Protection of Aluminum Foils against Environmental Corrosion with Graphene-Based Coatings

Authors

  • George Paterakis Institute of Chemical Engineering Sciences, Foundation for Research and Technology – Hellas (FORTH/ ICE-HT), Patras 265 04, Greece
  • George Anagnostopoulos Institute of Chemical Engineering Sciences, Foundation for Research and Technology – Hellas (FORTH/ ICE-HT), Patras 265 04, Greece
  • Labrini Sygellou Institute of Chemical Engineering Sciences, Foundation for Research and Technology – Hellas (FORTH/ ICE-HT), Patras 265 04, Greece
  • Costas Galiotis Institute of Chemical Engineering Sciences, Foundation for Research and Technology – Hellas (FORTH/ ICE-HT), Patras 265 04, Greece and Department of Chemical Engineering, University of Patras, Patras 26504, Greece

DOI:

https://doi.org/10.6000/2369-3355.2021.08.02

Keywords:

Aluminum, functionalized graphene oxide, electrophoretically deposited coatings, polarization, potentiostat measurements

Abstract

Commercial aluminum foils were coated by graphene oxide, and its functionalized derivatives and the corrosion performance of the coated specimens were examined in acidic conditions (lithium perchlorate and sulfuric acid). Electrochemical experiments have shown that all graphene oxide-coated specimens provided up to 96% corrosion inhibition efficiency with a corresponding lower corrosion rate compared to the bare aluminum foil. Our results clearly show that graphene-related materials offer viable alternatives for the protection of aluminum, and this opens up a number of possibilities for its use in a number of commercial applications.

References

Álvarez-Fraga L, Rubio-Zuazo J, Jiménez-Villacorta F, ClimentPascual E, Ramírez-Jiménez R, Prieto C, de Andrés A. Oxidation Mechanisms of Copper under Graphene: The Role of Oxygen Encapsulation. Chem Mater 2017; 29(7): 3257-3264. https://doi.org/10.1021/acs.chemmater.7b00554 DOI: https://doi.org/10.1021/acs.chemmater.7b00554

Lytle DA, Nadagouda MN. A comprehensive investigation of copper pitting corrosion in a drinking water distribution system. Corrosion Science 2010; 52(6): 1927-1938. https://doi.org/10.1016/j.corsci.2010.02.013 DOI: https://doi.org/10.1016/j.corsci.2010.02.013

Björkbacka Å, Hosseinpour S, Johnson M, Leygraf C, Jonsson M. Radiation-induced corrosion of copper for spent nuclear fuel storage. Radiation Physics and Chemistry 2013; 92: 80-86. https://doi.org/10.1016/j.radphyschem.2013.06.033 DOI: https://doi.org/10.1016/j.radphyschem.2013.06.033

Böhm S. Graphene against corrosion, Nat Nanotechnol 2014; 9: 741. https://doi.org/10.1038/nnano.2014.220 DOI: https://doi.org/10.1038/nnano.2014.220

Koch JVG, Thompson N, Moghissi O, Gould M, Payer J. International Measures of Prevention, Application and Economics of Corrosion Technology (IMPACT), in: G. Jacobson (Ed.) NACE International 2016.

Kuznetsova A, Yates JT, Zhou G, Yang JC, Chen X. Making a Superior Oxide Corrosion Passivation Layer on Aluminum Using Ozone. Langmuir 2001; 17(7): 2146-2152. https://doi.org/10.1021/la001300x DOI: https://doi.org/10.1021/la001300x

Hu J-M, Liu L, Zhang J-Q, Cao C-N. Electrodeposition of silane films on aluminum alloys for corrosion protection. Progress in Organic Coatings 2007; 58(4): 265-271. https://doi.org/10.1016/j.porgcoat.2006.11.008 DOI: https://doi.org/10.1016/j.porgcoat.2006.11.008

Chen S, Brown L, Levendorf M, Cai W, Ju S-Y, Edgeworth J, Li X, Magnuson CW, Velamakanni A, Piner RD, Kang J, Park J, Ruoff RS. Oxidation Resistance of Graphene-Coated Cu and Cu/Ni Alloy. ACS Nano 2011; 5(2): 1321-1327. https://doi.org/10.1021/nn103028d DOI: https://doi.org/10.1021/nn103028d

