Brain Waves Reflect Cognition-Emotion State as a Diagnostic Tool for Intervention in Dysfunctional States: A Real-World Evidence

Authors

  • Sílvia Mayoral-Rodrígez Institute of Quality of Life, University of Girona, Catalunya, Spain; Faculty of Education and Psychology of the University of Girona, Catalunya, Spain and Foundation Carme Vidal of NeuroPsychoPedagogy, Girona, Catalunya, Spain https://orcid.org/0000-0003-0468-0093
  • Frederic Pérez-Alvarez Institute of Quality of Life, University of Girona, Catalunya, Spain; Foundation Carme Vidal of NeuroPsychoPedagogy, Girona, Catalunya, Spain and Emeritus of the Dr J Trueta University Hospital of Girona. Catalunya, Spain https://orcid.org/0000-0003-2377-8184
  • Carme Timoneda-Gallart Institute of Quality of Life, University of Girona, Catalunya, Spain; Faculty of Education and Psychology of the University of Girona, Catalunya, Spain and Foundation Carme Vidal of NeuroPsychoPedagogy, Girona, Catalunya, Spain https://orcid.org/0000-0002-1838-5557

DOI:

https://doi.org/10.6000/2292-2598.2022.10.04.1

Keywords:

Electrophysiology, brain waves, behavior, learning, somatic disorder

Abstract

Objective: This study aims to characterize electrical signals to establish a diagnosis of cognitive-emotional dysfunction and guide a successful therapeutic intervention. Therefore, the present study aimed to observe these frequency bands in a sample of dysfunctional neurological behaviors to establish a neural marker of neural dysfunction that helps diagnose and monitor treatment.

Methods: A descriptive retrospective (extracted from the database) observational study design based on real-world historical data from routine clinical practice. According to DSM-5, low academic achievement (n =70), disruptive behavior (externalizing behavior problems) (n=70), and somatic syndrome disorder (n=70) were the subjects. The mean age of the sample was 14.13 (SD = 1.46; range 12-18), 31.5% women. The measuring instrument was the NeXus-10, which is suitable for acquiring a wide range of physiological signals. Brain electrical activity was recorded by using the quantitative electroencephalograph (qEEG) in accordance with the 10-20 International Electrode Placement System. In particular, the specific form of miniQ (mini-qEEG) was used.

Results: A pattern record present in all cases were identified. The record refers to (a) activity along the midline, namely, Fz-Cz-Pz, (b) activity from the center (Cz) to back, namely, Pz-O1 and O2, (c) activity from the center (Cz) forward (Fz), and (d) comparison between hemispheres. The characteristics of theta, alpha, and beta waves define the characteristic pattern of neurological dysfunction. The reversal of the dysfunctional pattern coincided with the remission of the clinical symptoms after treatment, which occurred in 87,6% of the subjects. We define remission as not meeting DSM-5 criteria.

Conclusion: This study suggests that miniQ register could be considered a simple and objective tool for studying neurological dysfunction. This dysfunction is explained according to current neurological knowledge of interactive cognition-emotion processing. MiniQ may be a cheap and reliable method and a promising tool for the investigation in the field.

References

Griffiths BJ, Mayhew SD, Mullinger KJ, Jorge J, Charest I, Wimber M, et al. Alpha/beta power decreases track the fidelity of stimulus-specific information. Elife 2019; 8: e49562. https://doi.org/10.7554/eLife.49562

Alonso A, Llinás R.The electrophysiology of the mammillary complex in vitro. II. Medial mammillary neurons. J Neurophysiol 1992; 68(4): 1321-1331. https://doi.org/10.1152/jn.1992.68.4.1321

Leonard C, Llinás R. Electrophysiology of mammalian pedunculopontine and laterodorsal tegmental neurons in vitro: implications for the control of REM sleep. In: Steriade M, Biesold D., editors. Brain Cholinergic Systems. Oxford University Press, New York, NY 1990; pp. 205-223.

