Recent Advancements in Graphene Derivative-Based Nanocomposites: Innovations in Coating and Sensing Technologies
DOI:
https://doi.org/10.6000/2369-3355.2024.11.02Keywords:
Nanocomposite, graphene derivative, anti-corrosion, anti-biofouling, self-healing, electrochemical sensor, phenolic compounds, metal-organic framework (MOF), biomolecules, graphene oxide (GO), reduced graphene oxide (rGO)Abstract
Graphene derivative-based nanocomposites have emerged as innovative solutions to address challenges in corrosion, marine biofouling, and environmental contamination. This review highlights recent advancements in three key areas: (1) dual-barrier and self-healing anti-corrosion materials, (2) eco-friendly anti-biofouling coatings, and (3) high-efficiency electrocatalytic films for electrochemical sensing. We emphasize the critical roles of graphene (Gr) sheets, graphene oxide (GO), and reduced graphene oxide (rGO) in enhancing nanocomposite performance through novel modifications with inorganic materials, organic polymers, and biomolecules. Key insights into advanced modification techniques and their impact on functionality and durability are presented. The review also explores graphene-enabled electrochemical sensors that showed high sensitivity to phenolic compounds in water. Mechanisms accounting for the improved performance of these materials are discussed, along with associated challenges such as scalability, cost-effectiveness, and stability. Future directions are suggested, focusing on sustainable, intelligent coatings and thin-film devices for environmental applications. This work aims to guide researchers, industry professionals, and policymakers in leveraging graphene-based technologies to tackle global issues in corrosion prevention, marine ecology, and environmental monitoring.
References
Ollik K, Lieder M. Review of the application of graphene-based coatings as anti-corrosion layers. Coatings 2020; 10(9): 883. https://doi.org/10.3390/coatings10090883 DOI: https://doi.org/10.3390/coatings10090883
Nwosu CN, Iliut M, Vijayaraghavan A. Graphene and water-based elastomer nanocomposites - A review. Nanoscale 2021; 13(21): 9505-40. https://doi.org/10.1039/D1NR01324F DOI: https://doi.org/10.1039/D1NR01324F
Sun J, Du S. Application of graphene derivatives and their nanocomposites in tribology and lubrication: A review. RSC Advances 2019; 9(69): 40642-61. https://doi.org/10.1039/C9RA05679C DOI: https://doi.org/10.1039/C9RA05679C
Du W, Jin Y, Lai S, Shi L, Shen Y, Yang H. Multifunctional light-responsive graphene-based polyurethane composites with shape memory, self-healing, and flame retardancy properties. Composites Part A: Applied Science and Manufacturing 2020; 128: 105686. https://doi.org/10.1016/j.compositesa.2019.105686 DOI: https://doi.org/10.1016/j.compositesa.2019.105686
Sousa-Cardoso F, Teixeira-Santos R, Mergulhão FJM. Antifouling performance of carbon-based coatings for marine applications: A systematic review. Antibiotics 2022; 11(8): 1102. https://doi.org/10.3390/antibiotics11081102 DOI: https://doi.org/10.3390/antibiotics11081102
Dhanola A, Gajrani KK. Novel insights into graphene-based sustainable liquid lubricant additives: A comprehensive review. Journal of Molecular Liquids 2023; 386: 122523. https://doi.org/10.1016/j.molliq.2023.122523 DOI: https://doi.org/10.1016/j.molliq.2023.122523
Staneva AD, Dimitrov DK, Gospodinova DN, Vladkova TG. Antibiofouling activity of graphene materials and graphene-based antimicrobial coatings. Microorganisms 2021; 9(9): 1839. https://doi.org/10.3390/microorganisms9091839 DOI: https://doi.org/10.3390/microorganisms9091839
