Detailed Potentiometric Study of Al3+ and Cr3+ with Malic Acid in Aqueous Solutions
DOI:
https://doi.org/10.6000/1929-6037.2013.02.04.2Keywords:
Aqueous solutions, Dimeric species, Malic acid, Al3 , Cr3 , and Speciation diagramsAbstract
It appeared that malic acid solubilized both Al3+ and Cr3+ in aqueous solutions at all pH-values in 0.1 M NaNO3 at 25 oC. The detailed potentiometric measurements indicated that these free tri-valent metal ions released a net of three protons (3H+’s) into the solution. Free malic acid released a net of (2H+’s) into the solution from the two carboxylates. However, in the presence of metal ions malic acid effectively releases a net of three protons (3H+’s) into the solution; two from the two carboxylates and the third from the alcoholic group. The reaction mixture of Al3+:malic acid indicated the formation of a dimeric species. The proposed structure of this dimeric species is in good agreement with what has been shown in the literature. We are presenting a dimeric species that may play an important role in malate transportation across cell membrane. Formation of the Al3+-malic acid complexes cover the span of a total of 400 mV; from +250 mV to -150 mV. The Cr3+-malic acid reaction mixture indicated the formation of a dimeric species as well.
References
Ganrot PO. Environ Health Perspect 1986; 65: 363-41. DOI: https://doi.org/10.2307/3430204
Huheey JE, Keiter EA, Keiter RL. Inorganic Chemistry, Principles of Structure and Reactivity, 4th ed. New York: Harper Collins Publishers 1993.
Cowan JA. In Fundamentals of Inorganic Biochemistry an introduction, New Jersey: Wiley-VCH Inc. Hoboken 1997.
Martin RB. Acc Chem Res 1994; 27: 204-10. http://dx.doi.org/10.1021/ar00043a004 DOI: https://doi.org/10.1021/ar00043a004
Harris WR, Berthon G, Day JP, Exley C, Flaten TP, Forbes WF, Kiss T, et al. J Toxicol Environ Health 1996; 48: 543-68. http://dx.doi.org/10.1080/009841096161069 DOI: https://doi.org/10.1080/009841096161069
McLachlan DRC, Lukiw WJ, Kruck TPA. Can J Neur Sci 1989; 16: 490-97. DOI: https://doi.org/10.1017/S0317167100029826
Harris WR, Wang Z, Hamada YZ. Inorg Chem 2003; 42: 3262-73. http://dx.doi.org/10.1021/ic026027w DOI: https://doi.org/10.1021/ic026027w
Parker DR. Aluminum Speciation. Reference Module in Earth Systems and Environmental Sciences. Encyclopedia of Soils in the Environment, Elsevier 2005; 50-56. DOI: https://doi.org/10.1016/B0-12-348530-4/00199-5
Hamada YZ, Harris WR. Inorg Chim Acta 2006; 359(4): 1135-46. http://dx.doi.org/10.1016/j.ica.2005.11.027 DOI: https://doi.org/10.1016/j.ica.2005.11.027
Motekaitis RJ, Sun Y, Martell AE. Inorg Chim Acta 1989; 159: 29-39. http://dx.doi.org/10.1016/S0020-1693(00)80892-0 DOI: https://doi.org/10.1016/S0020-1693(00)80892-0
Ma R, Motekaitis RJ, Martell AE. Inorg Chim Acta 1995; 233: 137-43. http://dx.doi.org/10.1016/0020-1693(94)04398-F DOI: https://doi.org/10.1016/0020-1693(94)04398-F
Martell AE, Smith RM, Motekaitis RJ. Critical Stability Constants Database, Version 6.0, NIST, Texas A & M University, College Station, TX, USA 2001.