Llinás RR. Intrinsic electrical properties of mammalian neurons and CNS function: a historical perspective. Front Cell Neurosci 2014; 8: 320. https://doi.org/10.3389/fncel.2014.00320

Llinás RR, Ustinin MN. Frequency-pattern functional tomography of magnetoencephalography data allows a new approach to the study of human brain organization. Front Neural Circuits 2014; 8: 43. https://doi.org/10.3389/fncir.2014.00043

Llinás RR, Grace AA, Yarom Y. In vitro neurons in mammalian cortical layer 4 exhibits intrinsic oscillatory activity in the 10- to 50-Hz frequency range. Proc Natl Acad Sci USA 1991; 88(8): 897-901. Erratum in: Proc Natl Acad Sci USA 1991; 88(8): 3510. https://doi.org/10.1073/pnas.88.3.897

Llinas R, Urbano FJ, Leznik E, et al. Rhythmic and dysrhythmic thalamocortical dynamics: GABA systems and the edge effect. Trends Neurosci 2005; 28(6): 325-333. https://doi.org/10.1016/j.tins.2005.04.006

Llinás RR, Ustinin MN, Rykunov SD, et al. Reconstruction of human brain spontaneous activity based on frequency-pattern analysis of magnetoencephalography data. Front Neurosci 2015; 9: 373. https://doi.org/10.3389/fnins.2015.00373

Llinás RR, Steriade M. Bursting of thalamic neurons and states of vigilance. J Neurophysiol 2006; 95(6): 3297-308. https://doi.org/10.1152/jn.00166.2006

Vogel W, Broverman DM, Klaiber EL. EEG and mental abilities. Electroencephalography & Clinical Neurophysiology 1968; 24(2): 166-175. https://doi.org/10.1016/0013-4694(68)90122-3

Pujol J, Reixach J, Harrison BJ, et al. Posterior cingulate activation during moral dilemmas. Hum Brain Mapp 2008; 29(8): 910-921. https://doi.org/10.1002/hbm.20436

Fernandino L, Tong JQ, Conant LL, et al. Decoding the information structure underlying the neural representation of concepts. Proc Natl Acad Sci USA 2022; 119(6): e2108091119. https://doi.org/10.1073/pnas.2108091119

Ledoux JE. Emotional brain. Simon Schuster, New York 1996.

Ledoux JE. Rethinking the Emotional Brain. Neuron 2012; 73(4): 653- 676. Erratum in: Neuron 2012; 73(5): 1052. https://doi.org/10.1016/j.neuron.2012.02.004

Dijksterhuis A. Think different: The merits of unconscious thought in preference development and decision making. J Pers Soc Psychol 2004; 87(5): 586-598. https://doi.org/10.1037/0022-3514.87.5.586

Dijksterhuis A. van Olden Z. On the benefits of thinking unconsciously: unconscious thought increases post-choice satisfaction. J Exp Soc Psychol 2006; 42(5): 627-631. https://doi.org/10.1016/j.jesp.2005.10.008

Kahneman D. Thinking, fast and slow. Farrar, Straus and Giroux. New York 2011.

Dijksterhuis A, Bos MW, Nordgren LF, van Baaren RB. Complex choices better made unconsciously? Science 2006; 313(5788): 760-761. https://doi.org/10.1126/science.313.5788.760

Dijksterhuis A, Bos MW, Nordgren LF, van Baaren RB. On making the right choice: the deliberation-without-attention effect. Science 2006; 311(5763): 1005-1007. https://doi.org/10.1126/science.1121629

Kahneman D, Frederick S. Representativeness revisited: Attribute substitution in intuitive judgement. In: Gilovich T, Griffin D, Kahneman D. Eds. Heuristics and biases: The psychology of intuitive judgment. Cambridge University Press 2002; pp. 49-81. https://doi.org/10.1017/CBO9780511808098.004

Das JP, Naglieri JA, Kirby JR. Assessment of cognitive processes. The PASS theory of intelligence. Allyn & Bacon Inc., Massachussets 1994.