Sagadevan S, Shahid MM, Yiqiang Z, Oh WC, Soga T, Anita Lett J, et al. Functionalized graphene-based nanocomposites for smart optoelectronic applications. Nanotechnology Reviews 2021; 10(1): 605-35. https://doi.org/10.1515/ntrev-2021-0043 DOI: https://doi.org/10.1515/ntrev-2021-0043
Ghule B, Laad M, Kale G, Sadasivuni KK. Polymer nanocomposite film and coating for electronic and optoelectronic devices. In: Polymer Nanocomposite Films and Coatings 2024; 293-331 Woodhead Publishing. https://doi.org/10.1016/B978-0-443-19139-8.00016-4 DOI: https://doi.org/10.1016/B978-0-443-19139-8.00016-4
Zahran M, Khalifa Z, Zahran MAH, Abdel Azzem M. Recent advances in silver nanoparticle-based electrochemical sensors for determining organic pollutants in water: A review. Material Advances 2021; 2(22): 7350-65. https://doi.org/10.1039/D1MA00769F DOI: https://doi.org/10.1039/D1MA00769F
Shao J, Lv W, Yang Q. Self‐assembly of graphene oxide at interfaces. Advanced Materials 2014; 26(32): 5586-612. https://doi.org/10.1002/adma.201400267 DOI: https://doi.org/10.1002/adma.201400267
Kitadai H, Yuan M, Ma Y, Ling X. Graphene-based environmental sensors: Electrical and optical devices. Molecules 2021; 26(8): 2165. https://doi.org/10.3390/molecules26082165
Revesz IA, Hickey SM, Sweetman MJ. Metal ion sensing with Graphene quantum dots: Detection of harmful contaminants and biorelevant species. Journal of Materials Chemistry B 2022; 10(23): 4346-62. https://doi.org/10.1039/D2TB00408A DOI: https://doi.org/10.1039/D2TB00408A
Dong Q, Xiao M, Chu Z, Li G, Zhang Y. Recent progress of toxic gas sensors based on 3D graphene frameworks. Sensors 2021; 21(10): 3386. https://doi.org/10.3390/s21103386 DOI: https://doi.org/10.3390/s21103386
Thakur A, Kumar A. Recent advances on rapid detection and remediation of environmental pollutants utilizing nanomaterials-based (bio)sensors. Science of the Total Environment 2022; 834: 155219. https://doi.org/10.1016/j.scitotenv.2022.155219 DOI: https://doi.org/10.1016/j.scitotenv.2022.155219
Duc La D, Khong HM, Nguyen XQ, Dang TD, Bui XT, Nguyen MK, et al. A review on advances in Graphene and porphyrin-based electrochemical sensors for pollutant detection. Sustainable Chemistry One World 2024; 3: 100017. https://doi.org/10.1016/j.scowo.2024.100017 DOI: https://doi.org/10.1016/j.scowo.2024.100017
Karthik V, Selvakumar P, Senthil Kumar P, Satheeskumar V, Godwin Vijaysunder M, Hariharan S, et al. Recent advances in electrochemical sensor developments for detecting emerging pollutant in water environment. Chemosphere 2022; 304: 135331. https://doi.org/10.1016/j.chemosphere.2022.135331 DOI: https://doi.org/10.1016/j.chemosphere.2022.135331
Zhao R, Li Y, Ji J, Wang Q, Li G, Wu T, et al. Efficient removal of phenol and p-nitrophenol using nitrogen-doped reduced graphene oxide. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2021; 611: 125866. https://doi.org/10.1016/j.colsurfa.2020.125866 DOI: https://doi.org/10.1016/j.colsurfa.2020.125866
Ören Varol T, Hakli O, Anik U. Graphene oxide-porphyrin composite nanostructure included electrochemical sensor for catechol detection. New Journal of Chemistry 2021; 45(3): 1734-42. https://doi.org/10.1039/D0NJ05475E DOI: https://doi.org/10.1039/D0NJ05475E
