The Role of Concentration Polarization with Concentration Dependent Diffusion Coefficient in Polymeric Membrane During Pervaporation

Authors

  • Endre Nagy University of Pannonia, Research Institute of Chemical and Process Engineering, P.O. Box 158, H-8201 H-Veszprém, Hungary
  • Zsolt Prettl University of Pannonia, Research Institute of Chemical and Process Engineering, P.O. Box 158, H-8201 H-Veszprém, Hungary
  • Jeno Hancsók University of Pannonia, Department of MOL Hydrocarbon and Coal Processing, P.O.B. 158, H-8201 Veszprém, Hungary
  • Ujhidy Aurél University of Pannonia, Research Institute of Chemical and Process Engineering, P.O. Box 158, H-8201 H-Veszprém, Hungary

DOI:

https://doi.org/10.6000/1929-6037.2013.02.03.2

Keywords:

Pervaporation, concentration dependent diffusion, overall mass transfer rate, enrichment, polarization modulus, convective flow

Abstract

The increase of the diffusion coefficient, due to its concentration dependency, can strongly increase the mass transfer rate through the membrane. Accordingly, the negative effect of the mass transfer resistance of the polarization layer can essentially be increased on the separation efficiency, especially in the case of low solute concentration in the feed phase. This effect can also exist at high solute concentration at extremely high pervaporation rate as it is illustrated by the case study. The simultaneous effect of the concentration polarization and membrane layers is discussed in this paper in case of exponentially or linearly concentration dependent diffusion coefficient. Mass transfer rate, enrichment and the polarization modulus are expressed in implicit, closed mathematical equations involving the transport parameters of the two layers, i.e.the kL, Pe, km, H values. How the increasing diffusion coefficient affects the concentration distribution in the polarization and the membrane layers and due to it, the mass transfer rate, enrichment or the polarization modulus, indicating the effect of the polarization layer, is discussed. It is shown how strongly the  dimensionless plasticizing coefficient can decrease the polarization modulus and can affect the concentration distribution in the polarization and the membrane layers as well as the ratio of the diffusion dependent mass transfer rate to that without plasticizing effect, namely if . The case study illustrates the effect of the external mass transfer resistance on the mass transfer rate and on the concentration distribution in the case of high value of a plasticization coefficient.

References

Baker RW. Membrane Technology and Applications. 2nd ed. Chichester: Wiley & Sons 2004. http://dx.doi.org/10.1002/0470020393 DOI: https://doi.org/10.1002/0470020393

Shao P, Huang RYM. Polymeric membrane pervaporation. J Membr Sci 2007; 287: 162-79. http://dx.doi.org/10.1016/j.memsci.2006.10.043 DOI: https://doi.org/10.1016/j.memsci.2006.10.043

Chapman PD, Oliveira T, Livingston AG, Li K. Membranes for dehydration of solvent by pervaporation. J Membr Sci 2008; 318: 5-37. http://dx.doi.org/10.1016/j.memsci.2008.02.061 DOI: https://doi.org/10.1016/j.memsci.2008.02.061

Lovasz A, Farkas T, Mizsey P. Methodology for modeling of pervaporation: step from binary to ternary mixtures. Desalination 2009; 241: 188-96. http://dx.doi.org/10.1016/j.desal.2008.02.031 DOI: https://doi.org/10.1016/j.desal.2008.02.031

Vane LM. A review of pervaporation for product recovery from biomass fermentation processes. J Chem Technol Biotechnol 2005; 80: 603-29. http://dx.doi.org/10.1002/jctb.1265 DOI: https://doi.org/10.1002/jctb.1265

Bolto B, Hoang M, Xie Z. A review of membrane selection for the dehydration of aqueous ethanol by pervaporation. Chem Eng Processing 2011; 50: 227-35. http://dx.doi.org/10.1016/j.cep.2011.01.003 DOI: https://doi.org/10.1016/j.cep.2011.01.003

Izák P, Bartovská L, Friess K, Sipek M, Uchytil P. Description of binary liquid mixtures transport non-porous membrane by modified Maxwell-Stefan equation. J Membr Sci 2003; 214: 293-309. http://dx.doi.org/10.1016/S0376-7388(02)00580-X DOI: https://doi.org/10.1016/S0376-7388(02)00580-X