Olivola CY, Funk F, Todorov A. Social attributions from faces bias human choices. Trends Cogn Sci 2014; 18 (11): 566-70. https://doi.org/10.1016/j.tics.2014.09.007

Bechara A, Tranel D, Damasio H. Characterization of the decision-making effect of patients with ventromedial prefrontal cortex lesions. Brain 2000; 123 (Pt 11): 2189-2202. https://doi.org/10.1093/brain/123.11.2189

Bechara A. The role of emotion in decision-making: Evidence from neurological patients with orbitofrontal damage. Brain and Cognition 2004; 55(1): 30-40. https://doi.org/10.1016/j.bandc.2003.04.001

Greene J, Sommerville RB, Nystrom LE, Darley JM, Cohen JD. An fMRI investigation of emotional engagement in moral judgment. Science 2001; 293(5537): 2105-2108. https://doi.org/10.1126/science.1062872

Dobbins IG, Schnyer DM, Verfaellie M, Schacter DL. Cortical activity reductions during repetition priming can result from rapid response learning. Nature 2004; 428(6980): 316-319. https://doi.org/10.1038/nature02400

Haggard P, Libet B. Conscious intention and brain activity. J Conscious Stud 2001; 8: 47-64.

Libet B, Gleason CA, Wright EW, Pearl DK. Time of conscious intention to act in relation to onset of cerebral activity (readiness potential). The unconscious initiation of a free voluntary act. Brain 1983; 106(Pt 3): 623-642. https://doi.org/10.1093/brain/106.3.623

Soon CS, Brass M, Heinze HJ, Haynes JD. Unconscious determinants of free decisions in the human brain. Nat Neurosci 2008; 11(5): 543-545. https://doi.org/10.1038/nn.2112

Mercier H, Sperber D. Intuitive and reflective inferences. In: In two minds: Dual processes and beyond. Evans JSBT, Frankish K. Eds. Oxford University Press, Oxford 2009; pp. 149-70. https://doi.org/10.1093/acprof:oso/9780199230167.003.0007

Mercier H, Sperber. D. Why do humans reason? Arguments for an argumentative theory. Behav Brain Sci 2011; 34(2): 57-74. https://doi.org/10.1017/S0140525X10000968

Shand J. Arguing well. Routledge, New York 2000.

Perez-Alvarez F, Timoneda-Gallart C. A Better Look at Intelligent Behavior. Nova Science Publishers, Inc., Hauppauge, NY 2007; ISBN: 1-60021-742-7.

Perez-Alvarez F, Timoneda-Gallart C. Intelligent behavior and neuroscience: What we know-and don't know-about how we think. In: Papadopoulos TC, Parrila RK, Kirby JR. Eds. Cognition, Intelligence, and Achievement: A Tribute to J. P. Das. Elsevier Inc., New York, NY 2015; pp. 419-442. https://doi.org/10.1016/B978-0-12-410388-7.00020-8

Perez-Alvarez F, Perez-Serra A, Timoneda-Gallart C. A better look at learning: how does the brain express the mind. Psychology 2013; 4(10): 760-770. https://doi.org/10.4236/psych.2013.410108

Younger J, Aron A, Parke S, Chatterjee N, Mackey S. Viewing pictures of a romantic partner reduces experimental pain: Involvement of neural reward systems. PLoS One 2010; 5(10): e13309. https://doi.org/10.1371/journal.pone.0013309

Naglieri JA, Das JP. Cognitive Assessment System. Illinois: Riverside Publishing, 1997.

Sammler D, Grigutsch M, Fritz T, Koelsch S. Music, and emotion: electrophysiological correlates of the processing of pleasant and unpleasant music. Psychophysiology 2007; 44(2): 293-304. https://doi.org/10.1111/j.1469-8986.2007.00497.x

Aftanas LI, Golocheikine SA. Human anterior and frontal midline theta and lower alpha reflect emotionally positive state and internalized attention: High-resolution EEG investigation of meditation. Neurosci Lett 2001; 310(1): 57-60. https://doi.org/10.1016/S0304-3940(01)02094-8

