Physical and Gas Transport Properties of Asymmetric Hyperbranched Polyimide-Silica Hybrid Membranes

Authors

  • Masako Miki R&D Center for Nanomaterials and Devices, Kyoto Institute of Technology, Matsugasaki, Sakyo-Ku, Kyoto, 606-8585, Japan
  • Yasuyuki Ishikawa Department of Biomolecular Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-Ku, Kyoto, 606-8585, Japan
  • Masaya Haraguchi Department of Biomolecular Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-Ku, Kyoto, 606-8585, Japan
  • Yasuharu Yamada Institute of Technological Research, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama, 226-8686, Japan

DOI:

https://doi.org/10.6000/1929-6037.2013.02.04.3

Keywords:

Hyperbranched Polyimide, Silica hybrid, Gas permeability, Asymmetric, Symmetric

Abstract

Physical and gas transport properties of the asymmetric hyperbranched polyimide (HBPI) -silica hybrid membranes prepared with a dianhydride, 4,4’-(hexafluoroisopropylidene)diphthalic anhydride (6FDA), and an asymmetric triamine, 2,4,4’-(triaminodiphenyl)ether (TADE), were investigated and compared with those of the symmetric HBPI-silica hybrid membranes prepared with a symmetric triamine, 1,3,5-tris(4-aminophenoxy)benzene (TAPOB). The HBPI-silica hybrid membranes were prepared via sol-gel reaction using hyperbranched polyamic acid of which end groups were modified with silane coupling agents, water and tetramethoxysilane. The thermal mechanical and dynamic mechanical analysis measurements confirmed that the rigidity of asymmetric HBPI was higher than that of symmetric HBPI because of the rigid and asymmetric structure of TADE monomer. In addition, the degree of branching of asymmetric HBPI is lower than that of symmetric HBPI because of the different reactivity of the three amino groups included in TADE. The rigidity and linearity of HBPIs had an effect on the progression of sol-gel reaction, consequently the gas transport properties. The increasing of the gas permeability coefficient of the asymmetric dianhydride(DA)-HBPI-silica hybrid membranes with increasing silica content was smaller than those of symmetric DA- and amine(AM)-HBPI-silica hybrid membranes. In addition, the gas permeability coefficient of the asymmetric AM-HBPI-silica hybrid membranes decreased with increasing silica content. This was due to the fact that the dispersibility of silica in the asymmetric HBPI-silica hybrids, of which polymer chain was more rigid and linear than those of symmetric HBPI-silica hybrid, was not as fine as in the symmetric HBPI-silica hybrids, and that the long and tortuous diffusion path was newly formed by hybridization with silica.

References

Kim TH, Koros WJ, Husk GR, O’Brien KC. Relationship between Gas Separation Properties and Chemical Structure in a Series of Aromatic Polyimides. J Membr Sci 1988; 37: 45-62. http://dx.doi.org/10.1016/S0376-7388(00)85068-1 DOI: https://doi.org/10.1016/S0376-7388(00)85068-1

Stern SA, Mi Y, Yamamoto H. Structure/Permeability Relationships of Polyimide Membranes. Applications to the Separation of Gas Mixtures. J Polym Sci Part B: Polym Phys 1989; 27: 1887-909. http://dx.doi.org/10.1002/polb.1989.090270908 DOI: https://doi.org/10.1002/polb.1989.090270908

Okamoto K, Tanaka K, Kita H, Ishida M, Kakimoto M, Imai Y. Gas Permeability and Permselectivity of Polyimides Prepared from 4,4'-Diaminotriphenylamine. Polym J 1992; 24: 451-7. http://dx.doi.org/10.1295/polymj.24.451 DOI: https://doi.org/10.1295/polymj.24.451

Li Y, Wang X, Ding M, Xu J. Effects of Molecular Structure on the Permeability and Permselectivity of Aromatic Polyimides. J Appl Polym Sci 1996; 61: 741-8. http://dx.doi.org/10.1002/(SICI)1097-4628(19960801)61:5<741::AID-APP4>3.0.CO;2-O DOI: https://doi.org/10.1002/(SICI)1097-4628(19960801)61:5<741::AID-APP4>3.0.CO;2-O

Hasegawa M, Sensui N, Shindo Y, Yokota R. Structure and Properties of Novel Asymmetric Biphenyl Type Polyimides. Homo- and Copolymers and Blends. Macromolecules 1999; 32: 387-96. http://dx.doi.org/10.1021/ma9808629 DOI: https://doi.org/10.1021/ma9808629

