Investigation of the Acid Strength Effects on Bipolar Membrane Electrodialysis

Authors

  • Jülide Erkmen Chemical Engineering Department, Engineering Faculty, Kafkas University, Kars 36300, Turkey
  • Sinan Yapici Chemical Engineering Department, Engineering Faculty, Atatürk University, Erzurum 25240, Turkey

DOI:

https://doi.org/10.6000/1929-6037.2014.03.03.3

Keywords:

Bipolar Membrane, Ion Migration, Current, Acid Strength

Abstract

The purpose of this paper is to investigate acid strength effects on the same system for production of two different acids. Production of two different acids from their salts was carried out by electro dialysis (ED) using bipolar membranes (BPM). An virulent acid hydrofluoric acid and an weak acid boric acid were produced, all data were recorded and compared. Result of the study, in electro dialysis of acids and base, acid strength play an important role in terms of the efficiency of the process. Current efficiency was calculated very high at all processes for this electro dialysis (EDBM) system. This results in a growing demand for alternative process solutions such as Electro dialysis with Bipolar Membranes (EDBM).

References

Bauer B, Gerner FJ, Strathmann H. Development of bipolar membranes. Desalination 1988; 68: 279-292. http://dx.doi.org/10.1016/0011-9164(88)80061-4 DOI: https://doi.org/10.1016/0011-9164(88)80061-4

Bailly M. Production of organic acids by bipolar electrodialysis: Realizations And Perspectives. Desalination 2002; 144: 157-162. http://dx.doi.org/10.1016/S0011-9164(02)00305-3

Roux-de Balmann H, Bailly M, Lutin F, Aimar P. Modelling of the conversion of weak organic acids by bipolar membrane electro dialysis. Desalination 2002; 149: 399-404. http://dx.doi.org/10.1016/S0011-9164(02)00863-9 DOI: https://doi.org/10.1016/S0011-9164(02)00863-9

Wang Y, Huang C, Xu T. Which is more competitive for production of organic acids, ion-exchange or electrodialysis with bipolar membranes? J Membr Sci 2011; 374: 150-156. http://dx.doi.org/10.1016/j.memsci.2011.03.026 DOI: https://doi.org/10.1016/j.memsci.2011.03.026

Wang Y, Zhang X, Xu T. Integration of conventional electro dialysis and Electro dialysis with bipolar membranes for production of organic acids. J Membr Sci 2010; 365: 294-301. http://dx.doi.org/10.1016/j.memsci.2010.09.018 DOI: https://doi.org/10.1016/j.memsci.2010.09.018

Wang X, Wang Y, Zhang X, Xu T. Insitu combination of fermentation and electro dialysis with bipolar membranes for the production of lactic acid: operational compatibility and uniformity. Bioresour Technol 2012; 125: 165-171. http://dx.doi.org/10.1016/j.biortech.2012.08.125 DOI: https://doi.org/10.1016/j.biortech.2012.08.125

Novalic S, Okwor J, Kulbe KD. The Characteristics of Citric acid separation using electrodialysis with bipolar membranes. Desalination 1996; 105: 277-282. http://dx.doi.org/10.1016/0011-9164(96)00083-5 DOI: https://doi.org/10.1016/0011-9164(96)00083-5

Pinacci P, Radaelli M. Recovery of citric acid from fermentation broths by Electro dialysis with bipolar membranes. Desalination 2002; 148: 177-179. http://dx.doi.org/10.1016/S0011-9164(02)00674-4 DOI: https://doi.org/10.1016/S0011-9164(02)00674-4

Tongwen X, Weihua Y. Citric acid production by electro dialysis with bipolar membranes. Chem Eng Process 2002; 41: 519-524. http://dx.doi.org/10.1016/S0255-2701(01)00175-1 DOI: https://doi.org/10.1016/S0255-2701(01)00175-1

Tongwen X, Weihua Y. Effect of cell configurations on the performance of citric acid production by a bipolar membrane electro dialysis. J Membr Sci 2002; 203: 145-153. http://dx.doi.org/10.1016/S0376-7388(01)00795-5 DOI: https://doi.org/10.1016/S0376-7388(01)00795-5

