Thermal Degradation of Polypropylene Pine Sawdust Composite Filaments through Successive Heating and Reprocessing

Authors

  • Sônia M.A. Veroneze Post Graduation Program in Engineering and Materials Science/PIPE, Federal University of Parana (UFPR), Caixa Postal 19049, CEP: 81531-980, Curitiba, Paraná, Brazil
  • Thais H.S. Flores- Sahagun Department of Mechanical Engineering, Federal University of Paraná (UFPR), Caixa Postal 19049, CEP: 81531-980, Curitiba, Paraná, Brazil
  • Irineu Mazzaro Department of Physics, Federal University of Paraná (UFPR), Caixa Postal 19049, CEP: 81531-980, Curitiba, Paraná, Brazil
  • Kestur Gundappa SatyanarayanaC Honorary Professor, Poornaprajna Institute of Scientific Research (PPISR), Sy. No. 167, Poornaprajnapura, Bidalur Post, Devanahalli, Bengaluru- 562110, Karnataka, India

DOI:

https://doi.org/10.6000/2369-3355.2021.08.01

Keywords:

Drying Parameters, Tensile Properties, Thermal characterization, lignocellulosic, wood fibers.

Abstract

Considering the use of the new molding thermoplastic technique, where viscous filaments can be artistically or technically manipulated to create three-dimensional pieces using an extruder, this paper discusses the optimal PP/wood fiber filament preparation conditions especially the thermal degradation. Not only is it essential to know the best processing conditions of the composites but also gain durability and/or advantageous color change when the final products made with viscous filaments are subjected to thermal treatments. Very few papers have been published on polypropylene-pine wood filament composites and the thermal degradation of such filaments. This paper presents the preparation and characterization of filament composites using 5, 10, and 20wt.% pine sawdust with a compatibilizer obtained by hot molding through the use of an extruder, and discusses the effect of both drying time and temperature on the prepared filament composites to understand thermal degradation when subjected to 60°C and/or 120°C. Prepared filament composites are characterized for physical (density, water absorption, and crystallinity), thermal and tensile properties besides their morphology along with fractography. X-ray diffraction results confirmed the data obtained in thermal studies indicating that increased fiber content decreased both the crystallinity and the thermal resistance while decreasing the melting temperature of the filament composites. Fractographic studies revealed low adhesion between the sawdust and the matrix, evidenced by the presence of loose and some unattached sawdust particles in some composites, thus, supporting the observed low strength in these composites, besides the influence of drying time and temperature on the mechanical properties of the composites.

References

Kalia S, Kaith BS, Kaur, I. Cellulose fibers: Bio- and nano- polymer composites. Green chemistry and technology. 1st ed. London/ New York: Springer-Verlag, 2011. https://doi.org/10.1007/978-3-642-17370-7 DOI: https://doi.org/10.1007/978-3-642-17370-7

Satyanarayana KG, Anupama R, Prasad VS, et al. Preparation, characterization, and applications of nanomaterials (cellulose, lignin, and silica) from renewable (lignocellulosic) resources. In: Thakur VK, Thakur MK, Kessler MR, Eds. Handbook of composite from renewable materials. 1st ed. Washington: Wiley-Scrivener 2017; p. 1- 66. https://doi.org/10.1002/9781119441632.ch126 DOI: https://doi.org/10.1002/9781119441632.ch126

Satyanarayana KG, Flores-Sahagun THS, Bowman P. Lignocellulosic composite materials. In: Kalia S, Ed. Under springer series on polymer and composite materials. 1st ed. India: Springer 2018; p. 1- 96. https://doi.org/10.1007/978-3-319-68696-7_1 DOI: https://doi.org/10.1007/978-3-319-68696-7_1

Thakur VK, Thakur MK, Kessler MR. Handbook of composites from renewable materials, structure, and chemistry. 1st ed. USA: Scrivener Publishing, 2017. https://doi.org/10.1002/9781119441632 DOI: https://doi.org/10.1002/9781119441632

Thakur VK, Thakur MK, Gupta R. Review: Raw natural fibre-based polymer composites. Int J Polym Anal Charact 2014; 19 (3): 256-271. https://doi.org/10.1080/1023666X.2014.880016 DOI: https://doi.org/10.1080/1023666X.2014.880016