Iftikhar T, Asif M, Aziz A, Ashraf G, Jun S, Li G, et al. Topical advances in nanomaterials-based electrochemical sensors for resorcinol detection. Trends in Environmental Analytical Chemistry 2021; 31: e00138. https://doi.org/10.1016/j.teac.2021.e00138 DOI: https://doi.org/10.1016/j.teac.2021.e00138
Dief EM, Hoffmann N, Darwish N. Electrochemical detection of dinitrobenzene on silicon electrodes: Toward explosives sensors. Surfaces 2022; 5(1): 218-27. https://doi.org/10.3390/surfaces5010015 DOI: https://doi.org/10.3390/surfaces5010015
Shahdeo D, Roberts A, Abbineni N, Gandhi S. Graphene-based sensors. In: Comprehensive Analytical Chemistry 2020; 91: 175-199. Elsevier. https://doi.org/10.1016/bs.coac.2020.08.007 DOI: https://doi.org/10.1016/bs.coac.2020.08.007
Nurazzi NM, Abdullah N, Demon SZN, Halim NA, Azmi AFM, Knight VF, et al. The frontiers of functionalized graphene-based nanocomposites as chemical sensors. Nanotechnology Reviews 2021; 10(1): 330-69. https://doi.org/10.1515/ntrev-2021-0030 DOI: https://doi.org/10.1515/ntrev-2021-0030
Li F, Long L, Weng Y. A Review on the Contemporary development of composite materials comprising graphene/ graphene derivatives. Advances in Materials Science and Engineering 2020; 2020(1): 7915641. https://doi.org/10.1155/2020/7915641 DOI: https://doi.org/10.1155/2020/7915641
Wallace PR. The band theory of graphite. Physical Review 1947; 71(9): 622-34. https://doi.org/10.1103/PhysRev.71.622 DOI: https://doi.org/10.1103/PhysRev.71.622
Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, et al. Electric field effect in atomically thin carbon films. Science 2004; 306(5696): 666-669. https://doi.org/10.1126/science.1102896 DOI: https://doi.org/10.1126/science.1102896
Taghioskoui M. Trends in graphene research. Materials Today 2009; 12(10): 34-37. https://doi.org/10.1016/S1369-7021(09)70274-3 DOI: https://doi.org/10.1016/S1369-7021(09)70274-3
Tiwari SK, Sahoo S, Wang N, Huczko A. Graphene research and their outputs: Status and prospect. Journal of Science: Advanced Materials and Devices 2020; 5(1): 10-29. https://doi.org/10.1016/j.jsamd.2020.01.006 DOI: https://doi.org/10.1016/j.jsamd.2020.01.006
Kitadai H, Yuan M, Ma Y, Ling X. Graphene-based environmental sensors: Electrical and optical devices. Molecules 2021; 26(8): 2165. https://doi.org/10.3390/molecules26082165 DOI: https://doi.org/10.3390/molecules26082165
Serrano-Luján L, Víctor-Román S, Toledo C, Sanahuja-Parejo O, Mansour AE, Abad J, et al. Environmental impact of the production of graphene oxide and reduced graphene oxide. SN Applied Science 2019; 1(2): 179. https://doi.org/10.1007/s42452-019-0193-1 DOI: https://doi.org/10.1007/s42452-019-0193-1
Zhang K, Mao L, Zhang LL, On Chan HS, Zhao XS, Wu J. Surfactant-intercalated, chemically reduced graphene oxide for high-performance supercapacitor electrodes. Journal of Materials Chemistry 2011; 21(20): 7302. https://doi.org/10.1039/c1jm00007a DOI: https://doi.org/10.1039/c1jm00007a
Das P, Ibrahim S, Chakraborty K, Ghosh S, Pal T. Stepwise reduction of graphene oxide and studies on defect-controlled physical properties. Scientific Reports 2024; 14(1): 294. https://doi.org/10.1038/s41598-023-51040-0 DOI: https://doi.org/10.1038/s41598-023-51040-0
Aksu Z, Şahin CH, Alanyalıoğlu M. Fabrication of Janus GO/rGO humidity actuator by one-step electrochemical reduction route. Sensors and Actuators B: Chemical 2022; 354: 131198. https://doi.org/10.1016/j.snb.2021.131198 DOI: https://doi.org/10.1016/j.snb.2021.131198
Jakhar R, Yap JE, Joshi R. Microwave reduction of graphene oxide. Carbon 2020; 170: 277-93. https://doi.org/10.1016/j.carbon.2020.08.034 DOI: https://doi.org/10.1016/j.carbon.2020.08.034