Yu L, Guo Q, Hao J, Jiang W. Recovery of acetic acid from dilute waste water by means of bipolar membrane electrodialysis. Desalination 2000; 129: 283-288. http://dx.doi.org/10.1016/S0011-9164(00)00068-0

Zhang X, Li C, Wang Y, Luo J, Xu T. Recovery of acetic acid from simulated Acetaldehyde waste waters: bipolar membrane electro dialysis process sand membrane selection. J Membr Sci 2011; 379: 184-190. http://dx.doi.org/10.1016/j.memsci.2011.05.059 DOI: https://doi.org/10.1016/j.memsci.2011.05.059

Ali MAB, Rakib M, Laborie S, Viers P, Durand G. Coupling of bipolar membrane electrodialysis and ammonia stripping for direct treatment of Waste waters containing ammonium nitrate. J Membr Sci 2004; 244: 89-96. http://dx.doi.org/10.1016/j.memsci.2004.07.007 DOI: https://doi.org/10.1016/j.memsci.2004.07.007

Wei Y, Wang Y, Zhang X, Xu T. Treatment of simulated brominate dbutyl rubber waste water by bipolar membrane electrodialysis. Sep Purif Technol 2011; 80: 196-201. http://dx.doi.org/10.1016/j.seppur.2011.04.003 DOI: https://doi.org/10.1016/j.seppur.2011.04.003

Badruzzaman M, Oppenheimer J, Adham S, Kumar M. Innovative beneficial reuse of reverse osmosis concentrate using bipolar membrane electro dialysis and electro chlorination processes. J Membr Sci 2009; 326: 392-399. http://dx.doi.org/10.1016/j.memsci.2008.10.018 DOI: https://doi.org/10.1016/j.memsci.2008.10.018

Lameloise M-L, Lewandowski R. Recovering L-malic acid from a beverage industry waste water: experimental study of

the conversion stage using bipolar membrane electro dialysis. J Membr Sci 2012; 403-404: 196-202. http://dx.doi.org/10.1016/j.memsci.2012.02.053 DOI: https://doi.org/10.1016/j.memsci.2012.02.053

Iizuka A, Hashimoto K, Nagasawa H, Kumagai K, Yanagisawa Y, Yamasaki A. Carbon dioxide recovery from carbonate solutions using bipolar membrane electro dialysis. Sep Purif Technol 2012; 101: 49-59. http://dx.doi.org/10.1016/j.seppur.2012.09.016 DOI: https://doi.org/10.1016/j.seppur.2012.09.016

Vera E, Sandeaux J, Persin F, Pourcelly G, Dornier M, Ruales J. Deacidification Of passion fruit juice by electrodialysis with bipolar membrane after different pretreatments. J Food Eng 2009; 90: 67-73. http://dx.doi.org/10.1016/j.jfoodeng.2008.06.003 DOI: https://doi.org/10.1016/j.jfoodeng.2008.06.003

Quoc AL, Mondor M, Lamarche F, Makhlouf J. Optimization of electrodialysis with bipolar membranes applied to cloudy apple juice: minimization of malic acid and sugar losses. Innov Food Sci Emerg Technol 2011; 12: 45-49. http://dx.doi.org/10.1016/j.ifset.2010.12.007 DOI: https://doi.org/10.1016/j.ifset.2010.12.007

Trivedi GS, Shan BG, Adhikary SK, Indusekhar VK, Rangarajan R. Studies on bipolar membranes part II: conversion of sodium acetate to acetic acid and sodium hydroxide. React Funct Polym 1997; 32: 209-215. http://dx.doi.org/10.1016/S1381-5148(96)00088-0 DOI: https://doi.org/10.1016/S1381-5148(96)00088-0

Novalic S, Kongbangkerd T, Kulbe KD. Separation of gluconate with conventional and bipolar electrodialysis. Desalination 1997; 114: 45-50. http://dx.doi.org/10.1016/S0011-9164(97)00153-7 DOI: https://doi.org/10.1016/S0011-9164(97)00153-7

Bailly M. Production of organic acids by bipolar electrodialysis: realizations and perspectives Desalination 2002; 144: 157-162. http://dx.doi.org/10.1016/S0011-9164(02)00305-3 DOI: https://doi.org/10.1016/S0011-9164(02)00305-3

