Protection of Aluminum Foils against Environmental Corrosion with Graphene-Based Coatings
DOI:
https://doi.org/10.6000/2369-3355.2021.08.02Keywords:
Aluminum, functionalized graphene oxide, electrophoretically deposited coatings, polarization, potentiostat measurementsAbstract
Commercial aluminum foils were coated by graphene oxide, and its functionalized derivatives and the corrosion performance of the coated specimens were examined in acidic conditions (lithium perchlorate and sulfuric acid). Electrochemical experiments have shown that all graphene oxide-coated specimens provided up to 96% corrosion inhibition efficiency with a corresponding lower corrosion rate compared to the bare aluminum foil. Our results clearly show that graphene-related materials offer viable alternatives for the protection of aluminum, and this opens up a number of possibilities for its use in a number of commercial applications.
References
Álvarez-Fraga L, Rubio-Zuazo J, Jiménez-Villacorta F, ClimentPascual E, Ramírez-Jiménez R, Prieto C, de Andrés A. Oxidation Mechanisms of Copper under Graphene: The Role of Oxygen Encapsulation. Chem Mater 2017; 29(7): 3257-3264. https://doi.org/10.1021/acs.chemmater.7b00554 DOI: https://doi.org/10.1021/acs.chemmater.7b00554
Lytle DA, Nadagouda MN. A comprehensive investigation of copper pitting corrosion in a drinking water distribution system. Corrosion Science 2010; 52(6): 1927-1938. https://doi.org/10.1016/j.corsci.2010.02.013 DOI: https://doi.org/10.1016/j.corsci.2010.02.013
Björkbacka Å, Hosseinpour S, Johnson M, Leygraf C, Jonsson M. Radiation-induced corrosion of copper for spent nuclear fuel storage. Radiation Physics and Chemistry 2013; 92: 80-86. https://doi.org/10.1016/j.radphyschem.2013.06.033 DOI: https://doi.org/10.1016/j.radphyschem.2013.06.033
Böhm S. Graphene against corrosion, Nat Nanotechnol 2014; 9: 741. https://doi.org/10.1038/nnano.2014.220 DOI: https://doi.org/10.1038/nnano.2014.220
Koch JVG, Thompson N, Moghissi O, Gould M, Payer J. International Measures of Prevention, Application and Economics of Corrosion Technology (IMPACT), in: G. Jacobson (Ed.) NACE International 2016.
Kuznetsova A, Yates JT, Zhou G, Yang JC, Chen X. Making a Superior Oxide Corrosion Passivation Layer on Aluminum Using Ozone. Langmuir 2001; 17(7): 2146-2152. https://doi.org/10.1021/la001300x DOI: https://doi.org/10.1021/la001300x
Hu J-M, Liu L, Zhang J-Q, Cao C-N. Electrodeposition of silane films on aluminum alloys for corrosion protection. Progress in Organic Coatings 2007; 58(4): 265-271. https://doi.org/10.1016/j.porgcoat.2006.11.008 DOI: https://doi.org/10.1016/j.porgcoat.2006.11.008
Chen S, Brown L, Levendorf M, Cai W, Ju S-Y, Edgeworth J, Li X, Magnuson CW, Velamakanni A, Piner RD, Kang J, Park J, Ruoff RS. Oxidation Resistance of Graphene-Coated Cu and Cu/Ni Alloy. ACS Nano 2011; 5(2): 1321-1327. https://doi.org/10.1021/nn103028d DOI: https://doi.org/10.1021/nn103028d