Heintz W, Stephan A. A generalized solution-diffusion model of the pervaporation process through composite membrane. J Membr Sci 1994; 89: 153-169. http://dx.doi.org/10.1016/0376-7388(93)E0223-7 DOI: https://doi.org/10.1016/0376-7388(93)E0223-7

Nagy E. Binary, coupled mass transfer with variable diffusivity through cylindrical membrane. J Membr Sci 2006; 274: 159-68. http://dx.doi.org/10.1016/j.memsci.2005.08.007 DOI: https://doi.org/10.1016/j.memsci.2005.08.007

Nagy E. Nonlinear mass transfer through dense membrane Desalination 2004; 163: 345-54. http://dx.doi.org/10.1016/S0011-9164(04)90207-X DOI: https://doi.org/10.1016/S0011-9164(04)90207-X

Schaetzel P, Vauclair C, Luo G, Nguyen QT. The solution-diffusion model, order of magnitude calculation of coupling between the fluxes in pervaporation. J Membr Sci 2001; 191: 103-108. http://dx.doi.org/10.1016/S0376-7388(01)00457-4 DOI: https://doi.org/10.1016/S0376-7388(01)00457-4

Nagy E. Basic equation of mass transport through a membrane layer. London Elsevier 2012. DOI: https://doi.org/10.1016/B978-0-12-416025-5.00001-6

Bettens B, Verhof A, van Veen HM, Vandecasteele C, Degréve J, van der Bruggen B. Pervaporation of binary water-alcohol and methanol-alcohol mixtures through microporous methylated silica membranes: Maxwell-Stefan modeling. Comp Chem Eng 2010; 34: 1775-88. http://dx.doi.org/10.1016/j.compchemeng.2010.03.014 DOI: https://doi.org/10.1016/j.compchemeng.2010.03.014

Smart J, Starov VM, Schucker RC, Lloyd DR. Pervaporative extraction of volatile organic compounds from aqueous systems with use of a tubular transverse flow module. Part II. Experimental results J Membr Sci 1998; 143: 159-79. http://dx.doi.org/10.1016/S0376-7388(98)00003-9 DOI: https://doi.org/10.1016/S0376-7388(98)00003-9

Lue SJ, Wu SY, Wang SF, Wang LD, Tsai CL. Modeling multi-component vapor sorption in a poly(dimethyl siloxan) membrane. Desalination 2008; 233: 286-94. DOI: https://doi.org/10.1016/j.desal.2007.09.053

Meuleman EEB, Bosch JHAB, Mulder MHV, Stratmmann H. Modeling of liquid/liquid separation by pervaporation: toluene from water. AIChE J 1999; 188: 235-49. DOI: https://doi.org/10.1002/aic.690451014

Schaetzel P, Bendjama Z, Vauclair Z, Nguyen QT. Ideal and non-ideal diffusion through polymers, Application to pervaporation. J Membr Sci 2011; 191: 95-102. http://dx.doi.org/10.1016/S0376-7388(01)00456-2 DOI: https://doi.org/10.1016/S0376-7388(01)00456-2

Peng F, Pan F, Fi D, Jiang Z. Pervaporation properties of PDMS membranes fro removal of benzene from aqueous solution: Experimental and modeling. Chem Eng J 2005; 114: 123-29. http://dx.doi.org/10.1016/j.cej.2005.09.014 DOI: https://doi.org/10.1016/j.cej.2005.09.014

Lipnitzki F, Tragardh G. Modelling of pervaporation: Models to analyze and predict the mass transport in pervaporation. Sep Purif Methods 2001; 30: 49-125. http://dx.doi.org/10.1081/SPM-100102985 DOI: https://doi.org/10.1081/SPM-100102985

Mulder MHV. Pervaporation: separation of ethanol/water and isomeric xylens. Ph.D. Dissertation, Tech. High School, Twente, Netherland 1984.