Chabin Th, Gabriel D, Chansophonkul, Michelant L, Joucla C, Haffen E, et al. Cortical patterns of pleasurable musical chills revealed by high-density EEG. Front Neurosci 2020; 14: 565815. https://doi.org/10.3389/fnins.2020.565815

You Y, Correas A, Jao Keehn RJ, Wagner LC, Rosen BQ, Beaton LE, et al. MEG theta during lexico-semantic and executive processing is altered in high-functioning adolescents with autism. Cereb Cortex 2021; 31(2): 1116-1130. https://doi.org/10.1093/cercor/bhaa279

Knyazev GG. EEG delta oscillations as a correlate of basic homeostatic and motivational processes. Neurosci Biobehav Rev 2012; 36(1): 677-695. https://doi.org/10.1016/j.neubiorev.2011.10.002

Knyazev GG. Motivation, emotion, and their inhibitory control mirrored in brain oscillations. Neurosci Biobehav Rev 2007; 31(3): 377-395. https://doi.org/10.1016/j.neubiorev.2006.10.004

Norton L, Gibson RM, Gofton T, Benson C, Dhanani S, Shemie SD, et al. Electroencephalographic recordings during withdrawal of life-sustaining therapy until 30 minutes after declaration of death. Can J Neurol Sci 2017; 44(2): 139-145. https://doi.org/10.1017/cjn.2016.309

Fauzan N, Amran NH. Early detection of mild cognitive impairment, dementia, and Alzheimer's using qEEG. European Journal of Medicine and Natural Sciences 2018; 1(1): 13-21.

Peterson CK, Shackman AJ, Harmon-Jones E. The role of asymmetrical frontal cortical activity in aggression. Psychophysiology 2008; 45(1): 86-92.

Sutton SK, Davidson RJ. Prefrontal brain electrical asymmetry predicts the evaluation of affective stimuli. Neuropsychologia 2000; 38(13): 1723-33. https://doi.org/10.1016/S0028-3932(00)00076-2

Tomarken AJ, Davidson RJ, Henriques JB. Resting frontal brain asymmetry predicts affective responses to films. J Pers Soc Psychol 1990; 59: 791-801. https://doi.org/10.1037/0022-3514.59.4.791

Marzbani H, Marateb HR, Mansourian M. Neurofeedback: A Comprehensive Review on system design, methodology, and clinical applications. Basic Clin Neurosci 2016; 7(2): 143-158. https://doi.org/10.15412/J.BCN.03070208

Moraes, H, Ferreira, C, Deslandes, A, Cagy M, Pompeu F, Ribeiro P, et al. Beta and alpha electroencephalographic activity changes after acute exercise. Arq de Neuro-Psiquiatr 2007; 65(3A): 637-641. https://doi.org/10.1590/S0004-282X2007000400018

Scholz S, Schneider SL, Rose M. Differential effects of ongoing EEG beta and theta power on memory formation. PloS One 2017; 12(2): e0171913. https://doi.org/10.1371/journal.pone.0171913

Gunkelman J. Medication prediction with electroencephalography phenotypes and biomarkers. Biofeedback 2014; 42(2): 68-73. https://doi.org/10.5298/1081-5937-42.2.03

Sendi MSE, Waters AC, Tiruvadi V, Riva-Posse P, Crowell A, Isbaine F, et al. Intraoperative neural signals predict rapid antidepressant effects of deep brain stimulation. Transl Psychiatry 2021; 11(1): 551. https://doi.org/10.1038/s41398-021-01669-0

Hwang K, Hallquist MN, Luna B. The development of hub architecture in the Human Functional Brain Network cerebral cortex. Cereb Cortex 2013; 23(10): 2380-93. https://doi.org/10.1093/cercor/bhs227

Power JD, Fair DA, Schlaggar BL, Petersen SE. The development of human functional brain network. Neuron 2010; 67(5): 736-48. https://doi.org/10.1016/j.neuron.2010.08.017

Klimesch W. Alpha and Theta oscillation reflect cognitive and memory performance: A review and analysis. Brain Res Brain Res Rev 1999; 29(2-3): 169-195. https://doi.org/10.1016/S0165-0173(98)00056-3