Cho E, Mun J, Chae OB, Kwon OM, Kim H-T, Ryu JH, Kim YG, Oh SM. Corrosion/passivation of aluminum current collector in bis(fluorosulfonyl)imide-based ionic liquid for lithium-ion batteries. Electrochemistry Communications 2012; 22: 1-3. https://doi.org/10.1016/j.elecom.2012.05.018 DOI: https://doi.org/10.1016/j.elecom.2012.05.018
Gnedenkov SV, Sinebryukhov SL, Mashtalyar DV, Egorkin VS, Sidorova MV, Gnedenkov AS. Composite polymer-containing protective coatings on magnesium alloy MA8. Corrosion Science 2014; 85: 52-59. https://doi.org/10.1016/j.corsci.2014.03.035 DOI: https://doi.org/10.1016/j.corsci.2014.03.035
Yang XF, Tallman DE, Gelling VJ, Bierwagen GP, Kasten LS, Berg J. Use of a sol-gel conversion coating for aluminum corrosion protection. Surface and Coatings Technology 2001; 140(1): 44-50. https://doi.org/10.1016/S0257-8972(01)01002-7 DOI: https://doi.org/10.1016/S0257-8972(01)01002-7
Prasai D, Tuberquia JC, Harl RR, Jennings GK, Bolotin KI. Graphene: corrosion-inhibiting Coating. ACS Nano 2012; 6(2): 1102-1108. https://doi.org/10.1021/nn203507y DOI: https://doi.org/10.1021/nn203507y
Nine MJ, Cole MA, Tran DNH, Losic D. Graphene: a multipurpose material for protective coatings. Journal of Materials Chemistry A 2015; 3(24): 12580-12602. https://doi.org/10.1039/C5TA01010A DOI: https://doi.org/10.1039/C5TA01010A
Calabrese L, Khaskoussi A, Proverbio E. Wettability and AntiCorrosion Performances of Carbon Nanotube-Silane Composite Coatings. Fibers 2020; 8(9): 57. https://doi.org/10.3390/fib8090057 DOI: https://doi.org/10.3390/fib8090057
Pourhashem S, Ghasemy E, Rashidi A, Vaezi MR. A review on application of carbon nanostructures as nanofiller in corrosionresistant organic coatings. Journal of Coatings Technology and Research 2020; 17(1): 19-55. https://doi.org/10.1007/s11998-019-00275-6 DOI: https://doi.org/10.1007/s11998-019-00275-6
Topsakal M, ?ahin H, Ciraci S. Graphene coatings: An efficient protection from oxidation. Phys Rev B 2012; 85(15): 155445. https://doi.org/10.1103/PhysRevB.85.155445 DOI: https://doi.org/10.1103/PhysRevB.85.155445
Ding R, Li W, Wang X, Gui T, Li B, Han P, Tian H, Liu A, Wang X, Liu X, Gao X, Wang W, Song L. A brief review of corrosion protective films and coatings based on graphene and graphene oxide. Journal of Alloys and Compounds 2018; 764: 1039-1055. https://doi.org/10.1016/j.jallcom.2018.06.133 DOI: https://doi.org/10.1016/j.jallcom.2018.06.133
Berry V. Impermeability of graphene and its applications Carbon 2013; 62: 1-10. https://doi.org/10.1016/j.carbon.2013.05.052 DOI: https://doi.org/10.1016/j.carbon.2013.05.052
Lanza JHYJYSFHHDM. A Review on the use of graphene as a Protective Coating against Corrosion. Annals of Materials Science & Engineering 2014; 1(3): 1-7.