Mulder MHV, Smolders CA. On the mechanism of separation of ethanol/water mixtures by pervaporation. I. Calculations of concentration profiles. J Membr Sci 1984; 17: 289-307. http://dx.doi.org/10.1016/S0376-7388(00)83220-2 DOI: https://doi.org/10.1016/S0376-7388(00)83220-2

Follain N, Valleton JM, Lebrun L, Alexandre B, Schaetzel P, Metayer M, Marais S. Simulation of kinetic curves in mass transfer phenomena for a concentration-dependent diffusion coefficient in polymer membranes. J Membr Sci 2010; 349: 195-207. http://dx.doi.org/10.1016/j.memsci.2009.11.044

Schaetzel P, Bouallouche R, Amar HA, Nguyen QT, Riffault B, Marais S. Mass transfer in pervaporation: The key component approximation for the solution-diffusion model. Desalination 2010; 251: 161-66. http://dx.doi.org/10.1016/j.desal.2009.09.132 DOI: https://doi.org/10.1016/j.desal.2009.09.132

Schaetzel P, Vauclair C, Nguyen QT, Bouzerar R. A simplified solution-diffusion theory in pervaporation: the total

solvent volume fraction model. J Membr Sci 2004; 244: 117-27. http://dx.doi.org/10.1016/j.memsci.2004.06.060 DOI: https://doi.org/10.1016/j.memsci.2004.06.060

Setnickova K, Wagner Z, Noble RD, Uchytil P. Semi-empirical model of toluene transport in polyethylene membranes based on the data using a new type of apparatus for determining gas permeabiulity, diffusivity and solubility. Chem Eng Sci 2011; 66: 5566-74. http://dx.doi.org/10.1016/j.ces.2011.07.037 DOI: https://doi.org/10.1016/j.ces.2011.07.037

Jiraratananon R, Chanachai A, Huang RYM. Pervaporation dehydration of ethanol-water mixtures with chitosan/ hydroxyethylcellulose (CS/HEC) composite membranes, II. Analysis of mass transport. J Membr Sci 2002; 199: 211-22. http://dx.doi.org/10.1016/S0376-7388(01)00699-8 DOI: https://doi.org/10.1016/S0376-7388(01)00699-8

Bitter JGA. Transport mechanisms in membrane separation processes. Amszterdam: Shell-Laboratorium 1991. DOI: https://doi.org/10.1007/978-1-4615-3682-6

Liu MG, Dickson JM, Coté P. Simulation of a pervaporation system on the industrial scale for water treatment. J Membr Sci 1996; 111: 227-41. http://dx.doi.org/10.1016/0376-7388(95)00234-0 DOI: https://doi.org/10.1016/0376-7388(95)00234-0

Mi L, Hwang ST. Correlation of concentration polarization and hydrodynamic parameters in hollow fiber modules. J Membr Sci 1999; 159: 143-65. http://dx.doi.org/10.1016/S0376-7388(99)00046-0 DOI: https://doi.org/10.1016/S0376-7388(99)00046-0

Psaume R, Aptel PH, Aurelle Y, Mora JC, Bersillon JL. Pervaporation: Importance of concentration polarization in the extraction of trace organics from water. J Membr Sci 1988; 36: 373-84. http://dx.doi.org/10.1016/0376-7388(88)80030-9 DOI: https://doi.org/10.1016/0376-7388(88)80030-9

Bengtsson E, Tragardh G, Hallström B. Concentration polarization during enrichment of aroma compounds from a water solution by pervaporation. J Food Eng 1993; 19: 399-407. http://dx.doi.org/10.1016/0260-8774(93)90028-I DOI: https://doi.org/10.1016/0260-8774(93)90028-I

Feng X, Huang RYM. Concentration polarization in pervaporation separation processes. J Membr Sci 1994; 92: 201-208. http://dx.doi.org/10.1016/0376-7388(94)00056-5 DOI: https://doi.org/10.1016/0376-7388(94)00056-5

Bhattacharya S, Hwang ST. Concentration polarization, separation factor, and Peclet number in membrane processes. J Membr Sci 1997; 132: 73-90. http://dx.doi.org/10.1016/S0376-7388(97)00047-1 DOI: https://doi.org/10.1016/S0376-7388(97)00047-1

Baker RW, Wijmans JG, Athayde AL, Daniels R, Ly JH, Le M. The effect of concentration polarization on the separation of volatile organic compounds from water by pervaporation. J Membr Sci 1997; 137: 159-72. http://dx.doi.org/10.1016/S0376-7388(97)00189-0 DOI: https://doi.org/10.1016/S0376-7388(97)00189-0