Xie X, Zhou Y, Huang K. Advances in microwave-assisted production of reduced graphene oxide. Frontiers in Chemistry 2019; 7: 355. https://doi.org/10.3389/fchem.2019.00355 DOI: https://doi.org/10.3389/fchem.2019.00355
Perumal D, Albert EL, Abdullah CAC. Green reduction of graphene oxide involving extracts of plants from different taxonomy groups. Journal of Composites Science 2022; 6(2): 58. https://doi.org/10.3390/jcs6020058 DOI: https://doi.org/10.3390/jcs6020058
Tian Y, Yu Z, Cao L, Zhang XL, Sun C, Wang DW. Graphene oxide: An emerging electromaterial for energy storage and conversion. Journal of Energy Chemistry 2021; 55: 323-44. https://doi.org/10.1016/j.jechem.2020.07.006 DOI: https://doi.org/10.1016/j.jechem.2020.07.006
Singh RK, Kumar R, Singh DP. Graphene oxide: Strategies for synthesis, reduction, and frontier applications. RSC Advances 2016; 6(69): 64993-5011. https://doi.org/10.1039/C6RA07626B DOI: https://doi.org/10.1039/C6RA07626B
Chen K, Wang Q, Niu Z, Chen J. Graphene-based materials for flexible energy storage devices. Journal of Energy Chemistry 2018; 27(1): 12-24. https://doi.org/10.1016/j.jechem.2017.08.015 DOI: https://doi.org/10.1016/j.jechem.2017.08.015
Zhu J, Yang D, Yin Z, Yan Q, Zhang H. Graphene and graphene‐based materials for energy storage applications. Small 2014; 10(17): 3480-3498. https://doi.org/10.1002/smll.201303202 DOI: https://doi.org/10.1002/smll.201303202
Lodhi RS, Kumar P, Achuthanunni A, Rahaman M, Das P. Mechanical properties of polymer/graphene composites. In: Polymer Nanocomposites Containing Graphene 2022; 75-105 Woodhead Publishing. https://doi.org/10.1016/B978-0-12-821639-2.00019-7 DOI: https://doi.org/10.1016/B978-0-12-821639-2.00019-7
Lee M, Paek SM. Microwave-assisted synthesis of reduced graphene oxide with hollow nanostructure for application to lithium-ion batteries. Nanomaterials 2022; 12(9): 1507. https://doi.org/10.3390/nano12091507 DOI: https://doi.org/10.3390/nano12091507
Gadore V, Ahmaruzzaman Md. Smart materials for remediation of aqueous environmental contaminants. Journal of Environmental Chemical Engineering 2021; 9(6): 106486. https://doi.org/10.1016/j.jece.2021.106486 DOI: https://doi.org/10.1016/j.jece.2021.106486
Pinto AM, Magalhães FD. Graphene-polymer composites. Polymers 2021; 13(5): 685. https://doi.org/10.3390/polym13050685 DOI: https://doi.org/10.3390/polym13050685
Joshi S, Siddiqui R, Sharma P, Kumar R, Verma G, Saini A. Green synthesis of peptide-functionalized reduced graphene oxide (rGO) nano bioconjugate with enhanced antibacterial activity. Scientific Reports 2020; 10(1): 9441. https://doi.org/10.1038/s41598-020-66230-3 DOI: https://doi.org/10.1038/s41598-020-66230-3
Jamil H, Faizan M, Adeel M, Jesionowski T, Boczkaj G, Balčiūnaitė A. Recent advances in polymer nanocomposites: Unveiling the frontier of shape memory and self-healing properties—A comprehensive review. Molecules 2024; 29(6): 1267. https://doi.org/10.3390/molecules29061267 DOI: https://doi.org/10.3390/molecules29061267
Patil TV, Patel DK, Dutta SD, Ganguly K, Lim KT. Graphene oxide-based stimuli-responsive platforms for biomedical applications. Molecules 2021; 26(9): 2797. https://doi.org/10.3390/molecules26092797 DOI: https://doi.org/10.3390/molecules26092797
Salimiyan N, Gholami M, Sedghi R. Preparation of degradable, biocompatible, conductive and multifunctional chitosan/thiol-functionalized graphene nanocomposite hydrogel via click chemistry for human motion sensing. Chemical Engineering Journal 2023; 471: 144648. https://doi.org/10.1016/j.cej.2023.144648 DOI: https://doi.org/10.1016/j.cej.2023.144648
