Detailed Potentiometric Study of Al3+ and Cr3+ with Malic Acid in Aqueous Solutions

Authors

  • Yahia Z. Hamada Division of Natural and Mathematical Sciences, LeMoyne-Owen College, 807 Walker Avenue, Memphis, TN 38126, USA
  • Marcus Harris Division of Natural and Mathematical Sciences, LeMoyne-Owen College, 807 Walker Avenue, Memphis, TN 38126, USA
  • Kiva Burt Division of Natural and Mathematical Sciences, LeMoyne-Owen College, 807 Walker Avenue, Memphis, TN 38126, USA
  • Jasmine Greene Division of Natural and Mathematical Sciences, LeMoyne-Owen College, 807 Walker Avenue, Memphis, TN 38126, USA
  • Khalid Rosli Division of Natural and Mathematical Sciences, LeMoyne-Owen College, 807 Walker Avenue, Memphis, TN 38126, USA

DOI:

https://doi.org/10.6000/1929-6037.2013.02.04.2

Keywords:

Aqueous solutions, Dimeric species, Malic acid, Al3 , Cr3 , and Speciation diagrams

Abstract

It appeared that malic acid solubilized both Al3+ and Cr3+ in aqueous solutions at all pH-values in 0.1 M NaNO3 at 25 oC. The detailed potentiometric measurements indicated that these free tri-valent metal ions released a net of three protons (3H+’s) into the solution. Free malic acid released a net of (2H+’s) into the solution from the two carboxylates. However, in the presence of metal ions malic acid effectively releases a net of three protons (3H+’s) into the solution; two from the two carboxylates and the third from the alcoholic group. The reaction mixture of Al3+:malic acid indicated the formation of a dimeric species. The proposed structure of this dimeric species is in good agreement with what has been shown in the literature. We are presenting a dimeric species that may play an important role in malate transportation across cell membrane. Formation of the Al3+-malic acid complexes cover the span of a total of 400 mV; from +250 mV to -150 mV. The Cr3+-malic acid reaction mixture indicated the formation of a dimeric species as well.

References

Ganrot PO. Environ Health Perspect 1986; 65: 363-41. DOI: https://doi.org/10.2307/3430204

Huheey JE, Keiter EA, Keiter RL. Inorganic Chemistry, Principles of Structure and Reactivity, 4th ed. New York: Harper Collins Publishers 1993.

Cowan JA. In Fundamentals of Inorganic Biochemistry an introduction, New Jersey: Wiley-VCH Inc. Hoboken 1997.

Martin RB. Acc Chem Res 1994; 27: 204-10. http://dx.doi.org/10.1021/ar00043a004 DOI: https://doi.org/10.1021/ar00043a004

Harris WR, Berthon G, Day JP, Exley C, Flaten TP, Forbes WF, Kiss T, et al. J Toxicol Environ Health 1996; 48: 543-68. http://dx.doi.org/10.1080/009841096161069 DOI: https://doi.org/10.1080/009841096161069

McLachlan DRC, Lukiw WJ, Kruck TPA. Can J Neur Sci 1989; 16: 490-97. DOI: https://doi.org/10.1017/S0317167100029826

Harris WR, Wang Z, Hamada YZ. Inorg Chem 2003; 42: 3262-73. http://dx.doi.org/10.1021/ic026027w DOI: https://doi.org/10.1021/ic026027w

Parker DR. Aluminum Speciation. Reference Module in Earth Systems and Environmental Sciences. Encyclopedia of Soils in the Environment, Elsevier 2005; 50-56. DOI: https://doi.org/10.1016/B0-12-348530-4/00199-5

Hamada YZ, Harris WR. Inorg Chim Acta 2006; 359(4): 1135-46. http://dx.doi.org/10.1016/j.ica.2005.11.027 DOI: https://doi.org/10.1016/j.ica.2005.11.027

Motekaitis RJ, Sun Y, Martell AE. Inorg Chim Acta 1989; 159: 29-39. http://dx.doi.org/10.1016/S0020-1693(00)80892-0 DOI: https://doi.org/10.1016/S0020-1693(00)80892-0

Ma R, Motekaitis RJ, Martell AE. Inorg Chim Acta 1995; 233: 137-43. http://dx.doi.org/10.1016/0020-1693(94)04398-F DOI: https://doi.org/10.1016/0020-1693(94)04398-F

Martell AE, Smith RM, Motekaitis RJ. Critical Stability Constants Database, Version 6.0, NIST, Texas A & M University, College Station, TX, USA 2001.