Chabot RJ, di Michel F, Prichep L. The role of quantitative electroencephalography in child and adolescent psychiatric disorders. Child Adolesc Psychiatr Clin N Am 2005; 14(1): 21-53. https://doi.org/10.1016/j.chc.2004.07.005

Rimel RW, Giordani B, Barth JT, Jane JA. Moderate head injury: completing the clinical spectrum of brain trauma. Neurosurgery 1982; 11(3): 344-351. https://doi.org/10.1227/00006123-198209000-00002

Thorton KE, Carmody DP. Traumatic brain injury rehabilitation: qEEG-biofeedback treatment protocols. Appl Psychophysiol Biofeedback 2009; 34: 59-68. https://doi.org/10.1007/s10484-009-9075-4

Lai C, MacNeil B, Frewen PA. Comparison of the attentional effects of single-session mindfulness meditation and Fp-HEG neurofeedback in novices. Mindfulness 2015; 6: 1012-1020. https://doi.org/10.1007/s12671-014-0347-6

Pinheiro ES, Queirós FC, Montoya P, Santos CL, do Nascimento MA, Ito CH, et al. Electroencephalographic patterns in chronic pain: A systematic review of the literature. PLoS One 2016; 11(2): e0149085. https://doi.org/10.1371/journal.pone.0149085

Leuchter AF, Cook IA, Lufkin RB, Dunkin J, Newton TF, Cummings JL, et al. Cordance: a new method for assessment of cerebral perfusion and metabolism using quantitative electroencephalography. Neuroimage 1994; 1(3): 208-19. https://doi.org/10.1006/nimg.1994.1006

Schulman JJ, Cancro R, Lowe S, Lu F, Walton KD, Llinás RR. Imaging of thalamocortical dysrhythmia in neuropsychiatry. Front Hum Neurosci 2011; 5: 69. https://doi.org/10.3389/fnhum.2011.00069

Thompson M, Thompson L. The Neurofeedback Book. The Association for Applied Psychophysiology and Biofeedback. 2015; ISBN 978-0-98422979-0-0.

Andrillon T, Burns A, Mackay T, Windt J, Tsuchiya N. Predicting lapses of attention with sleep-like slow waves. Nat Commun 2021; 12(1): 3657. https://doi.org/10.1038/s41467-021-23890-7

Boutros NN, Arfken C, Galderisi S, Warrick J, Pratt G, Iacono W. The status of spectral EEG abnormality as a diagnostic test for schizophrenia. Schizophr Res 2008; 99(1-3): 225-237. https://doi.org/10.1016/j.schres.2007.11.020

Jung HT, Lee SH, Kim JN, Lee KJ, Chung YCh. Quantitative electroencephalography and low-resolution electromagnetic tomography imaging of Alzheimer's disease. Psychiatry Investig 2007; 4: 31-37.

Akbar Y, Khotimah SN, Haryanto F. Spectral and brain mapping analysis of EEG based on Pwelch in schizophrenic patients. J Phys Conf Ser 2016; 694: 012070. https://doi.org/10.1088/1742-6596/694/1/012070

Mayoral-Rodríguez S, Pérez-Álvarez F, Timoneda-Gallart C, Muñoz-Cuatrecasas A. The Adventures of Fundi Intervention Based on the Cognitive and Emotional Processing in Attention Deficit Hyperactive Disorder Patients. J Vis Exp 2020; (160): e60187. https://doi.org/10.3791/60187

Downloads

Published

2022-08-31

How to Cite

Mayoral-Rodrígez, S. ., Pérez-Alvarez, F. ., & Timoneda-Gallart, C. . (2022). Brain Waves Reflect Cognition-Emotion State as a Diagnostic Tool for Intervention in Dysfunctional States: A Real-World Evidence. Journal of Intellectual Disability - Diagnosis and Treatment, 10(4), 154–166. https://doi.org/10.6000/2292-2598.2022.10.04.1

Issue

Section

General Articles