Singh Raman RK, Tiwari A. Graphene: The Thinnest Known Coating for Corrosion Protection. Jom 2014; 66(4): 637-642. https://doi.org/10.1007/s11837-014-0921-3 DOI: https://doi.org/10.1007/s11837-014-0921-3
Robert VD, Vikas P, Justin LA, Jeffrey PA, Ganapati DY, Sarbajit B. Hybrid nanostructured coatings for corrosion protection of base metals: a sustainability perspective. Materials Research Express 2015; 2(3): 032001. https://doi.org/10.1088/2053-1591/2/3/032001 DOI: https://doi.org/10.1088/2053-1591/2/3/032001
Kirkland NT, Schiller T, Medhekar N, Birbilis N. Exploring graphene as a corrosion protection barrier. Corrosion Science 2012; 56: 1-4. https://doi.org/10.1016/j.corsci.2011.12.003 DOI: https://doi.org/10.1016/j.corsci.2011.12.003
Singh Raman RK, Chakraborty Banerjee P, Lobo DE, Gullapalli H, Sumandasa M, Kumar A, Choudhary L, Tkacz R, Ajayan PM, Majumder M. Protecting copper from electrochemical degradation by graphene coating. Carbon 2012; 50(11): 4040-4045. https://doi.org/10.1016/j.carbon.2012.04.048 DOI: https://doi.org/10.1016/j.carbon.2012.04.048
Schriver M, Regan W, Gannett WJ, Zaniewski AM, Crommie MF, Zettl A. Graphene as a Long-Term Metal Oxidation Barrier: Worse Than Nothing. ACS Nano 2013; 7(7): 5763-5768. https://doi.org/10.1021/nn4014356 DOI: https://doi.org/10.1021/nn4014356
Zhou F, Li Z, Shenoy GJ, Li L, Liu H. Enhanced Room-Temperature Corrosion of Copper in the Presence of Graphene. ACS Nano 2013; 7(8): 6939-6947. https://doi.org/10.1021/nn402150t DOI: https://doi.org/10.1021/nn402150t
Miškovi?-Stankovi? V, Jevremovi? I, Jung I, Rhee K. Electrochemical study of corrosion behavior of graphene coatings on copper and aluminum in a chloride solution. Carbon 2014; 75: 335-344. https://doi.org/10.1016/j.carbon.2014.04.012 DOI: https://doi.org/10.1016/j.carbon.2014.04.012
Merisalu M, Kahro T, Kozlova J, Niilisk A, Nikolajev A, Marandi M, Floren A, Alles H, Sammelselg V. Graphene–polypyrrole thin hybrid corrosion-resistant coatings for copper. Synthetic Metals 2015; 200: 16-23. https://doi.org/10.1016/j.synthmet.2014.12.024 DOI: https://doi.org/10.1016/j.synthmet.2014.12.024
Maeztu JD, Rivero PJ, Berlanga C, Bastidas DM, Palacio JF, Rodriguez R. Effect of graphene oxide and fluorinated polymeric chains incorporated in a multilayered sol-gel nano-coating for the design of corrosion-resistant and hydrophobic surfaces. Applied Surface Science 2017; 419: 138-149. https://doi.org/10.1016/j.apsusc.2017.05.043 DOI: https://doi.org/10.1016/j.apsusc.2017.05.043
Zheng Z, Liu Y, Bai Y, Zhang J, Han Z, Ren L. Fabrication of biomimetic hydrophobic patterned graphene surface with eco-friendly anti-corrosion properties for Al alloy. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2016; 500: 64-71. https://doi.org/10.1016/j.colsurfa.2016.04.008 DOI: https://doi.org/10.1016/j.colsurfa.2016.04.008
Boccaccini AR, Roether JA, Thomas BJC, Shaffer MSP, Chavez E, Stoll E, Minay EJ. The Electrophoretic Deposition of Inorganic Nanoscaled Materials: A Review. Journal of the Ceramic Society of Japan 2006; 114(1325): 1-14. https://doi.org/10.2109/jcersj.114.1 DOI: https://doi.org/10.2109/jcersj.114.1
Chavez-Valdez A, Shaffer MSP, Boccaccini AR. Applications of Graphene Electrophoretic Deposition. A Review. The Journal of Physical Chemistry B 2013; 117(6): 1502-1515. https://doi.org/10.1021/jp3064917 DOI: https://doi.org/10.1021/jp3064917
Diba M, Fam DWH, Boccaccini AR, Shaffer MSP. Electrophoretic deposition of graphene-related materials: A review of the fundamentals. Progress in Materials Science 2016; 82: 83-117. https://doi.org/10.1016/j.pmatsci.2016.03.002 DOI: https://doi.org/10.1016/j.pmatsci.2016.03.002
