Anatomical and Biochemical Pathogenesis of Motor Pathway Disruption in Cerebral Palsy: A Narrative Review
DOI:
https://doi.org/10.6000/2292-2598.2024.12.04.9Keywords:
Cerebral palsy, connectivity, imaging, thalamocortical pathway, targeted therapyAbstract
Background: Cerebral palsy (CP) is a neurodevelopmental disorder characterized by motor impairments caused by brain lesions that affect motor pathways.
Objective: This review describes the complex interaction between the thalamus and cerebral cortex in CP, the understanding of which would explain its pathophysiology and treatment strategies.
Discussion: Cerebral palsy classification is based on motor impairment presentation, each with specific neurological deficits related to the disruption of specific motor pathways. The thalamus serves as a crucial relay station in these pathways, transmitting ascending and descending signals to the cortex via thalamocortical and corticothalamic tracts. Brain injuries like periventricular leukomalacia, hypoxic-ischemic encephalopathy, or malformations disrupt these pathways, leading to motor deficits. Advanced imaging techniques such as diffusion and functional magnetic resonance imaging (MRI) reveal altered connectivity patterns in CP, offering insights into its pathophysiology and aiding diagnosis. Studies have highlighted the variability of clinical presentations in CP and the correlation with specific brain regions affected. Deep brain stimulation and repetitive transcranial magnetic stimulation targeting the thalamus emerge as promising therapeutic opportunities to restore motor function in CP by addressing pathway disruptions.
Conclusion: This review provides a comprehensive overview of motor pathways in CP, emphasizing the role of the thalamus and cortical connectivity in motor impairments. Understanding this complex connectivity provides an avenue for optimum and targeted therapeutic interventions to improve outcomes for individuals with CP.
References
Antón-Bolaños N, Espinosa A, López-Bendito G. Developmental interactions between thalamus and cortex: a true love reciprocal story. Curr Opin Neurobiol 2018; 52: 33-41. https://doi.org/10.1016/j.conb.2018.04.018 DOI: https://doi.org/10.1016/j.conb.2018.04.018
Patel DR, Neelakantan M, Pandher K, Merrick J. Cerebral palsy in children: A clinical overview. Transl Pediatr 2020; 9: S125-35. https://doi.org/10.21037/tp.2020.01.01 DOI: https://doi.org/10.21037/tp.2020.01.01
Hallman-Cooper JL, Rocha Cabrero F. Cerebral Palsy. StatPearls Publishing 2021.
McIntyre S, Goldsmith S, Webb A, Ehlinger V, Hollung SJ, McConnell K, et al. Global prevalence of cerebral palsy: A systematic analysis. Dev Med Child Neurol 2022; 64: 1494-506. https://doi.org/10.1111/DMCN.15346 DOI: https://doi.org/10.1111/dmcn.15346
Fluss J, Lidzba K. Cognitive and academic profiles in children with cerebral palsy: A narrative review. Ann Phys Rehabil Med 2020; 63: 447-56. https://doi.org/10.1016/j.rehab.2020.01.005 DOI: https://doi.org/10.1016/j.rehab.2020.01.005
Tan SS, van Gorp M, Voorman JM, Geytenbeek JJM, Reinders-Messelink HA, Ketelaar M, et al. Development curves of communication and social interaction in individuals with cerebral palsy. Dev Med Child Neurol 2020; 62: 132-9. https://doi.org/10.1111/dmcn.14351 DOI: https://doi.org/10.1111/dmcn.14351
Morgan C, Fahey M, Roy B, Novak I. Diagnosing cerebral palsy in full-term infants. J Paediatr Child Health 2018; 54: 1159-64. https://doi.org/10.1111/jpc.14177 DOI: https://doi.org/10.1111/jpc.14177