Hergenrother PM, Watson KA, Smith JG, Connell JW, Yokota R. Polyimides from 2,3,3',4'-Biphenyltetracarboxylic Dianhydride and Aromatic Diamines. Polymer 2002; 43: 5077-93. http://dx.doi.org/10.1016/S0032-3861(02)00362-2 DOI: https://doi.org/10.1016/S0032-3861(02)00362-2

Li Q, Fang X, Wang Z, Gao L, Ding M. Polyimides from Isomeric Oxydiphthalic Anhydrides. J Polym Sci Part A: Polym Chem 2003; 41: 3249-60. http://dx.doi.org/10.1002/pola.10918 DOI: https://doi.org/10.1002/pola.10918

Sasaki T, Moriuchi H, Yano S, Yokota R. High Thermal Stable Thermoplastic– Thermosetting Polyimide Film by use of Asymmetric Dianhydride (a-BPDA). Polymer 2005; 46: 6968-75. http://dx.doi.org/10.1016/j.polymer.2005.06.052 DOI: https://doi.org/10.1016/j.polymer.2005.06.052

Kim YH. Hyperbranched Polymers 10 Years After. J Polym Sci Part A Polym Chem 1998; 36: 1685-98. http://dx.doi.org/10.1002/(SICI)1099-0518(199808)36:11<1685::AID-POLA1>3.0.CO;2-R DOI: https://doi.org/10.1002/(SICI)1099-0518(199808)36:11<1685::AID-POLA1>3.0.CO;2-R

Gao C, Yan D. Hyperbranched Polymers: from Synthesis to Applications. Prog Polym Sci 2004; 29: 183-275. http://dx.doi.org/10.1016/j.progpolymsci.2003.12.002 DOI: https://doi.org/10.1016/j.progpolymsci.2003.12.002

Jikei M, Kakimoto M. Dendritic Aromatic Polyamides and Polyimides. J Polym Sci Part A Polym Chem 2004; 42: 1293-309. http://dx.doi.org/10.1002/pola.20018 DOI: https://doi.org/10.1002/pola.20018

Fang J, Kita H, Okamoto K. Hyperbranched Polyimides for Gas Separation Applications. 1. Synthesis and Characterization. Macromolecules 2000; 33: 4639-46. http://dx.doi.org/10.1021/ma9921293 DOI: https://doi.org/10.1021/ma9921293

Fang J, Kita H, Okamoto K. Gas Permeation Properties of Hyperbranched Polyimide Membranes. J Membr Sci 2001; 182: 245-56. http://dx.doi.org/10.1016/S0376-7388(00)00571-8 DOI: https://doi.org/10.1016/S0376-7388(00)00571-8

Suzuki T, Yamada Y. Synthesis and Gas Transport Properties of Novel Hyperbranched Polyimide–Silica Hybrid Membranes. J Appl Polym Sci 2013; 127: 316-22. http://dx.doi.org/10.1002/app.37893 DOI: https://doi.org/10.1002/app.37893

Kickelbick G, Eds. Hybrid Materials. Weinheim: Wiley-VCH Verlag GmbH & Co. KgaA 2007.

Zou H, Wu S, Shen J. Polymer/Silica Nanocomposites: Preparation, Characterization, Properties, and Applications. Chem Rev 2008; 108: 3893-957. http://dx.doi.org/10.1021/cr068035q DOI: https://doi.org/10.1021/cr068035q

Cornelius CJ, Marand E. Hybrid Silica-Polyimide Composite Membranes: Gas Transport Properties. J Membr Sci 2002; 202: 97-118. http://dx.doi.org/10.1016/S0376-7388(01)00734-7 DOI: https://doi.org/10.1016/S0376-7388(01)00734-7

Ragosta G, Musto P. Polyimide/silica hybrids via the sol-gel route: High performance materials for the new technological challenges. eXPRESS Polym Lett 2009; 3(7): 413-28. http://dx.doi.org/10.3144/expresspolymlett.2009.51 DOI: https://doi.org/10.3144/expresspolymlett.2009.51

Romero AI, Parentis ML, Habert AC, Gonzo EE. Synthesis of Polyetherimide/Silica Hybrid Membranes by the Sol–gel Process: Influence of the Reaction Conditions on the Membrane Properties. J Mater Sci 2011; 46: 4701-9. http://dx.doi.org/10.1007/s10853-011-5380-4 DOI: https://doi.org/10.1007/s10853-011-5380-4