Singh BP, Jena BK, Bhattacharjee S, Besra L. Development of oxidation and corrosion resistance hydrophobic graphene oxidepolymer composite coating on copper. Surface and Coatings Technology 2013; 232: 475-481. https://doi.org/10.1016/j.surfcoat.2013.06.004 DOI: https://doi.org/10.1016/j.surfcoat.2013.06.004
Singh BP, Nayak S, Nanda KK, Jena BK, Bhattacharjee S, Besra L. The production of a corrosion-resistant graphene reinforced composite coating on copper by electrophoretic deposition. Carbon 2013; 61: 47-56. https://doi.org/10.1016/j.carbon.2013.04.063 DOI: https://doi.org/10.1016/j.carbon.2013.04.063
Ding S, Xiang T, Li C, Zheng S, Wang J, Zhang M, Dong C, Chan W. Fabrication of self-cleaning super-hydrophobic nickel/graphene hybrid film with improved corrosion resistance on mild steel. Mater Des 2017; 117: 280-288. https://doi.org/10.1016/j.matdes.2016.12.084 DOI: https://doi.org/10.1016/j.matdes.2016.12.084
Park JH, Park JM. Electrophoretic deposition of graphene oxide on mild carbon steel for anti-corrosion application. Surface and Coatings Technology 2014; 254: 167-174. https://doi.org/10.1016/j.surfcoat.2014.06.007 DOI: https://doi.org/10.1016/j.surfcoat.2014.06.007
Ferrari AC, Bonaccorso F, Fal'ko V, Novoselov KS, Roche S, Bøggild P, et al. Science and technology roadmap for graphene, related twodimensional crystals, and hybrid systems. Nanoscale 2015; 7(11): 4598-4810. https://doi.org/10.1039/C4NR01600A DOI: https://doi.org/10.1039/C4NR01600A
Kovtyukhova NI, Ollivier PJ, Martin BR, Mallouk TE, Chizhik SA, Buzaneva EV, Gorchinskiy AD. Layer-by-Layer Assembly of Ultrathin Composite Films from Micron-Sized Graphite Oxide Sheets and Polycations. Chemistry of Materials 1999; 11(3): 771-778. https://doi.org/10.1021/cm981085u DOI: https://doi.org/10.1021/cm981085u
Zhou M, Wang Y, Zhai Y, Zhai J, Ren W, Wang F, Dong S. Controlled Synthesis of Large-Area and Patterned Electrochemically Reduced Graphene Oxide Films. Chemistry-A European Journal 2009; 15(25): 6116-6120. https://doi.org/10.1002/chem.200900596 DOI: https://doi.org/10.1002/chem.200900596
Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK. Raman Spectrum of Graphene and Graphene Layers. Phys Rev Lett 2006; 97(18): 187401. https://doi.org/10.1103/PhysRevLett.97.187401 DOI: https://doi.org/10.1103/PhysRevLett.97.187401
Beams R, Cançado LG, Novotny L. Raman characterization of defects and dopants in graphene. Journal of Physics: Condensed Matter 2015; 27(8): 083002. https://doi.org/10.1088/0953-8984/27/8/083002 DOI: https://doi.org/10.1088/0953-8984/27/8/083002
Surekha K, Murty BS, Rao KP. Microstructural characterization and corrosion behavior of multipass friction stir processed AA2219 aluminium alloy. Surface and Coatings Technology 2008; 202(17): 4057-4068. https://doi.org/10.1016/j.surfcoat.2008.02.001 DOI: https://doi.org/10.1016/j.surfcoat.2008.02.001
Yang D, Velamakanni A, Bozoklu G, Park S, Stoller M, Piner RD, Stankovich S, Jung I, Field DA, Ventrice CA, Ruoff RS. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon 2009; 47(1): 145-152. https://doi.org/10.1016/j.carbon.2008.09.045 DOI: https://doi.org/10.1016/j.carbon.2008.09.045
Sygellou L, Paterakis G, Galiotis C, Tasis D. Work Function Tuning of Reduced Graphene Oxide Thin Films. The Journal of Physical Chemistry C 2016; 120(1): 281-290. https://doi.org/10.1021/acs.jpcc.5b09234 DOI: https://doi.org/10.1021/acs.jpcc.5b09234
Lellala K, Namratha K, Byrappa K. Ultrasonication assisted mild solvothermal synthesis and morphology study of few-layered graphene by colloidal suspensions of pristine graphene oxide. Microporous and Mesoporous Materials 2016; 226(Supplement C): 522-529. https://doi.org/10.1016/j.micromeso.2016.01.036 DOI: https://doi.org/10.1016/j.micromeso.2016.01.036