Monokwane B, Johnson A, Gambrah-Sampaney C, Khurana E, Baier J, Baranov E, et al. Risk Factors for Cerebral Palsy in Children in Botswana. Pediatr Neurol 2017; 77: 73-7. https://doi.org/10.1016/j.pediatrneurol.2017.07.014 DOI: https://doi.org/10.1016/j.pediatrneurol.2017.07.014
Freire G, Shevell M, Oskoui M. Cerebral palsy: Phenotypes and risk factors in term singletons born small for gestational age. European Journal of Paediatric Neurology 2015; 19: 218-25. https://doi.org/10.1016/j.ejpn.2014.12.005 DOI: https://doi.org/10.1016/j.ejpn.2014.12.005
Zhao M, Dai H, Deng Y, Zhao L. SGA as a Risk Factor for Cerebral Palsy in Moderate to Late Preterm Infants: a System Review and Meta-analysis. Sci Rep 2016; 6: 38853. https://doi.org/10.1038/srep38853 DOI: https://doi.org/10.1038/srep38853
MacLennan AH, Thompson SC, Gecz J. Cerebral palsy: Causes, pathways, and the role of genetic variants. Am J Obstet Gynecol 2015; 213: 779-88. https://doi.org/10.1016/j.ajog.2015.05.034 DOI: https://doi.org/10.1016/j.ajog.2015.05.034
Araneda R, Ebner-Karestinos D, Paradis J, Klöcker A, Saussez G, Demas J, et al. Changes Induced by Early Hand-Arm Bimanual Intensive Therapy Including Lower Extremities in Young Children with Unilateral Cerebral Palsy: A Randomized Clinical Trial. JAMA Pediatr 2024; 178: 19-28. https://doi.org/10.1001/jamapediatrics.2023.4809 DOI: https://doi.org/10.1001/jamapediatrics.2023.4809
Al-Sowi AM, AlMasri N, Hammo B, Al-Qwaqzeh FAZ a. Cerebral Palsy classification based on multi-feature analysis using machine learning. Inform Med Unlocked 2023; 37: 101197. https://doi.org/10.1016/j.imu.2023.101197 DOI: https://doi.org/10.1016/j.imu.2023.101197
Te Velde A, Morgan C, Novak I, Tantsis E, Badawi N. Early diagnosis and classification of cerebral palsy: An historical perspective and barriers to an early diagnosis. J Clin Med 2019; 8. https://doi.org/10.3390/jcm8101599 DOI: https://doi.org/10.3390/jcm8101599
Sheridan N, Tadi P. Neuroanatomy, Thalamic Nuclei. StatPearls Publishing 2020.
Patestas MA, Gartner LP. A Textbook of Neuroanatomy. 1st ed. Blackwell Publishing 2006.
Bhuiyan PS, Rajgopal L, Shyamkishore K. Inderbir Singh’s Textbook of Human Neuroanatomy. 10th ed. Jaypee Brothers Medical Publishers 2018. https://doi.org/10.5005/jp/books/18462
Sherman SM. Functioning of circuits connecting thalamus and cortex. Compr Physiol 2017; 7: 713-39. https://doi.org/10.1002/cphy.c160032 DOI: https://doi.org/10.1002/cphy.c160032
George K DJM. Neuroanatomy, Thalamocortical Radiations. NCBI Bookshelf A Service of the National Library of Medicine, National Institutes of Health 2024.
Pannek K, Fripp J, George JM, Fiori S, Colditz PB, Boyd RN, et al. Fixel-based analysis reveals alterations in brain microstructure and macrostructure of preterm-born infants at term equivalent age. Neuroimage Clin 2018; 18: 51-9. https://doi.org/10.1016/j.nicl.2018.01.003 DOI: https://doi.org/10.1016/j.nicl.2018.01.003
Agirman G, Broix L, Nguyen L. Cerebral cortex development: an outside-in perspective. FEBS Lett 2017; 591: 3978-92. https://doi.org/10.1002/1873-3468.12924 DOI: https://doi.org/10.1002/1873-3468.12924
Harris JA, Mihalas S, Hirokawa KE, Whitesell JD, Choi H, Bernard A, et al. Hierarchical organization of cortical and thalamic connectivity. Nature | 2019; 575. https://doi.org/10.1038/s41586-019-1716-z DOI: https://doi.org/10.1038/s41586-019-1716-z
Sherman SM, Guillery RW. Exploring the Thalamus and Its Role in Cortical Function, 2nd ed. MIT Press 2009.