Hamada YZ, Harris WR. Syn Reac Inorg Metal-Org Chem 2010; 40(1): 45-50. DOI: https://doi.org/10.1080/15533170903492861
Yamaguch M, Sasaki T, Sivaguru M, Yamamoto Y, Osawa H, Ju AS, Matsumoto H. Plant Cell Physiol 2005; 46(5): 812-16. http://dx.doi.org/10.1093/pcp/pci083 DOI: https://doi.org/10.1093/pcp/pci083
Furukawa J, Yamaji N, Wang H, Mitani N, Murata Y, Sato K, et al. Plant Cell Physiol 2007; 48(8): 1081-91. http://dx.doi.org/10.1093/pcp/pcm091 DOI: https://doi.org/10.1093/pcp/pcm091
Hamada YZ, Carlson B, Dangberg J. Syn Reac Inorg Met-Org Nano-Met Chem 2005; 35(5): 515-22. http://dx.doi.org/10.1080/15533170500198887 DOI: https://doi.org/10.1080/15533170500198887
Kiss T, Sovago I, Martin BR, Pursiainen J. J Inorg Biochem 1994; 55: 53-65. http://dx.doi.org/10.1016/0162-0134(94)85132-8 DOI: https://doi.org/10.1016/0162-0134(94)85132-8
Kramer JR, Gleed J, Gracey K. Analytica Chimica Acta 1994; 284(3): 599-604. http://dx.doi.org/10.1016/0003-2670(94)85065-8 DOI: https://doi.org/10.1016/0003-2670(94)85065-8
Manzurola E, Apelblat A, Markovits G, Levy O. J Chem Soc Farady Trans 1989; 85(2): 373-79. http://dx.doi.org/10.1039/f19898500373 DOI: https://doi.org/10.1039/f19898500373
Alderighi L, Gans P, Ienco A, Perters D, Sabatini A, Vacca A. Coord Chem Rev 1999; 184: 311-18. http://dx.doi.org/10.1016/S0010-8545(98)00260-4 DOI: https://doi.org/10.1016/S0010-8545(98)00260-4
Sweeton FH, Mesmer RE, Baes Jr. CF. J Sol Chem 1974; 3: 191-14. http://dx.doi.org/10.1007/BF00645633 DOI: https://doi.org/10.1007/BF00645633
Hamada YZ, Carlaon BL, Shank JT. Syn Reac Inorg Metal-Org Chem 2003; 33(8): 1425-40. http://dx.doi.org/10.1081/SIM-120024320 DOI: https://doi.org/10.1081/SIM-120024320
Bobtelsky M, Jordan J. J Am Chem Soc 1947; 69: 2286-90. http://dx.doi.org/10.1021/ja01202a014 DOI: https://doi.org/10.1021/ja01202a014
Spiro TG, Pape L, Saltman P. J Am Chem Soc 1967; 89: 5555-59. http://dx.doi.org/10.1021/ja00998a008 DOI: https://doi.org/10.1021/ja00998a008
Spiro TG, Bates G, Saltman P. J Am Chem Soc 1967; 89: 5559-62. http://dx.doi.org/10.1021/ja00998a009 DOI: https://doi.org/10.1021/ja00998a009
Lippard S, Shweky I, Bino A, Goldberg DP. Inorg Chem 1994; 33: 5161-62. http://dx.doi.org/10.1021/ic00101a001 DOI: https://doi.org/10.1021/ic00101a001
Kettle SFA. Physical Inorganic Chemistry, A Coordination Chemistry Approach, Spektrum. University Science Book, Sausalito, CA 1996.
Hamada YZ, Holyfield H, Rosli K, Burkey TJ. Coord Chem 2009; 62(5): 721-33. http://dx.doi.org/10.1080/00958970802353660 DOI: https://doi.org/10.1080/00958970802353660
The hydrolysis of cations. Baes CF, Mesmer RE. New York: Wiley and Sons 1967.
Hamada YZ, Bayakly N, Peipho A, Carlson B. Syn Reac Inorg Met-Org Nano-Met Chem 2006; 36: 469-76. http://dx.doi.org/10.1080/15533170600777960 DOI: https://doi.org/10.1080/15533170600777960
Skoog DA, West DM, Holler FJ, Crouch SR. Fundamentals of Analytical Chemistry, 8th ed. Brooks-Cole/Thomson, Belmont, CA 2004.
Kaliva M, Giannadaki T, Salifoglou A, Raptopoulou CP, Terzis A, Tangoulis V. Inorg Chem 2001; 40(15): 3711-18. http://dx.doi.org/10.1021/ic000894o DOI: https://doi.org/10.1021/ic000894o
Unruh DK, Gojdas, K, Flores E, Libo, A, Forbes TZ. Inorg Chem 2013; 52(17): 10191-98. http://dx.doi.org/10.1021/ic401705j DOI: https://doi.org/10.1021/ic401705j
Kotsakis N, Raptopoulou CP, Tangoulis V, Terzis A, Giapintzakis J, Jakusch T, et al. Inorg Chem 2003; 42(1): 22-31. http://dx.doi.org/10.1021/ic011272l DOI: https://doi.org/10.1021/ic011272l
Kaliva M, Raptopoulou CP, Terzis A, Salifoglou A. Inorg Chem 2004; 43(9): 2895-905. http://dx.doi.org/10.1021/ic034283i DOI: https://doi.org/10.1021/ic034283i
Markovits G, Klotz P, Newman L. Inorg Chem 1972; 11(10): 2405-408. http://dx.doi.org/10.1021/ic50116a023 DOI: https://doi.org/10.1021/ic50116a023
Published
How to Cite
Issue
Section
License
Policy for Journals/Articles with Open Access
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work
Policy for Journals / Manuscript with Paid Access
Authors who publish with this journal agree to the following terms:
- Publisher retain copyright .
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work .