Beg MD, Pickering KL. Mechanical performance of Kraft fibre reinforced polypropylene composites: Influence of fibre length, fibre beating, and hygrothermal ageing. J Compos Part A 2008; 39 (11): 1748-1755. https://doi.org/10.1016/j.compositesa.2008.08.003 DOI: https://doi.org/10.1016/j.compositesa.2008.08.003

Deng H, Reynolds CT, Cabrera NO, et al. The water absorption behaviour of all-polypropylene composites and its effect on mechanical properties. J Compos Part B 2010; 41: 268-275. https://doi.org/10.1016/j.compositesb.2010.02.007 DOI: https://doi.org/10.1016/j.compositesb.2010.02.007

Adhikary KB, Pang S, Staiger MP. Long-term moisture absorption and thickness swelling behaviour of recycled thermoplastics reinforced with Pinus radiata sawdust. Chem Eng J 2008; 142: 190-198. https://doi.org/10.1016/j.cej.2007.11.024 DOI: https://doi.org/10.1016/j.cej.2007.11.024

Ashori A, Nourbakhsh A. Characteristics of wood–fiber plastic composites made of recycled materials. Waste Manag J 2009; 29: 1291-1295. https://doi.org/10.1016/j.wasman.2008.09.012 DOI: https://doi.org/10.1016/j.wasman.2008.09.012

Cravo JC, Sartori DL, Fiorelli J, et al. Particleboards of agroindustrial wastes (Painel Aglomerado de Resíduos Agroindustriais). Ciência Florestal J 2015; 25: 721-730. https://doi.org/10.5902/1980509819675 DOI: https://doi.org/10.5902/1980509819675

Hillig E, Iwakiri S, Andrade MZ, et al. Characterization of composites produced with high density polyethylene (HDPE) and sawdust from the furniture industry. Tree Magazine 2008; 32: 299-310. https://doi.org/10.1590/S0100-67622008000200013 DOI: https://doi.org/10.1590/S0100-67622008000200013

Ning H, Vaidya U, Janowski GM, et al. Design, manufacture and analysis of a thermoplastic composite frame structure for mass transit. Compos Struct J 2007; 80: 105–116. https://doi.org/10.1016/j.compstruct.2006.04.036 DOI: https://doi.org/10.1016/j.compstruct.2006.04.036

Mujiyawa F, Koffi D, Kokta BV, et al. Formulation and tensile characterization of wood–plastic composites polypropylene reinforced by birch and aspen fibers for gear applications. J Thermoplast Compos Mater 2015; 28 (12): 1675-1692. https://doi.org/10.1177/0892705714563120 DOI: https://doi.org/10.1177/0892705714563120

Prasad N, Agarwal VK, Sinha S. Physico-mechanical properties of coir fiber/LDPE composites: Effect of chemical treatment and compatibilizer. Korean J Chem Eng 2015; 32 (12): 2534-2541. https://doi.org/10.1007/s11814-015-0069-z DOI: https://doi.org/10.1007/s11814-015-0069-z

Yeh SK, Kim KJ, Gupta RK. Synergistic effect of coupling agents on polypropylene-based wood-plastic composites. J Appl Polym Sci 2013; 127 (2): 1047-1053. https://doi.org/10.1002/app.37775 DOI: https://doi.org/10.1002/app.37775

Afrifah KA, Hickor RA, Matuana LM. Polybutene is a matrix for woodplastic composites. Compos Sci Technol J 2009; 70: 167–172. https://doi.org/10.1016/j.compscitech.2009.09.019 DOI: https://doi.org/10.1016/j.compscitech.2009.09.019

Akil HM, Omar MF, Mazuki AA, et al. Kenaf fiber reinforced composites: A review. J Mater Des 2011; 32: 4107-4121. https://doi.org/10.1016/j.matdes.2011.04.008 DOI: https://doi.org/10.1016/j.matdes.2011.04.008

Bajwa SG, Bajwa DS, Holt G, et al. Properties of thermoplastic composites with cotton and guayule biomass residues as fiber fillers. Ind Crops Prod J 2011; 33: 747-755. https://doi.org/10.1016/j.indcrop.2011.01.017 DOI: https://doi.org/10.1016/j.indcrop.2011.01.017

Espert A, Vilaplana F, Karlsson S. Comparison of water absorption in natural cellulosic fibres from wood and one-year crops in polypropylene composites and its influence on their mechanical properties. J Compos Part A 2004; 35: 1267-1276. https://doi.org/10.1016/j.compositesa.2004.04.004 DOI: https://doi.org/10.1016/j.compositesa.2004.04.004