Hamada YZ, Harris WR. Syn Reac Inorg Metal-Org Chem 2010; 40(1): 45-50. DOI: https://doi.org/10.1080/15533170903492861

Yamaguch M, Sasaki T, Sivaguru M, Yamamoto Y, Osawa H, Ju AS, Matsumoto H. Plant Cell Physiol 2005; 46(5): 812-16. http://dx.doi.org/10.1093/pcp/pci083 DOI: https://doi.org/10.1093/pcp/pci083

Furukawa J, Yamaji N, Wang H, Mitani N, Murata Y, Sato K, et al. Plant Cell Physiol 2007; 48(8): 1081-91. http://dx.doi.org/10.1093/pcp/pcm091 DOI: https://doi.org/10.1093/pcp/pcm091

Hamada YZ, Carlson B, Dangberg J. Syn Reac Inorg Met-Org Nano-Met Chem 2005; 35(5): 515-22. http://dx.doi.org/10.1080/15533170500198887 DOI: https://doi.org/10.1080/15533170500198887

Kiss T, Sovago I, Martin BR, Pursiainen J. J Inorg Biochem 1994; 55: 53-65. http://dx.doi.org/10.1016/0162-0134(94)85132-8 DOI: https://doi.org/10.1016/0162-0134(94)85132-8

Kramer JR, Gleed J, Gracey K. Analytica Chimica Acta 1994; 284(3): 599-604. http://dx.doi.org/10.1016/0003-2670(94)85065-8 DOI: https://doi.org/10.1016/0003-2670(94)85065-8

Manzurola E, Apelblat A, Markovits G, Levy O. J Chem Soc Farady Trans 1989; 85(2): 373-79. http://dx.doi.org/10.1039/f19898500373 DOI: https://doi.org/10.1039/f19898500373

Alderighi L, Gans P, Ienco A, Perters D, Sabatini A, Vacca A. Coord Chem Rev 1999; 184: 311-18. http://dx.doi.org/10.1016/S0010-8545(98)00260-4 DOI: https://doi.org/10.1016/S0010-8545(98)00260-4

Sweeton FH, Mesmer RE, Baes Jr. CF. J Sol Chem 1974; 3: 191-14. http://dx.doi.org/10.1007/BF00645633 DOI: https://doi.org/10.1007/BF00645633

Hamada YZ, Carlaon BL, Shank JT. Syn Reac Inorg Metal-Org Chem 2003; 33(8): 1425-40. http://dx.doi.org/10.1081/SIM-120024320 DOI: https://doi.org/10.1081/SIM-120024320

Bobtelsky M, Jordan J. J Am Chem Soc 1947; 69: 2286-90. http://dx.doi.org/10.1021/ja01202a014 DOI: https://doi.org/10.1021/ja01202a014

Spiro TG, Pape L, Saltman P. J Am Chem Soc 1967; 89: 5555-59. http://dx.doi.org/10.1021/ja00998a008 DOI: https://doi.org/10.1021/ja00998a008

Spiro TG, Bates G, Saltman P. J Am Chem Soc 1967; 89: 5559-62. http://dx.doi.org/10.1021/ja00998a009 DOI: https://doi.org/10.1021/ja00998a009

Lippard S, Shweky I, Bino A, Goldberg DP. Inorg Chem 1994; 33: 5161-62. http://dx.doi.org/10.1021/ic00101a001 DOI: https://doi.org/10.1021/ic00101a001

Kettle SFA. Physical Inorganic Chemistry, A Coordination Chemistry Approach, Spektrum. University Science Book, Sausalito, CA 1996.

Hamada YZ, Holyfield H, Rosli K, Burkey TJ. Coord Chem 2009; 62(5): 721-33. http://dx.doi.org/10.1080/00958970802353660 DOI: https://doi.org/10.1080/00958970802353660

The hydrolysis of cations. Baes CF, Mesmer RE. New York: Wiley and Sons 1967.

Hamada YZ, Bayakly N, Peipho A, Carlson B. Syn Reac Inorg Met-Org Nano-Met Chem 2006; 36: 469-76. http://dx.doi.org/10.1080/15533170600777960 DOI: https://doi.org/10.1080/15533170600777960

Skoog DA, West DM, Holler FJ, Crouch SR. Fundamentals of Analytical Chemistry, 8th ed. Brooks-Cole/Thomson, Belmont, CA 2004.

Kaliva M, Giannadaki T, Salifoglou A, Raptopoulou CP, Terzis A, Tangoulis V. Inorg Chem 2001; 40(15): 3711-18. http://dx.doi.org/10.1021/ic000894o DOI: https://doi.org/10.1021/ic000894o

Unruh DK, Gojdas, K, Flores E, Libo, A, Forbes TZ. Inorg Chem 2013; 52(17): 10191-98. http://dx.doi.org/10.1021/ic401705j DOI: https://doi.org/10.1021/ic401705j

Kotsakis N, Raptopoulou CP, Tangoulis V, Terzis A, Giapintzakis J, Jakusch T, et al. Inorg Chem 2003; 42(1): 22-31. http://dx.doi.org/10.1021/ic011272l DOI: https://doi.org/10.1021/ic011272l

Kaliva M, Raptopoulou CP, Terzis A, Salifoglou A. Inorg Chem 2004; 43(9): 2895-905. http://dx.doi.org/10.1021/ic034283i DOI: https://doi.org/10.1021/ic034283i

Markovits G, Klotz P, Newman L. Inorg Chem 1972; 11(10): 2405-408. http://dx.doi.org/10.1021/ic50116a023 DOI: https://doi.org/10.1021/ic50116a023

Published

2013-11-30

How to Cite

Hamada, Y. Z., Harris, M., Burt, K., Greene, J., & Rosli, K. (2013). Detailed Potentiometric Study of Al3+ and Cr3+ with Malic Acid in Aqueous Solutions . Journal of Membrane and Separation Technology, 2(4), 213–218. https://doi.org/10.6000/1929-6037.2013.02.04.2

Issue

Section

Articles