Cho E, Mun J, Chae OB, Kwon OM, Kim H-T, Ryu JH, Kim YG, Oh SM. Corrosion/passivation of aluminum current collector in bis(fluorosulfonyl)imide-based ionic liquid for lithium-ion batteries. Electrochemistry Communications 2012; 22: 1-3. https://doi.org/10.1016/j.elecom.2012.05.018 DOI: https://doi.org/10.1016/j.elecom.2012.05.018

Gnedenkov SV, Sinebryukhov SL, Mashtalyar DV, Egorkin VS, Sidorova MV, Gnedenkov AS. Composite polymer-containing protective coatings on magnesium alloy MA8. Corrosion Science 2014; 85: 52-59. https://doi.org/10.1016/j.corsci.2014.03.035 DOI: https://doi.org/10.1016/j.corsci.2014.03.035

Yang XF, Tallman DE, Gelling VJ, Bierwagen GP, Kasten LS, Berg J. Use of a sol-gel conversion coating for aluminum corrosion protection. Surface and Coatings Technology 2001; 140(1): 44-50. https://doi.org/10.1016/S0257-8972(01)01002-7 DOI: https://doi.org/10.1016/S0257-8972(01)01002-7

Prasai D, Tuberquia JC, Harl RR, Jennings GK, Bolotin KI. Graphene: corrosion-inhibiting Coating. ACS Nano 2012; 6(2): 1102-1108. https://doi.org/10.1021/nn203507y DOI: https://doi.org/10.1021/nn203507y

Nine MJ, Cole MA, Tran DNH, Losic D. Graphene: a multipurpose material for protective coatings. Journal of Materials Chemistry A 2015; 3(24): 12580-12602. https://doi.org/10.1039/C5TA01010A DOI: https://doi.org/10.1039/C5TA01010A

Calabrese L, Khaskoussi A, Proverbio E. Wettability and AntiCorrosion Performances of Carbon Nanotube-Silane Composite Coatings. Fibers 2020; 8(9): 57. https://doi.org/10.3390/fib8090057 DOI: https://doi.org/10.3390/fib8090057

Pourhashem S, Ghasemy E, Rashidi A, Vaezi MR. A review on application of carbon nanostructures as nanofiller in corrosionresistant organic coatings. Journal of Coatings Technology and Research 2020; 17(1): 19-55. https://doi.org/10.1007/s11998-019-00275-6 DOI: https://doi.org/10.1007/s11998-019-00275-6

Topsakal M, ?ahin H, Ciraci S. Graphene coatings: An efficient protection from oxidation. Phys Rev B 2012; 85(15): 155445. https://doi.org/10.1103/PhysRevB.85.155445 DOI: https://doi.org/10.1103/PhysRevB.85.155445

Ding R, Li W, Wang X, Gui T, Li B, Han P, Tian H, Liu A, Wang X, Liu X, Gao X, Wang W, Song L. A brief review of corrosion protective films and coatings based on graphene and graphene oxide. Journal of Alloys and Compounds 2018; 764: 1039-1055. https://doi.org/10.1016/j.jallcom.2018.06.133 DOI: https://doi.org/10.1016/j.jallcom.2018.06.133

Berry V. Impermeability of graphene and its applications Carbon 2013; 62: 1-10. https://doi.org/10.1016/j.carbon.2013.05.052 DOI: https://doi.org/10.1016/j.carbon.2013.05.052

Lanza JHYJYSFHHDM. A Review on the use of graphene as a Protective Coating against Corrosion. Annals of Materials Science & Engineering 2014; 1(3): 1-7.

Singh Raman RK, Tiwari A. Graphene: The Thinnest Known Coating for Corrosion Protection. Jom 2014; 66(4): 637-642. https://doi.org/10.1007/s11837-014-0921-3 DOI: https://doi.org/10.1007/s11837-014-0921-3

Robert VD, Vikas P, Justin LA, Jeffrey PA, Ganapati DY, Sarbajit B. Hybrid nanostructured coatings for corrosion protection of base metals: a sustainability perspective. Materials Research Express 2015; 2(3): 032001. https://doi.org/10.1088/2053-1591/2/3/032001 DOI: https://doi.org/10.1088/2053-1591/2/3/032001

Kirkland NT, Schiller T, Medhekar N, Birbilis N. Exploring graphene as a corrosion protection barrier. Corrosion Science 2012; 56: 1-4. https://doi.org/10.1016/j.corsci.2011.12.003 DOI: https://doi.org/10.1016/j.corsci.2011.12.003

