Heparin-Mimicking Polymer Modified Polyethersulfone Membranes - A Mini Review

Authors

  • Tao Xiang College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
  • Chong Cheng College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
  • Changsheng Zhao National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China

DOI:

https://doi.org/10.6000/1929-6037.2014.03.03.7

Keywords:

Heparin-mimicking, polyethersulfone, blood compatibility, blending, coating.

Abstract

Recent studies on the modification of polyethersulfone (PES) membranes using heparin-mimicking polymers are reviewed. The general conception of heparin-mimicking polymersis defined as the syntheticpolymers (including the biopolymer derivates and synthetic sulfated artificial polymers) with similar biologically functionalities as heparin, such as the anticoagulant, growth factor binding, and also disease mediation. In the review, heparin-mimicking polymers is briefly reviewed; then heparin-mimicking polymer modified PES membranes, including blended, coated, and grafted membranes are discussed respectively.

References

Zhao CS, Liu T, Liu ZB, Cheng LP, Huang J. An evaluation of a polyethersulfone hollow fiber plasma separator by animal experiment. Artif Organs 2001; 25: 60-3. DOI: https://doi.org/10.1111/j.1525-1594.2001.6655-2.x

Tullis RH, Duffin RP, Zech M, Ambrus JL. Affinity hemodialysis for antiviral therapy. I. Removal of HIV‐1 from

cell culture supernatants, plasma, and blood. Ther Apher 2002; 6: 213-20. http://dx.doi.org/10.1046/j.1526-0968.2002.00407.x DOI: https://doi.org/10.1046/j.1526-0968.2002.00407.x

Samtleben W, Dengler C, Reinhardt B, Nothdurft A, Lemke H-D. Comparison of the new polyethersulfone high-flux membrane DIAPES® HF800 with conventional high-flux membranes during on-line haemodiafiltration. Nephrol Dial Transpl 2003; 18: 2382-6. http://dx.doi.org/10.1093/ndt/gfg410 DOI: https://doi.org/10.1093/ndt/gfg410

Werner C, Jacobasch H-J, Reichelt G. Surface characterization of hemodialysis membranes based on streaming potential measurements. J Biomater Sci, Polym Ed 1996; 7: 61-76. http://dx.doi.org/10.1163/156856295X00832 DOI: https://doi.org/10.1163/156856295X00832

Liu ZB, Deng XP, Wang M, Chen JX, Zhang AM, Gu ZW, et al. BSA-modified polyethersulfone membrane: preparation, characterization and biocompatibility. J Biomater Sci, Polym Ed 2009; 20: 377-97. http://dx.doi.org/10.1163/156856209X412227 DOI: https://doi.org/10.1163/156856209X412227

Pinnau I, Freeman BD. Formation and modification of polymeric membranes: overview: ACS Symposium Series 2000. 1-22 p. DOI: https://doi.org/10.1021/bk-2000-0744.ch001

Van der Bruggen B. Chemical modification of polyethersulfone nanofiltration membranes: a review. J Appl Polym Sci 2009; 114: 630-42. http://dx.doi.org/10.1002/app.30578 DOI: https://doi.org/10.1002/app.30578

Zhao CS, Xue JM, Ran F, Sun SD. Modification of polyethersulfone membranes-A review of methods. Prog Mater Sci 2013; 58: 76-150. http://dx.doi.org/10.1016/j.pmatsci.2012.07.002 DOI: https://doi.org/10.1016/j.pmatsci.2012.07.002

Tamada Y, Murata M, Hayashi T, Goto K. Anticoagulant mechanism of sulfonated polyisoprenes. Biomaterials 2002; 23: 1375-82. http://dx.doi.org/10.1016/S0142-9612(01)00258-7 DOI: https://doi.org/10.1016/S0142-9612(01)00258-7

Tamada Y, Murata M, Makino K, Yoshida Y, Yoshida T, Hayashi T. Anticoagulant effects of sulphonated polyisoprenes. Biomaterials 1998; 19: 745-50. http://dx.doi.org/10.1016/S0142-9612(97)00207-X DOI: https://doi.org/10.1016/S0142-9612(97)00207-X

Silver JH, Hart AP, Williams EC, Cooper SL, Charef S, Labarre D, et al. Anticoagulant effects of sulphonated polyurethanes. Biomaterials 1992; 13: 339-44. http://dx.doi.org/10.1016/0142-9612(92)90037-O DOI: https://doi.org/10.1016/0142-9612(92)90037-O