Trivedi GS, Shah BG, Adhikary SK, Rangarajan R. Studies on bipolar membranes part III: conversion of sodium phosphate to phosphoric acid and sodium hydroxide. React Funct Polym 1999; 39: 91-97. http://dx.doi.org/10.1016/S1381-5148(97)00159-4 DOI: https://doi.org/10.1016/S1381-5148(97)00159-4

Luo GS, Pan S, Liu JG. Use of the electrodialysis process to concentrate a formic acid solution. Desalination 2002; 150: 227-234. http://dx.doi.org/10.1016/S0011-9164(02)00978-5 DOI: https://doi.org/10.1016/S0011-9164(02)00978-5

Nagarale RK, Gohil GS, Shahi VK, Trivedi GS, Thampy SK, Rangarajan R. Studies on transport properties of short chain aliphatic carboxylic acids in electrodialytic separation. Desalination 2005; 171(2): 195-204. http://dx.doi.org/10.1016/j.desal.2004.06.190 DOI: https://doi.org/10.1016/j.desal.2004.06.190

Jaime Ferrer JS, Laborie S, Durand G, Rakib M. Formic acid regeneration by electromembrane processes. J Membr Sci 2006; 280: 509-516. http://dx.doi.org/10.1016/j.memsci.2006.02.012 DOI: https://doi.org/10.1016/j.memsci.2006.02.012

Lixin Y, Qinfeng G, Jihua H, Weijun J. Recovery of acetic acid from dilute wastewater by means of bipolar membrane electrodialysis. Desalination 2000; 129: 283-288. http://dx.doi.org/10.1016/S0011-9164(00)00068-0 DOI: https://doi.org/10.1016/S0011-9164(00)00068-0

Bailly M, Roux-de Balmann H, Aimar P, Lutin F, Cheryan M. Production processes of fermented organic acids targeted around membrane operations: design of the concentration step by conventional electrodialysis. J Membr Sci 2001; 191: 129-142. http://dx.doi.org/10.1016/S0376-7388(01)00459-8 DOI: https://doi.org/10.1016/S0376-7388(01)00459-8

Strathmann H, Bauer B, Rapp HJ. Better bipolar membranes. Chemtech 1993; 17-24.

Jaime-Ferrer JS, Couallier E, Viers Ph, Durand G, Rakib M. Three-compartment bipolar membrane electrodialysis for splitting of sodium formate into formic acid and sodium hydroxide: Role of diffusion of molecular acid. J Membr Sci 2008; 325: 528-536. http://dx.doi.org/10.1016/j.memsci.2008.07.059 DOI: https://doi.org/10.1016/j.memsci.2008.07.059

Alcaraz A, Ramírez P, Manzanares JA, Mafé S. Conductive andv Capacitive Properties of the Bipolar Membrane Junction Studied by AC Impedance Spectroscopy. J Phys Chem 2001; 105(47): 11669-11677. http://dx.doi.org/10.1021/jp011581x DOI: https://doi.org/10.1021/jp011581x

Strathmann H. Electrodialytic Membrane Processes and Their Practical Application, Studies in Environmental Science 59. Environmental Oriented Electrochemistry, C.A.C. Sequeira (Ed.), Elsevier Science, Amsterdam 1994; pp. 495-533. DOI: https://doi.org/10.1016/S0166-1116(08)70563-6

Kattan Readi OM, Kuenen HJ, Zwijnenberg HJ, Nijmeijer K. Novel membrane concept for internal pH control in electrodialysis of amino acids using a segmented bipolar membrane (sBPM). J Membr Sci 2013; 443: 219-226. http://dx.doi.org/10.1016/j.memsci.2013.04.045 DOI: https://doi.org/10.1016/j.memsci.2013.04.045

Downloads

Published

2014-08-29

How to Cite

Erkmen, J., & Yapici, S. (2014). Investigation of the Acid Strength Effects on Bipolar Membrane Electrodialysis. Journal of Membrane and Separation Technology, 3(3), 127–133. https://doi.org/10.6000/1929-6037.2014.03.03.3

Issue

Section

Articles