Singh Raman RK, Chakraborty Banerjee P, Lobo DE, Gullapalli H, Sumandasa M, Kumar A, Choudhary L, Tkacz R, Ajayan PM, Majumder M. Protecting copper from electrochemical degradation by graphene coating. Carbon 2012; 50(11): 4040-4045. https://doi.org/10.1016/j.carbon.2012.04.048 DOI: https://doi.org/10.1016/j.carbon.2012.04.048

Schriver M, Regan W, Gannett WJ, Zaniewski AM, Crommie MF, Zettl A. Graphene as a Long-Term Metal Oxidation Barrier: Worse Than Nothing. ACS Nano 2013; 7(7): 5763-5768. https://doi.org/10.1021/nn4014356 DOI: https://doi.org/10.1021/nn4014356

Zhou F, Li Z, Shenoy GJ, Li L, Liu H. Enhanced Room-Temperature Corrosion of Copper in the Presence of Graphene. ACS Nano 2013; 7(8): 6939-6947. https://doi.org/10.1021/nn402150t DOI: https://doi.org/10.1021/nn402150t

Miškovi?-Stankovi? V, Jevremovi? I, Jung I, Rhee K. Electrochemical study of corrosion behavior of graphene coatings on copper and aluminum in a chloride solution. Carbon 2014; 75: 335-344. https://doi.org/10.1016/j.carbon.2014.04.012 DOI: https://doi.org/10.1016/j.carbon.2014.04.012

Merisalu M, Kahro T, Kozlova J, Niilisk A, Nikolajev A, Marandi M, Floren A, Alles H, Sammelselg V. Graphene–polypyrrole thin hybrid corrosion-resistant coatings for copper. Synthetic Metals 2015; 200: 16-23. https://doi.org/10.1016/j.synthmet.2014.12.024 DOI: https://doi.org/10.1016/j.synthmet.2014.12.024

Maeztu JD, Rivero PJ, Berlanga C, Bastidas DM, Palacio JF, Rodriguez R. Effect of graphene oxide and fluorinated polymeric chains incorporated in a multilayered sol-gel nano-coating for the design of corrosion-resistant and hydrophobic surfaces. Applied Surface Science 2017; 419: 138-149. https://doi.org/10.1016/j.apsusc.2017.05.043 DOI: https://doi.org/10.1016/j.apsusc.2017.05.043

Zheng Z, Liu Y, Bai Y, Zhang J, Han Z, Ren L. Fabrication of biomimetic hydrophobic patterned graphene surface with eco-friendly anti-corrosion properties for Al alloy. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2016; 500: 64-71. https://doi.org/10.1016/j.colsurfa.2016.04.008 DOI: https://doi.org/10.1016/j.colsurfa.2016.04.008

Boccaccini AR, Roether JA, Thomas BJC, Shaffer MSP, Chavez E, Stoll E, Minay EJ. The Electrophoretic Deposition of Inorganic Nanoscaled Materials: A Review. Journal of the Ceramic Society of Japan 2006; 114(1325): 1-14. https://doi.org/10.2109/jcersj.114.1 DOI: https://doi.org/10.2109/jcersj.114.1

Chavez-Valdez A, Shaffer MSP, Boccaccini AR. Applications of Graphene Electrophoretic Deposition. A Review. The Journal of Physical Chemistry B 2013; 117(6): 1502-1515. https://doi.org/10.1021/jp3064917 DOI: https://doi.org/10.1021/jp3064917

Diba M, Fam DWH, Boccaccini AR, Shaffer MSP. Electrophoretic deposition of graphene-related materials: A review of the fundamentals. Progress in Materials Science 2016; 82: 83-117. https://doi.org/10.1016/j.pmatsci.2016.03.002 DOI: https://doi.org/10.1016/j.pmatsci.2016.03.002

Singh BP, Jena BK, Bhattacharjee S, Besra L. Development of oxidation and corrosion resistance hydrophobic graphene oxidepolymer composite coating on copper. Surface and Coatings Technology 2013; 232: 475-481. https://doi.org/10.1016/j.surfcoat.2013.06.004 DOI: https://doi.org/10.1016/j.surfcoat.2013.06.004