Jones EG. Synchrony in the Interconnected Circuitry of the Thalamus and Cerebral Cortex. Ann N Y Acad Sci 2009; 1157: 10-23. https://doi.org/10.1111/j.1749-6632.2009.04534.x DOI: https://doi.org/10.1111/j.1749-6632.2009.04534.x
Guo KH, Yamawaki N, Barrett JM, Tapies M, Shepherd GMG. Cortico-thalamo-cortical circuits of mouse forelimb S1 are organized primarily as recurrent loops. Journal of Neuroscience 2020; 40: 2849-58. https://doi.org/10.1523/JNEUROSCI.2277-19.2020 DOI: https://doi.org/10.1523/JNEUROSCI.2277-19.2020
Żakowski W. Neurochemistry of the Anterior Thalamic Nuclei. Mol Neurobiol 2017; 54: 5248-63. https://doi.org/10.1007/s12035-016-0077-y DOI: https://doi.org/10.1007/s12035-016-0077-y
Tomita S. Glutamatergic pathways and receptors. Essentials of Cerebellum and Cerebellar Disorders: A Primer for Graduate Students, Springer International Publishing 2016; pp. 231-6. https://doi.org/10.1007/978-3-319-24551-5_29 DOI: https://doi.org/10.1007/978-3-319-24551-5_29
Korzeniewski SJ, Birbeck G, DeLano MC, Potchen MJ, Paneth N. A systematic review of neuroimaging for cerebral palsy. J Child Neurol 2008; 23: 216-27. https://doi.org/10.1177/0883073807307983 DOI: https://doi.org/10.1177/0883073807307983
Gotardo JW, de Freitas Valle Volkmer N, Stangler GP, Dornelles AD, de Athayde Bohrer BB, Carvalho CG. Impact of peri-intraventricular haemorrhage and periventricular leukomalacia in the neurodevelopment of preterms: A systematic review and meta-analysis. PLoS One 2019; 14: e0223427. https://doi.org/10.1371/journal.pone.0223427 DOI: https://doi.org/10.1371/journal.pone.0223427
Schneider J, Miller SP. Preterm brain Injury: White matter injury. Handb Clin Neurol, Elsevier B.V. 2019; vol. 162: pp. 155-72. https://doi.org/10.1016/B978-0-444-64029-1.00007-2 DOI: https://doi.org/10.1016/B978-0-444-64029-1.00007-2
Marret S, Vanhulle C, Laquerriere A. Pathophysiology of cerebral palsy. Handb Clin Neurol, Elsevier B.V. 2013; vol. 111: pp. 169-76. https://doi.org/10.1016/B978-0-444-52891-9.00016-6 DOI: https://doi.org/10.1016/B978-0-444-52891-9.00016-6
Singh D. Astrocytic and microglial cells as the modulators of neuroinflammation in Alzheimer’s disease. J Neuroinflammation 2022; 19. https://doi.org/10.1186/s12974-022-02565-0 DOI: https://doi.org/10.1186/s12974-022-02565-0
Than UTT, Nguyen LT, Nguyen PH, Nguyen XH, Trinh DP, Hoang DH, et al. Inflammatory mediators drive neuroinflammation in autism spectrum disorder and cerebral palsy. Sci Rep 2023; 13. https://doi.org/10.1038/s41598-023-49902-8 DOI: https://doi.org/10.1038/s41598-023-49902-8
Bellingacci L, Canonichesi J, Mancini A, Parnetti L, Di Filippo M. Cytokines, synaptic plasticity and network dynamics: a matter of balance. Neural Regen Res 2023; 18: 2569-72. https://doi.org/10.4103/1673-5374.371344 DOI: https://doi.org/10.4103/1673-5374.371344