Banerjee AN. Graphene and its derivatives as biomedical materials: Future prospects and challenges. Interface Focus 2018; 8(3): 20170056. https://doi.org/10.1098/rsfs.2017.0056 DOI: https://doi.org/10.1098/rsfs.2017.0056
Wang H, Yuan X, Zeng G, Wu Y, Liu Y, Jiang Q, et al. Three dimensional Graphene based materials: Synthesis and applications from energy storage and conversion to electrochemical sensor and environmental remediation. Advances in Colloid and Interface Science 2015; 221: 41-59. https://doi.org/10.1016/j.cis.2015.04.005 DOI: https://doi.org/10.1016/j.cis.2015.04.005
Saha U, Jaiswal R, Goswami TH. A facile bulk production of processable partially reduced graphene oxide as superior supercapacitor electrode material. Electrochimica Acta 2016; 196: 386-404. https://doi.org/10.1016/j.electacta.2016.02.203 DOI: https://doi.org/10.1016/j.electacta.2016.02.203
Ibrahim A, Klopocinska A, Horvat K, Abdel Hamid Z. Graphene-based nanocomposites: Synthesis, mechanical properties, and characterizations. Polymers 2021; 13(17): 2869. https://doi.org/10.3390/polym13172869 DOI: https://doi.org/10.3390/polym13172869
Tajik S, Beitollahi H, Garkani Nejad F, Sheikhshoaie I, Nugraha AS, Jang HW, et al. Performance of metal-organic frameworks in the electrochemical sensing of environmental pollutants. Journal of Materials Chemistry A 2021; 9(13): 8195-220. https://doi.org/10.1039/D0TA08344E DOI: https://doi.org/10.1039/D0TA08344E
Paz R, Viltres H, Gupta NK, Phung V, Srinivasan S, Rajabzadeh AR, et al. Covalent organic frameworks as highly versatile materials for the removal and electrochemical sensing of organic pollutants. Chemosphere 2023; 342: 140145. https://doi.org/10.1016/j.chemosphere.2023.140145 DOI: https://doi.org/10.1016/j.chemosphere.2023.140145
Thakre KG, Barai DP, Bhanvase BA. A review of graphene‐TiO 2 and graphene‐ZnO nanocomposite photocatalysts for wastewater treatment. Water Environment Research 2021; 93(11): 2414-60. https://doi.org/10.1002/wer.1623 DOI: https://doi.org/10.1002/wer.1623
Khan M, Assal ME, Tahir MN, Khan M, Ashraf M, Hatshan MR, et al. Graphene/inorganic nanocomposites: Evolving photocatalysts for solar energy conversion for environmental remediation. Journal of Saudi Chemical Society 2022; 26(6): 101544. https://doi.org/10.1016/j.jscs.2022.101544 DOI: https://doi.org/10.1016/j.jscs.2022.101544
Szczęśniak B, Choma J, Jaroniec M. Ultrahigh benzene adsorption capacity of graphene-MOF composite fabricated via MOF crystallization in 3D mesoporous Graphene. Microporous and Mesoporous Materials 2019; 279: 387-94. https://doi.org/10.1016/j.micromeso.2019.01.022 DOI: https://doi.org/10.1016/j.micromeso.2019.01.022
Makhafola MD, Balogun SA, Modibane KD. A comprehensive review of bimetallic nanoparticle-Graphene oxide and bimetallic nanoparticle-metal-organic framework nanocomposites as photo-, electro-, and photoelectrocatalysts for hydrogen evolution reaction. Energies 2024; 17(7): 1646. https://doi.org/10.3390/en17071646 DOI: https://doi.org/10.3390/en17071646
Lawal AT. Graphene-based nano composites and their applications. A review. Biosensors and Bioelectronics 2019; 141: 111384. https://doi.org/10.1016/j.bios.2019.111384 DOI: https://doi.org/10.1016/j.bios.2019.111384