Kim S, Moon BJ, Kim G, et al. Mechanical properties of polypropylene/natural fiber composites: Comparison of wood fiber and cotton fiber. Polym Test J 2008; 27: 801–806. https://doi.org/10.1016/j.polymertesting.2008.06.002 Journal of Coating Science and Technology, 2021, Volume 8 16 Veroneze et al. DOI: https://doi.org/10.1016/j.polymertesting.2008.06.002

Leu S, Yang T, Lo S. Optimized material composition to improve the physical and mechanical properties of extruded wood-plastic composites (WPCs). Const Build Mater J 2011; 29: 120–127. https://doi.org/10.1016/j.conbuildmat.2011.09.013 DOI: https://doi.org/10.1016/j.conbuildmat.2011.09.013

Wambua P, Ivens J, Verpoest I. Natural fibres: can they replace glass in fibre reinforced plastics? Compos Sci Technol J 2003; 62: 1259– 1264. https://doi.org/10.1016/S0266-3538(03)00096-4 DOI: https://doi.org/10.1016/S0266-3538(03)00096-4

Yeh S, Gupta RK. Improved wood-plastic composites through better processing. Compos Part A J 2008; 39: 1694–1699. https://doi.org/10.1016/j.compositesa.2008.07.013 DOI: https://doi.org/10.1016/j.compositesa.2008.07.013

Adhikary KB, Pang S, Staiger MP. Dimensional stability and mechanical behaviour of wood-plastic composites based on recycled and virgin high-density polyethylene (HDPE). Compos Part B J 2007; 39: 807–815. https://doi.org/10.1016/j.compositesb.2007.10.005 DOI: https://doi.org/10.1016/j.compositesb.2007.10.005

Araújo JR, Spinacé MA, De Paoli MA. Polyolefin composites with curauá fibres: Effect of the processing conditions on mechanical properties, morphology, and fibres dimensions. Compos Sci Technol J 2010; 70: 29-35. https://doi.org/10.1016/j.compscitech.2009.09.002 DOI: https://doi.org/10.1016/j.compscitech.2009.09.002

Chaharmahali M, Mirbagueri J, Tajvidi M, et al. Mechanical and physical properties of wood-plastic composite panels. Reinf Plast Compos J 2010; 29: 310-319. https://doi.org/10.1177/0731684408093877 DOI: https://doi.org/10.1177/0731684408093877

Dányádi L, Móczo LJ, Pukánszky B. Effect of various surface modifications of wood flour on the properties of PP/wood composites. J Compos Part A 2010; 41: 199–206. https://doi.org/10.1016/j.compositesa.2009.10.008 DOI: https://doi.org/10.1016/j.compositesa.2009.10.008

Hillig E, Schneider VE, Pavoni ET. Geração de resíduos de madeira e derivados da indústria moveleira em função das variáveis de produção. J Production 2009; 19 (2): 292-303. https://doi.org/10.1590/S0103-65132009000200006 DOI: https://doi.org/10.1590/S0103-65132009000200006

Sheshan S, Ashori A, Hamzeh Y. Physical properties of polyethylenewood fiber-clay nanocomposites. Polym Sci J 2010; 118: 3255–3259. https://doi.org/10.1002/app.32623 DOI: https://doi.org/10.1002/app.32623

Yang H, Wolcott M, Kim S, et al. Effect of different compatibilizing agents on the mechanical properties of lignocellulosic material filled polyethylene bio-composites. Compos Struct J 2007; 79: 369-375. https://doi.org/10.1016/j.compstruct.2006.02.016 DOI: https://doi.org/10.1016/j.compstruct.2006.02.016

Santos LP, editor. Otimização da preparação de polipropileno maleatado via extrusão reativa para reforço mecânico em compósitos [monograph on the Internet]. Paraná: Federal University; 2011 [ cited 2020 Mar 15]: Available from: http://www.pgmec.ufpr.br/dissertacoes/ dissertacao_126_lucas_pereira_dos_santos.pdf

Kuo P, Wang S, Chen J, et al. Effects of material compositions on the mechanical properties of wood–plastic composites manufactured by injection molding. Mater Des J 2009; 300: 3489-3496. https://doi.org/10.1016/j.matdes.2009.03.012 DOI: https://doi.org/10.1016/j.matdes.2009.03.012

