https://doi.org/10.1049/el:20030511

Wang S, Harada J, Uda S. A wireless surface acoustic wave temperature sensor using langasite as substrate material for high temperature applications. Jap J Appl Phys 2003; 42: 6124-27. https://doi.org/10.1143/JJAP.42.6124 DOI: https://doi.org/10.1143/JJAP.42.6124

Williams O, Mortet V, Daenen M, Haenen K. Nanocrystalline diamond enhanced thickness shear mode resonator. Appl Phys Lett 2007; 90: 063514. https://doi.org/10.1063/1.2471649 DOI: https://doi.org/10.1063/1.2471649

Hakiki M, Elmazria O, Bénédic F, Nicolay P, Monéger D, Azouani R. Diamond film on Langasite substrate for surface acoustic wave devices operating in high frequency and high temperature. Diamond Relat Mat 2007; 16: 966-9. https://doi.org/10.1016/j.diamond.2006.09.002 DOI: https://doi.org/10.1016/j.diamond.2006.09.002

Shikata S, Nakahata H, Higaki K, Fuji S, Kitabayashi H, Tanabe K, Seki Y. SAW device application of diamond. 18th IEEE International CPMT 1995; 379-82.

Lee Y, Lin S, Buck V, Kunze R, Schmidt H, Lin C, Fang W, I.N. Lin I. Surface acoustic wave properties of natural smooth ultra-nanocrystalline diamond characterized by laser-induced SAW pulse technique. Diamond Relat Mat 2008; 17: 446-50. https://doi.org/10.1016/j.diamond.2007.08.025 DOI: https://doi.org/10.1016/j.diamond.2007.08.025

Bénédic F, Assouar M, Kirsch P, Monéger D, Brinza O, Elmazria O, Alnot P, Gicquel A. Very high frequency SAW devices based on nano-crystalline diamond and aluminum nitride layered structure achieved using e-beam lithography. Diamond Relat Mat 2008; 17: 804-8. https://doi.org/10.1016/j.diamond.2007.10.015 DOI: https://doi.org/10.1016/j.diamond.2007.10.015

Benetti M, Cannatà D, Pietrantonio F, Verona E. Growth of AlN Piezoelectric Film on Diamond for High-Frequency Surface Acoustic Wave Devices. IEEE Trans on Ultrasonics, Ferroelectrics and Frequency Control 2005; 52: 1806-11. https://doi.org/10.1109/TUFFC.2005.1561635 DOI: https://doi.org/10.1109/TUFFC.2005.1561635

Park S, Kim J, Park S, Son M, Kim Y, Abe T, Takagi T. Study on the Surface Wave Propagation in the Diamond Coated Silicon. IEEE Ultrasonics Symp 2007; 2291-94. https://doi.org/10.1109/ULTSYM.2007.576 DOI: https://doi.org/10.1109/ULTSYM.2007.576

Rotter S, Madaleno J. Diamond CVD by a combined plasma pretreatment and seeding procedure. J Chem Vap Dep 2009; 15: 209-16. https://doi.org/10.1002/cvde.200806745 DOI: https://doi.org/10.1002/cvde.200806745

http://www.roditi.com/SingleCrystal/Langasite/Langasite-Wafers-Boules.html, last accessed on 19th December, 2019.

Parkhomenko M, Kalenov D, Fedoseev N, Eremin S, Ralchenko V, Bolshakov A, Ashkinazi E, Popovich A, Balla V, Mallik A. Measurement of the Complex Permittivity of Polycrystalline Diamond by the Resonator Method in the Millimeter Range. Phys Wave Phen 2015; 23: 1-6. https://doi.org/10.3103/S1541308X15030073 DOI: https://doi.org/10.3103/S1541308X15030073

Mallik A, Mendes J, Rotter S, Bysakh S. Detonation nanodiamond seeding technique for nucleation enhancement of CVD diamond – some experimental insights. Adv Ceramic Sc Engg 2014; 3: 36-45. https://doi.org/10.14355/acse.2014.03.005 DOI: https://doi.org/10.14355/acse.2014.03.005