Singh BP, Nayak S, Nanda KK, Jena BK, Bhattacharjee S, Besra L. The production of a corrosion-resistant graphene reinforced composite coating on copper by electrophoretic deposition. Carbon 2013; 61: 47-56. https://doi.org/10.1016/j.carbon.2013.04.063 DOI: https://doi.org/10.1016/j.carbon.2013.04.063

Ding S, Xiang T, Li C, Zheng S, Wang J, Zhang M, Dong C, Chan W. Fabrication of self-cleaning super-hydrophobic nickel/graphene hybrid film with improved corrosion resistance on mild steel. Mater Des 2017; 117: 280-288. https://doi.org/10.1016/j.matdes.2016.12.084 DOI: https://doi.org/10.1016/j.matdes.2016.12.084

Park JH, Park JM. Electrophoretic deposition of graphene oxide on mild carbon steel for anti-corrosion application. Surface and Coatings Technology 2014; 254: 167-174. https://doi.org/10.1016/j.surfcoat.2014.06.007 DOI: https://doi.org/10.1016/j.surfcoat.2014.06.007

Ferrari AC, Bonaccorso F, Fal'ko V, Novoselov KS, Roche S, Bøggild P, et al. Science and technology roadmap for graphene, related twodimensional crystals, and hybrid systems. Nanoscale 2015; 7(11): 4598-4810. https://doi.org/10.1039/C4NR01600A DOI: https://doi.org/10.1039/C4NR01600A

Kovtyukhova NI, Ollivier PJ, Martin BR, Mallouk TE, Chizhik SA, Buzaneva EV, Gorchinskiy AD. Layer-by-Layer Assembly of Ultrathin Composite Films from Micron-Sized Graphite Oxide Sheets and Polycations. Chemistry of Materials 1999; 11(3): 771-778. https://doi.org/10.1021/cm981085u DOI: https://doi.org/10.1021/cm981085u

Zhou M, Wang Y, Zhai Y, Zhai J, Ren W, Wang F, Dong S. Controlled Synthesis of Large-Area and Patterned Electrochemically Reduced Graphene Oxide Films. Chemistry-A European Journal 2009; 15(25): 6116-6120. https://doi.org/10.1002/chem.200900596 DOI: https://doi.org/10.1002/chem.200900596

Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK. Raman Spectrum of Graphene and Graphene Layers. Phys Rev Lett 2006; 97(18): 187401. https://doi.org/10.1103/PhysRevLett.97.187401 DOI: https://doi.org/10.1103/PhysRevLett.97.187401

Beams R, Cançado LG, Novotny L. Raman characterization of defects and dopants in graphene. Journal of Physics: Condensed Matter 2015; 27(8): 083002. https://doi.org/10.1088/0953-8984/27/8/083002 DOI: https://doi.org/10.1088/0953-8984/27/8/083002

Surekha K, Murty BS, Rao KP. Microstructural characterization and corrosion behavior of multipass friction stir processed AA2219 aluminium alloy. Surface and Coatings Technology 2008; 202(17): 4057-4068. https://doi.org/10.1016/j.surfcoat.2008.02.001 DOI: https://doi.org/10.1016/j.surfcoat.2008.02.001

Yang D, Velamakanni A, Bozoklu G, Park S, Stoller M, Piner RD, Stankovich S, Jung I, Field DA, Ventrice CA, Ruoff RS. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon 2009; 47(1): 145-152. https://doi.org/10.1016/j.carbon.2008.09.045 DOI: https://doi.org/10.1016/j.carbon.2008.09.045

Sygellou L, Paterakis G, Galiotis C, Tasis D. Work Function Tuning of Reduced Graphene Oxide Thin Films. The Journal of Physical Chemistry C 2016; 120(1): 281-290. https://doi.org/10.1021/acs.jpcc.5b09234 DOI: https://doi.org/10.1021/acs.jpcc.5b09234

Lellala K, Namratha K, Byrappa K. Ultrasonication assisted mild solvothermal synthesis and morphology study of few-layered graphene by colloidal suspensions of pristine graphene oxide. Microporous and Mesoporous Materials 2016; 226(Supplement C): 522-529. https://doi.org/10.1016/j.micromeso.2016.01.036 DOI: https://doi.org/10.1016/j.micromeso.2016.01.036