Meddahi A, Benoit J, Ayoub N, Sézeur A, Barritault D. Heparin‐like polymers derived from dextran enhance colonic anastomosis resistance to leakage. J Biomed Mater Res 1996; 31: 293-7. http://dx.doi.org/10.1002/(SICI)1097-4636(199607)31:3<293::AID-JBM1>3.0.CO;2-H DOI: https://doi.org/10.1002/(SICI)1097-4636(199607)31:3<293::AID-JBM1>3.0.CO;2-H

Meddahi A, Alexakis C, Papy D, Caruelle JP, Barritault D. Heparin‐like polymer improved healing of gastric and colic ulceration. J Biomed Mater Res 2002; 60: 497-501. http://dx.doi.org/10.1002/jbm.1293 DOI: https://doi.org/10.1002/jbm.1293

Baumann R, Rys P. Metachromatic activity of β-cyclodextrin sulfates as heparin mimics. Int J Biol Macromol 1999; 24: 15-8. http://dx.doi.org/10.1016/S0141-8130(98)00058-0 DOI: https://doi.org/10.1016/S0141-8130(98)00058-0

Bentolila A, Vlodavsky I, Haloun C, Domb AJ. Synthesis and heparin‐like biological activity of amino acid‐based polymers. Polym Adv Technol 2000; 11: 377-87. http://dx.doi.org/10.1002/1099-1581(200008/12)11:8/12<377::AID-PAT985>3.0.CO;2-D DOI: https://doi.org/10.1002/1099-1581(200008/12)11:8/12<377::AID-PAT985>3.3.CO;2-4

de Paz JL, Angulo J, Lassaletta JM, Nieto PM, Redondo‐Horcajo M, Lozano RM, et al. The activation of fibroblast growth factors by heparin: synthesis, structure, and biological activity of heparin‐like oligosaccharides. ChemBioChem 2001; 2: 673-85. http://dx.doi.org/10.1002/1439-7633(20010903)2:9<673::AID-CBIC673>3.0.CO;2-7 DOI: https://doi.org/10.1002/1439-7633(20010903)2:9<673::AID-CBIC673>3.0.CO;2-7

Ojeda R, de Paz J-L, Martín-Lomas M. Synthesis of heparin-like oligosaccharides on a soluble polymer support. Chem Commun 2003; 2486-7. http://dx.doi.org/10.1039/b307259b DOI: https://doi.org/10.1039/B307259B

Polat T, Wong C-H. Anomeric reactivity-based one-pot synthesis of heparin-like oligosaccharides. J Am Chem Soc 2007; 129: 12795-800. http://dx.doi.org/10.1021/ja073098r DOI: https://doi.org/10.1021/ja073098r

Hansen SU, Miller GJ, Cole C, Rushton G, Avizienyte E, Jayson GC, et al. Tetrasaccharide iteration synthesis of a heparin-like dodecasaccharide and radiolabelling for in vivo tissue distribution studies. Nat Commun 2013; 4. DOI: https://doi.org/10.1038/ncomms3016

Miller GJ, Hansen SU, Avizienyte E, Rushton G, Cole C, Jayson GC, et al. Efficient chemical synthesis of heparin-like octa-, deca-and dodecasaccharides and inhibition of FGF2-and VEGF 165-mediated endothelial cell functions. Chem Sci 2013; 4: 3218-22. http://dx.doi.org/10.1039/c3sc51217g DOI: https://doi.org/10.1039/c3sc51217g

Pereira MS, Mulloy B, Mourão PA. Structure and anticoagulant activity of sulfated fucans comparison between the regular, repetitive, and linear fucans from echinoderms with the more heterogeneous and branched polymers from brown algae. J Biol Chem 1999; 274: 7656-67. http://dx.doi.org/10.1074/jbc.274.12.7656 DOI: https://doi.org/10.1074/jbc.274.12.7656

Andrade GP, Lima MA, de Souza Junior AA, Fareed J, Hoppensteadt DA, Santos EA, et al. A heparin-like compound isolated from a marine crab rich in glucuronic acid 2-O-sulfate presents low anticoagulant activity. Carbohydr Polym 2013; 94: 647-54. http://dx.doi.org/10.1016/j.carbpol.2013.01.069 DOI: https://doi.org/10.1016/j.carbpol.2013.01.069

Yang J, Cai J, Wu K, Li D, Hu Y, Li G, et al. Preparation, characterization and anticoagulant activity in vitro of heparin-like 6-carboxylchitin derivative. Int J Biol Macromol 2012; 50: 1158-64. http://dx.doi.org/10.1016/j.ijbiomac.2012.01.007 DOI: https://doi.org/10.1016/j.ijbiomac.2012.01.007