Cannavò L, Rulli I, Falsaperla R, Corsello G, Gitto E. Ventilation, oxidative stress and risk of brain injury in preterm newborn. Ital J Pediatr 2020; 46. https://doi.org/10.1186/s13052-020-00852-1 DOI: https://doi.org/10.1186/s13052-020-00852-1
Lee JD, Park HJ, Park ES, Oh MK, Park B, Rha DW, et al. Motor pathway injury in patients with periventricular leucomalacia and spastic diplegia. Brain 2011; 134: 1199-210. https://doi.org/10.1093/brain/awr021 DOI: https://doi.org/10.1093/brain/awr021
Reid SM, Dagia CD, Ditchfield MR, Reddihough DS. Grey matter injury patterns in cerebral palsy: Associations between structural involvement on MRI and clinical outcomes. Dev Med Child Neurol 2015; 57: 1159-67. https://doi.org/10.1111/DMCN.12800 DOI: https://doi.org/10.1111/dmcn.12800
Reddihough DS, Collins KJ. The epidemiology and causes of cerebral palsy. Australian Journal of Physiotherapy 2003; 49: 7-12. https://doi.org/10.1016/S0004-9514(14)60183-5 DOI: https://doi.org/10.1016/S0004-9514(14)60183-5
Novak I, Morgan C, Adde L, Blackman J, Boyd RN, Brunstrom-Hernandez J, et al. Early, accurate diagnosis and early intervention in cerebral palsy: Advances in diagnosis and treatment. JAMA Pediatr 2017; 171: 897-907. https://doi.org/10.1001/jamapediatrics.2017.1689 DOI: https://doi.org/10.1001/jamapediatrics.2017.1689
Mahanna AM, El-Toukhy NAEG, Mousa AE, Megahed KF, Ashamallah GA. Does motor deficit in children with cerebral palsy correlate with diffusion tensor metrics abnormalities in thalamocortical pathways? Egyptian Journal of Radiology and Nuclear Medicine 2021; 52. https://doi.org/10.1186/s43055-021-00463-8 DOI: https://doi.org/10.1186/s43055-021-00463-8
Zhang W, Zhang S, Zhu M, Tang J, Zhao X, Wang Y, et al. Changes of Structural Brain Network Following Repetitive Transcranial Magnetic Stimulation in Children With Bilateral Spastic Cerebral Palsy: A Diffusion Tensor Imaging Study. Front Pediatr 2021; 8. https://doi.org/10.3389/fped.2020.617548 DOI: https://doi.org/10.3389/fped.2020.617548
Tang L, Ge Y, Sodickson DK, Miles L, Zhou Y, Reaume J, et al. Thalamic resting-state functional networks: Disruption in patients with mild traumatic brain injury. Radiology 2011; 260: 831-40. https://doi.org/10.1148/radiol.11110014 DOI: https://doi.org/10.1148/radiol.11110014
Munivenkatappa A, Agrawal A. Role of Thalamus in Recovery of Traumatic Brain Injury. J Neurosci Rural Pract 2016; 07: S076-9. https://doi.org/10.4103/0976-3147.196468 DOI: https://doi.org/10.4103/0976-3147.196468
Mukhtar SF, Ahmad AH, Simok AA, Abdullah JM, Abdullah AN, Zabri SH, et al. Disruption of Thalamocortical Connectivity in Spastic Cerebral Palsy: A Probabilistic Tractography Study. Journal of Intellectual Disability - Diagnosis and Treatment 2022; 10: 322-33. https://doi.org/10.6000/2292-2598.2022.10.06.6 DOI: https://doi.org/10.6000/2292-2598.2022.10.06.6