Mallik A, Bysakh S, Bhar R, Rotter S, Mendes J. Effect of seed size, suspension recycling and substrate pre-treatment on the CVD growth of diamond coatings. O J Appl Sc 2015; 5: 747-63. https://doi.org/10.4236/ojapps.2015.512071 DOI: https://doi.org/10.4236/ojapps.2015.512071

Mallik A, Binu S, Satapathy L, Narayana C, Seikh M, Shivashankar S, Biswas S. Effect of substrate roughness on growth of diamond by hot filament CVD. Bull Mater Sci 2010; 33: 251-5. https://doi.org/10.1007/s12034-010-0039-3 DOI: https://doi.org/10.1007/s12034-010-0039-3

Mallik A, Shivashankar S, Biswas S. High Vacuum Tribology of Polycrystalline Diamond Coatings. Sadhana 2009; 34: 811-21. https://doi.org/10.1007/s12046-009-0047-4 DOI: https://doi.org/10.1007/s12046-009-0047-4

Mallik A, Bysakh S, Sreemany M, Roy S, Ghosh J, Roy S, Mendes J, Gracio J, Datta S. Property mapping of polycrystalline diamond coatings over large area. J Adv Ceramics 2014; 3: 56-70. https://doi.org/10.1007/s40145-014-0093-1 DOI: https://doi.org/10.1007/s40145-014-0093-1

Chu P, Li L. Characterization of amorphous and nanocrystalline carbon films. Mat Chem Phys 2006; 96: 253-77. https://doi.org/10.1016/j.matchemphys.2005.07.048 DOI: https://doi.org/10.1016/j.matchemphys.2005.07.048

Filik J. Raman spectroscopy: a simple, non-destructive way to characterize diamond and diamond-like-materials. Spectroscopy Europe 2005; 17: 10-17.

Shroder R, Nemanich R, Glass J. Analysis of the composite structures in diamond thin films by Raman spectroscopy. Phys Rev B 1990; 41: 3738-45. https://doi.org/10.1103/PhysRevB.41.3738 DOI: https://doi.org/10.1103/PhysRevB.41.3738

May P, Ludlow W, Hannaway M, Heard P, Smith J, Rosser K. Raman and conductivity studies of boron-doped microcrystalline diamond, facetted nanocrystalline diamond and cauliflower diamond films. Diamond Relat Mat 2008; 17: 105-17. https://doi.org/10.1016/j.diamond.2007.11.005 DOI: https://doi.org/10.1016/j.diamond.2007.11.005

Hodkiewicz J. Characterizing Carbon Materials with Raman Spectroscopy. Thermo Fisher Scientific, Application Note 2010; 51901: 1-5.

Ferrari A, Robertson J. Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond. Phil Trans R Soc Lond A 2004; 362: 2477-512. https://doi.org/10.1098/rsta.2004.1452 DOI: https://doi.org/10.1098/rsta.2004.1452

Mallik A, Bysakh S, Pal K, Dandapat N, Guha B, Datta S, Basu D. Large area deposition of polycrystalline diamond coatings by microwave plasma CVD. Tran In. Ceramic Soc 2013; 72: 225-32. https://doi.org/10.1080/0371750X.2013.870768 DOI: https://doi.org/10.1080/0371750X.2013.870768

Mallik A, Dandapat N, Chakraborty S, Ghosh J, Unnikrishnan M, Balla V. Characterisations of microwave plasma CVD grown polycrystalline diamond (PCD) coatings for advanced technological applications. J Proc Appl Ceramics 2014; 8: 69-80. https://doi.org/10.2298/PAC1402069M DOI: https://doi.org/10.2298/PAC1402069M

Downloads

Published

2020-01-08

How to Cite

Mallik, A. K. ., Roy, S. ., Balla, V. K. ., Bysakh, S. ., & Bhar, R. . (2020). Characteristics of CVD Grown Diamond Films on Langasite Substrates. Journal of Coating Science and Technology, 6(2), 41–51. https://doi.org/10.6000/2369-3355.2019.06.02.2

Issue

Section

Articles