Xue JM, Zhao WF, Nie SQ, Sun SD, Zhao CS. Blood compatibility of polyethersulfone membrane by blending a sulfated derivative of chitosan. Carbohydr Polym 2013; 95: 64-71. http://dx.doi.org/10.1016/j.carbpol.2013.02.033 DOI: https://doi.org/10.1016/j.carbpol.2013.02.033

Cen L, Neoh KG, Li Y, Kang ET. Assessment of in vitro bioactivity of hyaluronic acid and sulfated hyaluronic acid functionalized electroactive polymer. Biomacromolecules 2004; 5: 2238-46. http://dx.doi.org/10.1021/bm040048v DOI: https://doi.org/10.1021/bm040048v

Brito AS, Arimatéia DS, Souza LR, Lima MA, Santos VO, Medeiros VP, et al. Anti-inflammatory properties of a heparin-like glycosaminoglycan with reduced anti-coagulant activity isolated from a marine shrimp. Bioorg Med Chem 2008; 16: 9588-95. http://dx.doi.org/10.1016/j.bmc.2008.09.020 DOI: https://doi.org/10.1016/j.bmc.2008.09.020

Charef S, Tapon-Bretaudière J, Fischer A-M, Pflüger F, Jozefowicz M, Labarre D. Heparin-like functionalized polymer surfaces: discrimination between catalytic and adsorption processes during the course of thrombin inhibition. Biomaterials 1996; 17: 903-12. http://dx.doi.org/10.1016/0142-9612(96)83286-8 DOI: https://doi.org/10.1016/0142-9612(96)83286-8

Jang HS, Ryu KE, Ahn WS, Chun HJ, Dal Park H, Park KD, et al. Complement activation by sulfonated poly (ethylene glycol)-acrylate copolymers through alternative pathway. Colloids Surf, B 2006; 50: 141-6. http://dx.doi.org/10.1016/j.colsurfb.2006.03.024 DOI: https://doi.org/10.1016/j.colsurfb.2006.03.024

Ran F, Nie SQ, Li J, Su BH, Sun SD, Zhao CS. Heparin-like macromolecules for the modification of anticoagulant biomaterials. Macromol Biosci 2012; 12: 116-25. http://dx.doi.org/10.1002/mabi.201100249 DOI: https://doi.org/10.1002/mabi.201100249

Blanco J-F, Sublet J, Nguyen QT, Schaetzel P. Formation and morphology studies of different polysulfones-based

membranes made by wet phase inversion process. J Membr Sci 2006; 283: 27-37. http://dx.doi.org/10.1016/j.memsci.2006.06.011 DOI: https://doi.org/10.1016/j.memsci.2006.06.011

Iojoiu C, Maréchal M, Chabert F, Sanchez JY. Mastering sulfonation of aromatic polysulfones: crucial for membranes for fuel cell application. Fuel Cells 2005; 5: 344-54. http://dx.doi.org/10.1002/fuce.200400082 DOI: https://doi.org/10.1002/fuce.200400082

Dyck A, Fritsch D, Nunes S. Proton‐conductive membranes of sulfonated polyphenylsulfone. J Appl Polym Sci 2002; 86: 2820-7. http://dx.doi.org/10.1002/app.11264 DOI: https://doi.org/10.1002/app.11264

Nolte R, Ledjeff K, Bauer M, Mülhaupt R. Partially sulfonated poly (arylene ether sulfone)-A versatile proton conducting membrane material for modern energy conversion technologies. J Membr Sci 1993; 83: 211-20. http://dx.doi.org/10.1016/0376-7388(93)85268-2 DOI: https://doi.org/10.1016/0376-7388(93)85268-2

Baradie B, Poinsignon C, Sanchez J, Piffard Y, Vitter G, Bestaoui N, et al. Thermostable ionomeric filled membrane for H2O2 fuel cell. J Power Sources 1998; 74: 8-16. http://dx.doi.org/10.1016/S0378-7753(97)02816-4 DOI: https://doi.org/10.1016/S0378-7753(97)02816-4

Pedicini R, Carbone A, Sacca A, Gatto I, Di Marco G, Passalacqua E. Sulphonated polysulphone membranes for medium temperature in polymer electrolyte fuel cells (PEFC). Polym Test 2008; 27: 248-59. http://dx.doi.org/10.1016/j.polymertesting.2007.11.002 DOI: https://doi.org/10.1016/j.polymertesting.2007.11.002