Szabó T, Berkesi O, Dékány I. DRIFT study of deuterium-exchanged graphite oxide. Carbon 2005; 43(15): 3186-3189. https://doi.org/10.1016/j.carbon.2005.07.013 DOI: https://doi.org/10.1016/j.carbon.2005.07.013
Pei S, Cheng H-M. The reduction of graphene oxide. Carbon 2012; 50(9): 3210-3228. https://doi.org/10.1016/j.carbon.2011.11.010 DOI: https://doi.org/10.1016/j.carbon.2011.11.010
Moon IK, Lee J, Ruoff RS, Lee H. Reduced graphene oxide by chemical graphitization. Nature Communications 2010; 1(1): 73. https://doi.org/10.1038/ncomms1067 DOI: https://doi.org/10.1038/ncomms1067
Chen P, Fang F, Zhang Z, Zhang W, Wang Y. Self-assembled graphene film to enable highly conductive and corrosion-resistant aluminum bipolar plates in fuel cells, International Journal of Hydrogen Energy 2017. https://doi.org/10.1016/j.ijhydene.2017.03.214
Zhang SS, Jow TR. Aluminum corrosion in electrolyte of Li-ion battery. Journal of Power Sources 2002; 109(2): 458-464. https://doi.org/10.1016/S0378-7753(02)00110-6
Wang M, Tang M, Chen S, Ci H, Wang K, Shi L, Lin L, Ren H, Shan J, Gao P, Liu Z, Peng H. Graphene-Armored Aluminum Foil with Enhanced Anticorrosion Performance as Current Collectors for Lithium-Ion Battery. Advanced Materials 2017; 29(47): 1703882. https://doi.org/10.1002/adma.201703882 DOI: https://doi.org/10.1002/adma.201703882
Zhang S, Jow T. Aluminum corrosion in electrolyte of Li-ion battery. Journal of Power Sources 2002; 109(2): 458-464. https://doi.org/10.1016/S0378-7753(02)00110-6 DOI: https://doi.org/10.1016/S0378-7753(02)00110-6
Hikku GS, Jeyasubramanian K, Venugopal A, Ghosh R. Corrosion resistance behaviour of graphene/polyvinyl alcohol nanocomposite coating for aluminium-2219 alloy. Journal of Alloys and Compounds 2017; 716: 259-269. https://doi.org/10.1016/j.jallcom.2017.04.324 DOI: https://doi.org/10.1016/j.jallcom.2017.04.324
Kawakita J, Kobayashi K. Anodic oxidation behaviour of aluminium in propylene carbonate. Journal of Power Sources 2000; 90(2): 182-187. https://doi.org/10.1016/S0378-7753(00)00408-0 DOI: https://doi.org/10.1016/S0378-7753(00)00408-0
AG. 89, Standard Practice for Calculation of Corrosion Rates and Related Information from Electrochemical Measurements, West Conshohocken, PA 19428-2959, United States, 1999.
Roberge PR. Handbook of corrosion engineering, McGraw-Hill 2000.
Chen P, Fang F, Zhang Z, Zhang W, Wang Y. Self-assembled graphene film to enable highly conductive and corrosion-resistant aluminum bipolar plates in fuel cells. International Journal of Hydrogen Energy 2017; 42(17): 12593-12600. https://doi.org/10.1016/j.ijhydene.2017.03.214 DOI: https://doi.org/10.1016/j.ijhydene.2017.03.214
Dun Y, Zuo Y. Preparation and characterization of a GPTMS/graphene coating on AA-2024 alloy. Applied Surface Science 2017; 416: 492-502. https://doi.org/10.1016/j.apsusc.2017.04.116 DOI: https://doi.org/10.1016/j.apsusc.2017.04.116
Liu J, Hua L, Li S, Yu M. Graphene dip coatings: An effective anticorrosion barrier on aluminum. Applied Surface Science 2015; 327: 241-245. https://doi.org/10.1016/j.apsusc.2014.11.187 DOI: https://doi.org/10.1016/j.apsusc.2014.11.187
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Policy for Journals/Articles with Open Access
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work
Policy for Journals / Manuscript with Paid Access
Authors who publish with this journal agree to the following terms:
- Publisher retain copyright .
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work .