Szabó T, Berkesi O, Dékány I. DRIFT study of deuterium-exchanged graphite oxide. Carbon 2005; 43(15): 3186-3189. https://doi.org/10.1016/j.carbon.2005.07.013 DOI: https://doi.org/10.1016/j.carbon.2005.07.013

Pei S, Cheng H-M. The reduction of graphene oxide. Carbon 2012; 50(9): 3210-3228. https://doi.org/10.1016/j.carbon.2011.11.010 DOI: https://doi.org/10.1016/j.carbon.2011.11.010

Moon IK, Lee J, Ruoff RS, Lee H. Reduced graphene oxide by chemical graphitization. Nature Communications 2010; 1(1): 73. https://doi.org/10.1038/ncomms1067 DOI: https://doi.org/10.1038/ncomms1067

Chen P, Fang F, Zhang Z, Zhang W, Wang Y. Self-assembled graphene film to enable highly conductive and corrosion-resistant aluminum bipolar plates in fuel cells, International Journal of Hydrogen Energy 2017. https://doi.org/10.1016/j.ijhydene.2017.03.214

Zhang SS, Jow TR. Aluminum corrosion in electrolyte of Li-ion battery. Journal of Power Sources 2002; 109(2): 458-464. https://doi.org/10.1016/S0378-7753(02)00110-6

Wang M, Tang M, Chen S, Ci H, Wang K, Shi L, Lin L, Ren H, Shan J, Gao P, Liu Z, Peng H. Graphene-Armored Aluminum Foil with Enhanced Anticorrosion Performance as Current Collectors for Lithium-Ion Battery. Advanced Materials 2017; 29(47): 1703882. https://doi.org/10.1002/adma.201703882 DOI: https://doi.org/10.1002/adma.201703882

Zhang S, Jow T. Aluminum corrosion in electrolyte of Li-ion battery. Journal of Power Sources 2002; 109(2): 458-464. https://doi.org/10.1016/S0378-7753(02)00110-6 DOI: https://doi.org/10.1016/S0378-7753(02)00110-6

Hikku GS, Jeyasubramanian K, Venugopal A, Ghosh R. Corrosion resistance behaviour of graphene/polyvinyl alcohol nanocomposite coating for aluminium-2219 alloy. Journal of Alloys and Compounds 2017; 716: 259-269. https://doi.org/10.1016/j.jallcom.2017.04.324 DOI: https://doi.org/10.1016/j.jallcom.2017.04.324

Kawakita J, Kobayashi K. Anodic oxidation behaviour of aluminium in propylene carbonate. Journal of Power Sources 2000; 90(2): 182-187. https://doi.org/10.1016/S0378-7753(00)00408-0 DOI: https://doi.org/10.1016/S0378-7753(00)00408-0

AG. 89, Standard Practice for Calculation of Corrosion Rates and Related Information from Electrochemical Measurements, West Conshohocken, PA 19428-2959, United States, 1999.

Roberge PR. Handbook of corrosion engineering, McGraw-Hill 2000.

Chen P, Fang F, Zhang Z, Zhang W, Wang Y. Self-assembled graphene film to enable highly conductive and corrosion-resistant aluminum bipolar plates in fuel cells. International Journal of Hydrogen Energy 2017; 42(17): 12593-12600. https://doi.org/10.1016/j.ijhydene.2017.03.214 DOI: https://doi.org/10.1016/j.ijhydene.2017.03.214

Dun Y, Zuo Y. Preparation and characterization of a GPTMS/graphene coating on AA-2024 alloy. Applied Surface Science 2017; 416: 492-502. https://doi.org/10.1016/j.apsusc.2017.04.116 DOI: https://doi.org/10.1016/j.apsusc.2017.04.116

Liu J, Hua L, Li S, Yu M. Graphene dip coatings: An effective anticorrosion barrier on aluminum. Applied Surface Science 2015; 327: 241-245. https://doi.org/10.1016/j.apsusc.2014.11.187 DOI: https://doi.org/10.1016/j.apsusc.2014.11.187

Downloads

Additional Files

Published

2021-09-28

How to Cite

Paterakis, G., Anagnostopoulos, G., Sygellou, L., & Galiotis, C. (2021). Protection of Aluminum Foils against Environmental Corrosion with Graphene-Based Coatings. Journal of Coating Science and Technology, 8, 18–28. https://doi.org/10.6000/2369-3355.2021.08.02

Issue

Section

Articles