Suzuki T, Yamada Y. Characterization of 6FDA-based Hyperbranched and Linear Polyimide-Silica Hybrid Membranes by Gas Permeation and 129XeNMR Measurements. J Polym Sci Part B Polym Phys 2006; 44: 291-8. http://dx.doi.org/10.1002/polb.20692 DOI: https://doi.org/10.1002/polb.20692

Suzuki T, Yamada Y, Sakai J. Gas Transport Properties of ODPA-TAPOB Hyperbranched Polyimide-Silica Hybrid Membranes. High Perform Polym 2006; 18: 655-64. http://dx.doi.org/10.1177/0954008306068228 DOI: https://doi.org/10.1177/0954008306068228

Suzuki T, Yamada Y. Effect of End Group Modification on Gas Transport Properties of 6FDA-TAPOB Hyperbranched Polyimide-Silica Hybrid Membranes. High Perform Polym 2007; 19: 553-64. http://dx.doi.org/10.1177/0954008307081197 DOI: https://doi.org/10.1177/0954008307081197

Suzuki T, Yamada Y. Physical and Gas Transport Properties of Novel Hyperbranched Polyimide-Silica Hybrid Membranes. Polymer Bulletin 2005; 53: 139-46. http://dx.doi.org/10.1007/s00289-004-0322-9 DOI: https://doi.org/10.1007/s00289-004-0322-9

Suzuki T, Yamada Y, Itahashi K. 6FDA-TAPOB Hyperbranched Polyimide-Silica Hybrids for Gas Separation Membranes. J Appl Polym Sci 2008; 109: 813-19. http://dx.doi.org/10.1002/app.28145 DOI: https://doi.org/10.1002/app.28145

Miki M, Suzuki T, Yamada Y. Structure-Property Relationships of Hyperbranched Polyimide-silica Hybrid Membranes with Different Degree of modification. J Appl Polym Sci 2013; 130: 54-62. http://dx.doi.org/10.1002/app.39011 DOI: https://doi.org/10.1002/app.39011

Miki M, Yamada Y. Structure-Gas Transport Property Relationships of Hyperbranched Polyimide-silica Hybrid Membranes. J Photopolym Technol 2013; 261(3): 319-26. http://dx.doi.org/10.2494/photopolymer.26.319 DOI: https://doi.org/10.2494/photopolymer.26.319

Takeichi T, Stille JK. Star and Linear Imide Oligomers Containing Reactive End Caps: Preparation and Thermal Properties. Macromolecules 1986; 19: 2093-102. http://dx.doi.org/10.1021/ma00162a001 DOI: https://doi.org/10.1021/ma00162a001

Van Krevelen DW. Properties of Polymers.3rd ed. Amsterdam: Elsevier 1990; p. 71-107.

Prabhakar RS, Freeman BD, Roman I. Gas and Vapor Sorption and Permeation in Poly(2,2,4-trifluoro-5-trifluoromethoxy-1,3-dioxole-co-tetrafluoroehylene). Macromolecules 2004; 37: 7688-97. http://dx.doi.org/10.1021/ma048909f DOI: https://doi.org/10.1021/ma048909f

Muruganandam N, Koros WJ, Paul DR. Gas Sorption and Transport in Substituted Polycarbonates. J Polym Sci Part B Polym Phys 1987; 25: 1999-2026. http://dx.doi.org/10.1002/polb.1987.090250917 DOI: https://doi.org/10.1002/polb.1987.090250917

Morisato A, Shen HC, Sankar SS, Freeman BD, Pinnau I, Casillas CG. Polymer Characterization and Gas Permeability of Poly(1-trimethylsilyl-1-propyne) [PTMSP], Poly(1-phenyl-1-propyne) [PPP], and PTMSP/PPP Blends. J Polym Sci Part B Polym Phys 1996; 34: 2209-22. http://dx.doi.org/10.1002/(SICI)1099-0488(19960930)34:13<2209::AID-POLB10>3.0.CO;2-9 DOI: https://doi.org/10.1002/(SICI)1099-0488(19960930)34:13<2209::AID-POLB10>3.0.CO;2-9

Weinkauf DH, Kim HD, Paul DR. Gas Transport Properties of Liquid Crystalline Poly (p-phenyleneterephthalamide). Macromolecules 1992; 25: 788-96. http://dx.doi.org/10.1021/ma00028a044 DOI: https://doi.org/10.1021/ma00028a044