Zheng Y, Zheng S, Xue H, Pang H. Metal‐organic frameworks/ graphene‐based materials: Preparations and applications. Advanced Functional Materials 2018; 28(47): 1804950. https://doi.org/10.1002/adfm.201804950 DOI: https://doi.org/10.1002/adfm.201804950
Nesterova T, Dam-Johansen K, Pedersen LT, Kiil S. Microcapsule-based self-healing anti-corrosive coatings: Capsule size, coating formulation, and exposure testing. Progress in Organic Coatings 2012; 75(4): 309-18. https://doi.org/10.1016/j.porgcoat.2012.08.002 DOI: https://doi.org/10.1016/j.porgcoat.2012.08.002
Wei H, Wang Y, Guo J, Shen NZ, Jiang D, Zhang X, et al. Advanced micro/nanocapsules for self-healing smart anti-corrosion coatings. Journal of Materials Chemistry A 2015; 3(2): 469-80. https://doi.org/10.1039/C4TA04791E DOI: https://doi.org/10.1039/C4TA04791E
Mo P, Hu Z, Mo Z, Chen X, Yu J, Selim MS, et al. Fast self-healing and self-cleaning anti-corrosion coating based on dynamic reversible imine and multiple hydrogen bonds. ACS Applied Polymer Materials 2022; 4(7): 4709-18. https://doi.org/10.1021/acsapm.2c00294 DOI: https://doi.org/10.1021/acsapm.2c00294
Kausar A, Ahmad I, Aldaghri O, Ibnaouf KH, Eisa MH. Shape memory graphene nanocomposites—fundamentals, properties, and significance. Processes 2023; 11(4): 1171. https://doi.org/10.3390/pr11041171 DOI: https://doi.org/10.3390/pr11041171
Ye Y, Chen H, Zou Y, Ye Y, Zhao H. Corrosion protective mechanism of smart graphene-based self-healing coating on carbon steel. Corrosion Science 2020; 174: 108825. https://doi.org/10.1016/j.corsci.2020.108825 DOI: https://doi.org/10.1016/j.corsci.2020.108825
Pourhashem S, Vaezi MR, Rashidi A, Bagherzadeh MR. Distinctive roles of silane coupling agents on the corrosion inhibition performance of graphene oxide in epoxy coatings. Progress in Organic Coatings 2017; 111: 47-56. https://doi.org/10.1016/j.porgcoat.2017.05.008 DOI: https://doi.org/10.1016/j.porgcoat.2017.05.008
Javidparvar AA, Naderi R, Ramezanzadeh B. Manipulating graphene oxide nanocontainer with benzimidazole and cerium ions: Application in epoxy-based nanocomposite for active corrosion protection. Corrosion Science 2020; 165: 108379. https://doi.org/10.1016/j.corsci.2019.108379 DOI: https://doi.org/10.1016/j.corsci.2019.108379
Vinodhini SP, Xavier JR. Evaluation of corrosion protection performance and mechanical properties of epoxy-triazole/ graphene oxide nanocomposite coatings on mild steel. Journal of Materials Science 2021; 56(11): 7094-110. https://doi.org/10.1007/s10853-020-05636-w DOI: https://doi.org/10.1007/s10853-020-05636-w
Li H, Qiang Y, Zhao W, Zhang S. 2-Mercaptobenzimidazole-inbuilt metal-organic-frameworks modified graphene oxide towards intelligent and excellent anti-corrosion coating. Corrosion Science 2021; 191: 109715. https://doi.org/10.1016/j.corsci.2021.109715 DOI: https://doi.org/10.1016/j.corsci.2021.109715
Majidi R, Danaee I, Vrsalović L, Zarei D. Development of a smart anti-corrosion epoxy coating containing a pH-sensitive GO/MOF nanocarrier loaded with 2-mercaptobenzothiazole corrosion inhibitor. Materials Chemistry and Physic 2023; 308: 128291. https://doi.org/10.1016/j.matchemphys.2023.128291 DOI: https://doi.org/10.1016/j.matchemphys.2023.128291
Zhang Y, Gao F, Wang D, Li Z, Wang X, Wang C, et al. Amorphous/crystalline heterostructure transition-metal-based catalysts for high-performance water splitting. Coordination Chemistry Reviews 2023; 475: 214916. https://doi.org/10.1016/j.ccr.2022.214916 DOI: https://doi.org/10.1016/j.ccr.2022.214916