Ballester-Plané J, Schmidt R, Laporta-Hoyos O, Junqué C, Vázquez É, Delgado I, et al. Whole-brain structural connectivity in dyskinetic cerebral palsy and its association with motor and cognitive function. Hum Brain Mapp 2017; 38: 4594-612. https://doi.org/10.1002/hbm.23686 DOI: https://doi.org/10.1002/hbm.23686
Samsir S, Zakaria R, Abdul Razak S, Ismail MS, Abdul Rahim MZ, Lin C-S, et al. Characterisation of the Corticospinal Tract Using Diffusion Magnetic Resonance Imaging in Unilateral and Bilateral Cerebral Palsy Patients. Malaysian Journal of Medical Sciences 2018; 25: 68-78. https://doi.org/10.21315/mjms2018.25.5.7 DOI: https://doi.org/10.21315/mjms2018.25.5.7
Woodward KE, Carlson HL, Kuczynski A, Saunders J, Hodge J, Kirton A. Sensory-motor network functional connectivity in children with unilateral cerebral palsy secondary to perinatal stroke. Neuroimage Clin 2019; 21: 101670. https://doi.org/10.1016/j.nicl.2019.101670 DOI: https://doi.org/10.1016/j.nicl.2019.101670
Simon-Martinez C, Jaspers E, Alaerts K, Ortibus E, Balsters J, Mailleux L, et al. Influence of the corticospinal tract wiring pattern on sensorimotor functional connectivity and clinical correlates of upper limb function in unilateral cerebral palsy. Sci Rep 2019; 9: 8230. https://doi.org/10.1038/s41598-019-44728-9 DOI: https://doi.org/10.1038/s41598-019-44728-9
Burton H, Dixit S, Litkowski P, Wingert JR. Functional connectivity for somatosensory and motor cortex in spastic diplegia. Somatosens Mot Res 2009; 26: 90-104. https://doi.org/10.3109/08990220903335742 DOI: https://doi.org/10.3109/08990220903335742
Rocha-Ferreira E, Hristova M. Plasticity in the Neonatal Brain following Hypoxic-Ischaemic Injury. Neural Plast 2016; 2016: 1-16. https://doi.org/10.1155/2016/4901014 DOI: https://doi.org/10.1155/2016/4901014
Ohtaka-Maruyama C. Subplate Neurons as an Organizer of Mammalian Neocortical Development. Front Neuroanat 2020; 14: 8. https://doi.org/10.3389/fnana.2020.00008 DOI: https://doi.org/10.3389/fnana.2020.00008
Passingham RE, Stephan KE, Kötter R. The anatomical basis of functional localization in the cortex. Nat Rev Neurosci 2002; 3: 606-16. https://doi.org/10.1038/nrn893 DOI: https://doi.org/10.1038/nrn893
Ferre-Fernández M, Murcia-González MA, Barnuevo Espinosa MD, Ríos-Díaz J. Measures of motor and functional skills for children with cerebral palsy: A systematic review. Pediatric Physical Therapy 2020; 32: 12-25. https://doi.org/10.1097/PEP.0000000000000661 DOI: https://doi.org/10.1097/PEP.0000000000000661
Tornberg ÅB, Lauruschkus K. Non-ambulatory children with cerebral palsy: effects of four months of static and dynamic standing exercise on passive range of motion and spasticity in the hip. Peer J 2020; 8: e8561. https://doi.org/10.7717/peerj.8561 DOI: https://doi.org/10.7717/peerj.8561
Sanger TD. Deep brain stimulation for cerebral palsy: where are we now? Dev Med Child Neurol 2020; 62: 28-33. https://doi.org/10.1111/dmcn.14295 DOI: https://doi.org/10.1111/dmcn.14295
Torrico TJ, Munakomi S. Neuroanatomy, Thalamus. StatPearls 2023.