Chen H, Yin J. Synthesis and Characterization of Hyperbranched Polyimides with Good Organosolubility and Thermal Properties Based on a New Triamine and Conventional Dianhydrides. J Polym Sci Part A Polym Chem 2002; 40: 3804-14. http://dx.doi.org/10.1002/pola.10475 DOI: https://doi.org/10.1002/pola.10475

Hibshman C, Cornelius CJ, Marand E. The Gas Separation Effects of Annealing Polyimide–Organosilicate Hybrid Membranes. J Membr Sci 2003; 211: 25-40. http://dx.doi.org/10.1016/S0376-7388(02)00306-X DOI: https://doi.org/10.1016/S0376-7388(02)00306-X

Tomokiyo N, Yamada Y, Suzuki T, Oku. Preparation and Characterization of Hyperbranched Polyimide-Colloidal Silica Hybrids. J Polym Prep Japan 2006; 55: 5175-76.

Park JY, Paul DR. Correlation and Prediction of Gas Permeability in Glassy Polymer Membrane Materials via a Modified Free Volume Based Group Contribution Method. J Membr Sci 1997; 125: 23-39. http://dx.doi.org/10.1016/S0376-7388(96)00061-0 DOI: https://doi.org/10.1016/S0376-7388(96)00061-0

Thran A, Kroll G, Faupel F. Correlation Between Fractional Free Volume and Diffusivity of Gas Molecules in Glassy Polymers. J Polym Sci Part B Polym Phys 1999; 37: 3344-58. http://dx.doi.org/10.1002/(SICI)1099-0488(19991201)37:23<3344::AID-POLB10>3.0.CO;2-A DOI: https://doi.org/10.1002/(SICI)1099-0488(19991201)37:23<3344::AID-POLB10>3.0.CO;2-A

Suzuki T, Yamada Y, Tsujita Y. Gas Transport Properties of 6FDA-TAPOB Hyperbranched Polyimide Membrane. Polymer 2004; 45: 7167-71. http://dx.doi.org/10.1016/j.polymer.2004.08.025 DOI: https://doi.org/10.1016/j.polymer.2004.08.025

Merkel TC, Freeman BD, Spontak RJ, He Z, Pinnau I, Meakin P, Hill AJ. Ultrapermeable, Reverse-Selective Nanocomposite Membranes. Science 2002; 296: 519-22. http://dx.doi.org/10.1126/science.1069580 DOI: https://doi.org/10.1126/science.1069580

Merkel TC, Toy LG, Andrady AL, Gracz H, Stejskal EO. Investigation of Enhanced Free Volume in Nanosilica-Filled Poly(1-trimethylsilyl-1-propyne) by 129Xe NMR Spectroscopy. Macromolecules 2003; 36: 353-8. http://dx.doi.org/10.1021/ma0256690 DOI: https://doi.org/10.1021/ma0256690

Andrady AL, Merkel TC, Toy LG. Effect of Particle Size on Gas Permeability of Filled Superglassy Polymers. Macromolecules 2004; 37: 4329-31. http://dx.doi.org/10.1021/ma049510u DOI: https://doi.org/10.1021/ma049510u

Dougnac VN, Peoples BC, Quijada R. The Effect of Nanospheres on the Permeability of PA6/SiO2 Nanocomposites. Polym Int 2011; 60: 1600-06. http://dx.doi.org/10.1002/pi.3125 DOI: https://doi.org/10.1002/pi.3125

Freeman BD. Basis of Permeability/Selectivity Tradeoff Relations in Polymeric Gas Separation Membranes. Macromolecules 1999; 32: 375-80. http://dx.doi.org/10.1021/ma9814548 DOI: https://doi.org/10.1021/ma9814548

Robeson LM. Correlation of Separation Factor versus Permeability for Polymeric Membranes. J. Membr. Sci. 1991; 62: 165-85. http://dx.doi.org/10.1016/0376-7388(91)80060-J DOI: https://doi.org/10.1016/0376-7388(91)80060-J

Robeson LM. The Upper Bound Revisited. J. Membr. Sci. 2008; 320: 390-400. http://dx.doi.org/10.1016/j.memsci.2008.04.030 DOI: https://doi.org/10.1016/j.memsci.2008.04.030

Downloads

Published

2013-11-30

How to Cite

Miki, M., Ishikawa, Y., Haraguchi, M., & Yamada, Y. (2013). Physical and Gas Transport Properties of Asymmetric Hyperbranched Polyimide-Silica Hybrid Membranes. Journal of Membrane and Separation Technology, 2(4), 219–230. https://doi.org/10.6000/1929-6037.2013.02.04.3

Issue

Section

Articles