John VM, Rodolfo JR. Development of PVC reinforced with pine residues to replace conventional wood in various applications. Polymers: Science and Technology 2006; 16: 1-11. https://doi.org/10.1590/S0104-14282006000100005 DOI: https://doi.org/10.1590/S0104-14282006000100005

Ku H, Wang H, Pattarachaiyakoop N, et al. A review on the tensile properties of natural fibre-reinforced polymer composites. Compos Part B J 2011; 42: 856–873. https://doi.org/10.1016/j.compositesb.2011.01.010 DOI: https://doi.org/10.1016/j.compositesb.2011.01.010

Tuoto M, Ed. Levantamento sobre a geração de resíduos provenientes da atividade madeireira e proposição de diretrizes para políticas, normas e condutas técnicas para promover o seu uso adequado. Paraná: Federal University; 2009 [cited 2020 Aug 05]: Available from: http://www.bibliotecaflorestal.ufv.br/handle/123456789/12376

Santos LP, Flores-Sahagun TH, Satyanarayana KG. Effect of processing parameters on the properties of polypropylene-saw dust composites. J Compos Mater 2015 A; 49 (30): 3727-3740. https://doi.org/10.1177/0021998314568331 DOI: https://doi.org/10.1177/0021998314568331

Santos LP, Trombetta E, Flores-Sahagun TH, et al. Effect of domestic compatibilizer on the performance of polypropylene-sawdust composites. J Compos Mater 2015 B; 50 (10): 1353-1365. https://doi.org/10.1177/0021998315591046 DOI: https://doi.org/10.1177/0021998315591046

Trombeta E. Use of natural pine fiber (sawdust) as reinforcement in polypropylene composite automotive components [monograph on the Internet]. Paraná: Federal University; 2010 [ cited 2020 Mar 15]: Available from: https://acervodigital.ufpr.br/handle/1884/25358

Flores-Sahagun THS, Carneiro NR, Flores-Sahagun DL. Thermoplastic polymeric composites and polymers: their potentialities in a dialogue between art and technology. In: Thakur VK, Thakur MK, Kessler MR, Eds. Handbook of composites from renewable materials. Design and Manufacturing. 1st ed. Washington: Wiley-Scrivener 2017, pp. 263-286. https://doi.org/10.1002/9781119441632.ch29 DOI: https://doi.org/10.1002/9781119441632.ch29

Braskem [homepage on the Internet]. Polypropylene [cited 2015 May 15]: Available from: www.braskem.com.br/upload/portal

ASTM D1238:2013. Standard test method for melt flow rates of thermoplastics by extrusion plastometer.

ASTM D2395:1997. Standard test methods for specific gravity of wood and wood-based materials.

Klyosov AA. Wood-Plastic Composites, 1st ed. New Jersey: Wiley & Sons Inc; 2007. https://doi.org/10.1002/9780470165935 DOI: https://doi.org/10.1002/9780470165935

NBR 14810-3:2002. Particleboard, Part 3: test methods. Plywood sheets. Part 3: test methods.

Brebu M, Vasile C. Thermal degradation of lignin - Review. Cellulose Chem Technol J 2010; 44 (9): 353-363.

ASTM D638: 2014. Standard test method for tensile properties of plastics.

Shahi P, Behravesh AH, Darybari SY, et al. Experimental investigation on reprocessing of extruded wood flour/HDPE composites. Polymer Composites J 2012; 33: 753–763. https://doi.org/10.1002/pc.22201 DOI: https://doi.org/10.1002/pc.22201

Jedyn FG. Preparação e caracterização de compósitos reprocessados de matriz de polipropileno reforçados por serragem [monograph on the Internet]. Paraná: Federal University; 2017 [ cited 2020 Mar 15]: Available from: http://hdl.handle.net/1884/52204

ASTM D792:2008. Standard test methods for density and specific gravity (relative density) of plastics by displacement.