Mostafatabar AH, Majd MT, Ghahremani P, Bahlakeh G, Ramezanzadeh B. Mussel-inspired polydopamine (PDA)-chitosan (CS) bio-molecules grafted graphene oxide nano-platforms synthesis and application as sustainable smart anti-corrosion system. Sustainable Chemistry and Pharmacy 2022; 30: 100890. https://doi.org/10.1016/j.scp.2022.100890 DOI: https://doi.org/10.1016/j.scp.2022.100890
Askarnia R, Fardi SR, Sobhani M, Staji H. Ternary hydroxyapatite/chitosan/graphene oxide composite coating on AZ91D magnesium alloy by electrophoretic deposition. Ceramics Internationa 2021; 47(19): 27071-81. https://doi.org/10.1016/j.ceramint.2021.06.120 DOI: https://doi.org/10.1016/j.ceramint.2021.06.120
Khosravi H, Naderi R, Ramezanzadeh B. Designing an epoxy composite coating having dual-barrier-active self-healing anti-corrosion functions using a multifunctional GO/PDA/MO nano-hybrid. Materials Today Chemistry 2023; 27: 101282. https://doi.org/10.1016/j.mtchem.2022.101282 DOI: https://doi.org/10.1016/j.mtchem.2022.101282
Dehghani A, Zabihi-Gargari M, Majd MT. Development of a nanocomposite coating with anti-corrosion ability using graphene oxide nanoparticles modified by Echium ammonium extract. Progress in Organic Coatings 2022; 166: 106778. https://doi.org/10.1016/j.porgcoat.2022.106778 DOI: https://doi.org/10.1016/j.porgcoat.2022.106778
Punith Kumar MK, Ray S, Srivastava C. Effect of graphene addition on composition, morphology and corrosion behavior of ZnNiFe-graphene composite coatings. Diamond and Related Materials 2020; 107: 107904. https://doi.org/10.1016/j.diamond.2020.107904 DOI: https://doi.org/10.1016/j.diamond.2020.107904
Zhang X, Årstøl E, Nymark M, Fages-Lartaud M, Mikkelsen Ø. The development of polydimethylsiloxane/ZnO-GO antifouling coatings. Journal of Cluster Science 2022; 33(6): 2407-17. https://doi.org/10.1007/s10876-021-02165-7 DOI: https://doi.org/10.1007/s10876-021-02165-7
Balakrishnan A, Jena G, Pongachira George R, Philip J. Polydimethylsiloxane-graphene oxide nanocomposite coatings with improved anti-corrosion and anti-biofouling properties. Environmental Science and Pollution Research 2021; 28(6): 7404-22. https://doi.org/10.1007/s11356-020-11068-5 DOI: https://doi.org/10.1007/s11356-020-11068-5
Selim MS, El-Safty SA, Fatthallah NA, Shenashen MA. Silicone/graphene oxide sheet-alumina nanorod ternary composite for superhydrophobic antifouling coating. Progress in Organic Coatings 2018; 121: 160-72. https://doi.org/10.1016/j.porgcoat.2018.04.021 DOI: https://doi.org/10.1016/j.porgcoat.2018.04.021
Selim MS, Fatthallah NA, Higazy SA, Zhuorui W, Hao Z. Superhydrophobic silicone/graphene oxide-silver-titania nanocomposites as eco-friendly and durable maritime antifouling coatings. Ceramics Internationa 2024; 50(1): 452-63. https://doi.org/10.1016/j.ceramint.2023.10.121 DOI: https://doi.org/10.1016/j.ceramint.2023.10.121
Kamel AH, Abd-Rabboh HSM, Hefnawy A. Molecularly imprinted polymer-based electrochemical sensors for monitoring the persistent organic pollutants chlorophenols. RSC Advances 2024; 14(28): 20163-81. https://doi.org/10.1039/D4RA03095H DOI: https://doi.org/10.1039/D4RA03095H
Zhang Y, Xie Q, Xia Z, Gui G, Deng F. Graphdiyne oxides as a new modifier for the simultaneous electrochemical detection of phenolic compounds. Journal of Electroanalytical Chemistry 2020; 863: 114058. https://doi.org/10.1016/j.jelechem.2020.114058 DOI: https://doi.org/10.1016/j.jelechem.2020.114058