Wijmans JG, Athayde AL, Daniels R, Ly JH, Kamanaddin HD, Pinnau I. The role of boundary layers in the removal of volatile organic compounds from water by pervaporation. J Membr Sci 1996; 109: 135-46. http://dx.doi.org/10.1016/0376-7388(95)00194-8 DOI: https://doi.org/10.1016/0376-7388(95)00194-8

Peng M, Vane LM, Liu SX. Numerical simulation of concentration polarization in a pervaporation module. Sep Sci Technol 2004; 39: 1239-57. http://dx.doi.org/10.1081/SS-120030480 DOI: https://doi.org/10.1081/SS-120030480

Nagy E. Coupled effect of the membrane properties and concentration polarization in pervaporation: Unified mass transport model. Sep Purif Technol 2010; 73: 194-201. http://dx.doi.org/10.1016/j.seppur.2010.03.025 DOI: https://doi.org/10.1016/j.seppur.2010.03.025

Raughunath B, Hwang ST. Effect of boundary layer mass transfer resistance in the pervaporation of dilute organics. J Membr Sci 1992; 65: 147-61. http://dx.doi.org/10.1016/0376-7388(92)87061-2 DOI: https://doi.org/10.1016/0376-7388(92)87061-2

Schafer T, Crespo J. Study and optimization of the hydrodynamic upstream conditions during recovery of a complex aroma profile by pervaporation. J Membr Sci 2007; 301: 46-56. http://dx.doi.org/10.1016/j.memsci.2007.05.034 DOI: https://doi.org/10.1016/j.memsci.2007.05.034

El-Zanati E, Abdel-Hakim E, El-Ardi O, Fahmy M. Modeling and simulation of butanol separation from aqueous solutions using pervaporation. J Membr Sci 2006; 280: 278-83. http://dx.doi.org/10.1016/j.memsci.2006.01.029 DOI: https://doi.org/10.1016/j.memsci.2006.01.029

Fouad EA, Feng X. Use of pervaporation to separate butanol from dilute aqueous solutions: Effects of operating conditions and concentration polarization. J Membr Sci 2008; 323: 428-35. http://dx.doi.org/10.1016/j.memsci.2008.06.054 DOI: https://doi.org/10.1016/j.memsci.2008.06.054

Huang RYM, Lin VJC. Separation of liquid mixtures using polymer membranes. J Polym Sci 1968; 12: 2615-31. DOI: https://doi.org/10.1002/app.1968.070121204

Greenlaw FW, Shelden RA, Thomson EV. Dependence of diffusive permeation rates on upstream and downstream pressures, I. Single component of pervaporation. J Membr Sci 1977; 2: 141-45. http://dx.doi.org/10.1016/S0376-7388(00)83240-8 DOI: https://doi.org/10.1016/S0376-7388(00)83240-8

Follain N, Valleton JM, Lebrun L, Alexandre B, Schaetzel P, Metayer M, Marais S. Simulation of kinetic curves in mass transfer phenomena for a concentration-dependent diffusion coefficient in polymer membranes. J Membr Sci 2010; 349: 195-207. http://dx.doi.org/10.1016/j.memsci.2009.11.044 DOI: https://doi.org/10.1016/j.memsci.2009.11.044

Tsuyumoto M, Akita K, Teramoto A. Pervaporative transport of aqueous ethanol: Dependence of permeation rate on ethanol concentration and permeate side pressures. Desalination 1995; 103: 211-22. http://dx.doi.org/10.1016/0011-9164(95)00074-7 DOI: https://doi.org/10.1016/0011-9164(95)00074-7

Nagy E. Basic equations of mass transport through biocatalytic membrabe reactor. Asia Pac J Chem Eng 2009; 4: 270-78. http://dx.doi.org/10.1002/apj.242 DOI: https://doi.org/10.1002/apj.242

Downloads

Published

2013-08-31

How to Cite

Nagy, E., Prettl, Z., Hancsók, J., & Aurél, U. (2013). The Role of Concentration Polarization with Concentration Dependent Diffusion Coefficient in Polymeric Membrane During Pervaporation. Journal of Membrane and Separation Technology, 2(3), 171–183. https://doi.org/10.6000/1929-6037.2013.02.03.2

Issue

Section

Articles