Sommerhuber PF, Wang T, Krause A. Wood-plastic composites as potential applications of recycled plastics of electronic waste and recycled particleboard. J of Cleaner Production 2016; 121:176-185. https://doi.org/10.1016/j.jclepro.2016.02.036 DOI: https://doi.org/10.1016/j.jclepro.2016.02.036

Borysiak S. The supermolecular structure of polypropylene/wood composites: I. The influence of processing parameters and chemical treatment of filler. Polym Bull J 2010; 64: 275-290. https://doi.org/10.1007/s00289-009-0202-4 DOI: https://doi.org/10.1007/s00289-009-0202-4

Borysiac S. Fundamental studies on lignocellulose/polypropylene composites: Effects of wood treatment on the transcrystalline morphology and mechanical properties. J Appl Polym Sci 2013; 127 (2): 1309-1322. https://doi.org/10.1002/app.37651 DOI: https://doi.org/10.1002/app.37651

Ratanawilai T, Nakawirot K, Deasrijan A, et al. Influence of wood species and particle size on mechanical and thermal properties of wood polypropylene composites. J Fibers and Polymers 2014; 15: 2160-2168. https://doi.org/10.1007/s12221-014-2160-1 DOI: https://doi.org/10.1007/s12221-014-2160-1

Jayamani E, Hamdan S, Heng SK, et al. The effect of natural fibres mercerization on natural fibres/polypropylene composites: A study of thermal stability, morphology, and infrared spectrum. Aust J Basic Appl Sci 2014; 8 (15): 332-340.

Gwon JG, Lee SY, Kim JH. Thermal degradation behavior of polypropylene base wood plastic composites hybridized with metal (aluminum, magnesium) hydroxides. J Appl Polym Sci 2014; 131:40120. https://doi.org/10.1002/app.40120 DOI: https://doi.org/10.1002/app.40120

Soccalingame L, Bourmaud A, Perrin D, et al. Reprocessing of wood flour reinforced polypropylene composites: Impact of particle size and coupling agent on composite and particle properties. J Polymer Degradation and Stability 2015 B; 113: 72-85. https://doi.org/10.1016/j.polymdegradstab.2015.01.020 DOI: https://doi.org/10.1016/j.polymdegradstab.2015.01.020

Kinloch AJ, Young RJ. Fracture Behaviour of Polymers. 1st ed. London: Springer, 1995. https://doi.org/10.1007/978-94-017-1594-2_1 DOI: https://doi.org/10.1007/978-94-017-1594-2

Moore DR, Pavan A, Williams JG. Fracture mechanics testing methods for polymers. Adhesives and composites. 1st ed. Oxford: Elsevier, 2001.

Hertzberg RW. Deformation and fracture mechanics of engineering materials. New York: Wiley, 1996.

Saminathan K, Selvakumar P, Bhatnagar N. Fracture studies of polypropylene/ nanoclay composite. Part I: Effect of loading rates on essential work of fracture. Polymer Testing 2008; 27: 296-307. https://doi.org/10.1016/j.polymertesting.2007.11.008 DOI: https://doi.org/10.1016/j.polymertesting.2007.11.008

Arencón D, Velasco JI. Fracture Toughness of Polypropylene-Based Particulate Composites. Materials 2009; 2: 2046-2094. https://doi.org/10.3390/ma2042046 Journal of Coating Science and Technology, 2021, Volume 8 Thermal Degradation of Polypropylene Pine Sawdust Composite Filaments 17 DOI: https://doi.org/10.3390/ma2042046

Petchwattana N, Covavisaruch S, Sanetuntikul J. Recycling of wood– plastic composites prepared from poly (vinyl chloride) and wood flour. Construction and Building Materials 2012; 28: 557-560. https://doi.org/10.1016/j.conbuildmat.2011.08.024 DOI: https://doi.org/10.1016/j.conbuildmat.2011.08.024

Paukszta D, Markiewicz E, Ostrowski A, et al. Recycling of lignocellulosic filled polypropylene composites. I. Analysis of thermal properties, morphology, and amount of free radicals. J of Applied Polymer Science 2015; 132: 1-9. https://doi.org/10.1002/app.41693 DOI: https://doi.org/10.1002/app.41693

Dickson AR, Even D, Warnes JM, et al. The effect of reprocessing on the mechanical properties of polypropylene reinforced with wood pulp, flax, or glass fiber. Composites: Part A 2014; 61: 258-267. https://doi.org/10.1016/j.compositesa.2014.03.010 DOI: https://doi.org/10.1016/j.compositesa.2014.03.010

Downloads

Published

2021-08-31

How to Cite

Veroneze, S. M. ., Sahagun, T. H. F.-., Mazzaro, I. ., & SatyanarayanaC, K. G. . (2021). Thermal Degradation of Polypropylene Pine Sawdust Composite Filaments through Successive Heating and Reprocessing. Journal of Coating Science and Technology, 8, 1–17. https://doi.org/10.6000/2369-3355.2021.08.01

Issue

Section

Articles