Tang X, Gu Y, Tang P, Liu L. Electrochemical sensor based on magnetic molecularly imprinted polymer and graphene-UiO-66 composite modified screen-printed electrode for cannabidiol detection. International Journal of Electrochemical Science 2022; 17(5): 220562. https://doi.org/10.20964/2022.05.64 DOI: https://doi.org/10.20964/2022.05.64
Yu MY, Liu JH, Liu C, Pei WY, Ma JF. Resorcin [4]arene-based microporous metal-organic framework/reduced graphene oxide composite as an electrocatalyst for effective and simultaneous determination of p-nitrophenol and o-nitrophenol isomers. Sensors and Actuators B: Chemical 2021; 347: 130604. https://doi.org/10.1016/j.snb.2021.130604 DOI: https://doi.org/10.1016/j.snb.2021.130604
Wang S, Zhang T, Jia L, Yang P, He P, Xiao F, et al. Electrochemical reduction of nickel selenide/reduced graphene oxide nanocomposites: Highly sensitive detection of 4-nitrophenol. Microchemical Journal 2023; 186: 108252. https://doi.org/10.1016/j.microc.2022.108252 DOI: https://doi.org/10.1016/j.microc.2022.108252
Liu G, Liu J, Pan P, Wang Z, Yang Z, Wei J, et al. Electrochemical sensor based on laser-induced preparation of MnOx/rGO composites for simultaneous recognition of hydroquinone and catechol. Microchemical Journal 2023; 185: 108234. https://doi.org/10.1016/j.microc.2022.108234 DOI: https://doi.org/10.1016/j.microc.2022.108234
Liao L, Zhou P, Xiao F, Tang W, Zhao M, Su R, et al. Electrochemical sensor based on Ni/N-doped graphene oxide for the determination of hydroquinone and catechol. Ionics 2023; 29(4): 1605-15. https://doi.org/10.1007/s11581-023-04892-5 DOI: https://doi.org/10.1007/s11581-023-04892-5
Nawaz M, Shaikh H, Buledi JA, Solangi AR, Karaman C, Erk N, et al. Fabrication of ZnO-doped reduce graphene oxide-based electrochemical sensor for the determination of 2,4,6-trichlorophenol from aqueous environment. Carbon Letters 2024; 34(1): 201-14. https://doi.org/10.1007/s42823-023-00562-8 DOI: https://doi.org/10.1007/s42823-023-00562-8
Kalia S, Kumar R, Sharma R, Kumar S, Singh D, Singh RK. Two-dimensional layered rGO-MoS2 heterostructures decorated with Fe3O4 nanoparticles as an electrochemical sensor for the detection of para-nitrophenol. Journal of Physics and Chemistry of Solids 2024; 184: 111719. https://doi.org/10.1016/j.jpcs.2023.111719 DOI: https://doi.org/10.1016/j.jpcs.2023.111719
Jia L, Hao J, Wang S, Yang L, Liu K. Sensitive detection of 4-nitrophenol based on pyridine diketopyrrolopyrrole-functionalized graphene oxide direct electrochemical sensor. RSC Advances 2023; 13(4): 2392-401. https://doi.org/10.1039/D2RA07239D DOI: https://doi.org/10.1039/D2RA07239D
Paterakis G, Anagnostopoulos G, Sygellou L, Galiotis C. Protection of aluminum foils against environmental corrosion with graphene-based coatings. Journal of Coating Science and Technology 2021; 8: 18-28. https://doi.org/10.6000/2369-3355.2021.08.02 DOI: https://doi.org/10.6000/2369-3355.2021.08.02
Machado D, Hortigüela MJ, Otero-Irurueta G, Marques PA, Silva R, Silva RF, Neto V. Graphene-based sensors for air quality monitoring-preliminary development evaluation. Journal of Coating Science and Technology 2019; 6(1): 10-21. https://doi.org/10.6000/2369-3355.2019.06.01.2 DOI: https://doi.org/10.6000/2369-3355.2019.06.01.2
Downloads
Published
How to Cite
Issue
Section
License
Policy for Journals/Articles with Open Access
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work
Policy for Journals / Manuscript with Paid Access
Authors who publish with this journal agree to the following terms:
- Publisher retain copyright .
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work .