Lufrano F, Baglio V, Staiti P, Arico AS, Antonucci V. Development and characterization of sulfonated polysulfone membranes for direct methanol fuel cells. Desalination 2006; 199: 283-5. http://dx.doi.org/10.1016/j.desal.2006.03.069 DOI: https://doi.org/10.1016/j.desal.2006.03.069

Lufrano F, Baglio V, Staiti P, Arico A, Antonucci V. Polymer electrolytes based on sulfonated polysulfone for direct methanol fuel cells. J Power Sources 2008; 179: 34-41. http://dx.doi.org/10.1016/j.jpowsour.2007.12.079 DOI: https://doi.org/10.1016/j.jpowsour.2007.12.079

Sanchez J-Y, Chabert F, Iojoiu C, Salomon J, El Kissi N, Piffard Y, et al. Extrusion: An environmentally friendly process for PEMFC membrane elaboration. Electrochim Acta 2007; 53: 1584-95. http://dx.doi.org/10.1016/j.electacta.2007.04.022 DOI: https://doi.org/10.1016/j.electacta.2007.04.022

Blanco J, Nguyen Q, Schaetzel P. Novel hydrophilic membrane materials: sulfonated polyethersulfone Cardo. J Membr Sci 2001; 186: 267-79. http://dx.doi.org/10.1016/S0376-7388(01)00331-3 DOI: https://doi.org/10.1016/S0376-7388(01)00331-3

Unveren EE, Erdogan T, Çelebi SS, Inan TY. Role of post-sulfonation of poly (ether ether sulfone) in proton conductivity and chemical stability of its proton exchange membranes for fuel cell. Int J Hydrogen Energy 2010; 35: 3736-44. http://dx.doi.org/10.1016/j.ijhydene.2010.01.041 DOI: https://doi.org/10.1016/j.ijhydene.2010.01.041

Lu D, Zou H, Guan R, Dai H, Lu L. Sulfonation of polyethersulfone by chlorosulfonic acid. Polym Bull 2005; 54: 21-8. http://dx.doi.org/10.1007/s00289-005-0361-x DOI: https://doi.org/10.1007/s00289-005-0361-x

Guan R, Zou H, Lu D, Gong C, Liu Y. Polyethersulfone sulfonated by chlorosulfonic acid and its membrane characteristics. Eur Polym J 2005; 41: 1554-60. http://dx.doi.org/10.1016/j.eurpolymj.2005.01.018 DOI: https://doi.org/10.1016/j.eurpolymj.2005.01.018

Guan R, Dai H, Li C, Liu J, Xu J. Effect of casting solvent on the morphology and performance of sulfonated polyether-sulfone membranes. J Membr Sci 2006; 277: 148-56. http://dx.doi.org/10.1016/j.memsci.2005.10.025 DOI: https://doi.org/10.1016/j.memsci.2005.10.025

Li Y, Chung TS. Highly selective sulfonated polyethersulfone (SPES)-based membranes with transition metal counterions for hydrogen recovery and natural gas separation. J Membr Sci 2008; 308: 128-35. http://dx.doi.org/10.1016/j.memsci.2007.09.053 DOI: https://doi.org/10.1016/j.memsci.2007.09.053

Linares A, Benavente R. Effect of sulfonation on thermal, mechanical, and electrical properties of blends based on polysulfones. Polym J 2009; 41: 407-15. http://dx.doi.org/10.1295/polymj.PJ2008252 DOI: https://doi.org/10.1295/polymj.PJ2008252

Bae T-H, Kim I-C, Tak T-M. Preparation and characterization of fouling-resistant TiO2 self-assembled nanocomposite membranes. J Membr Sci 2006; 275: 1-5. http://dx.doi.org/10.1016/j.memsci.2006.01.023 DOI: https://doi.org/10.1016/j.memsci.2006.01.023

Sangaj N, Kyriakakis P, Yang D, Chang C-W, Arya G, Varghese S. Heparin mimicking polymer promotes myogenic differentiation of muscle progenitor cells. Biomacromolecules 2010; 11: 3294-300. http://dx.doi.org/10.1021/bm101041f DOI: https://doi.org/10.1021/bm101041f

Nguyen TH, Kim S-H, Decker CG, Wong DY, Loo JA, Maynard HD. A heparin-mimicking polymer conjugate stabilizes basic fibroblast growth factor. Nat Chem 2013; 5: 221-7. http://dx.doi.org/10.1038/nchem.1573 DOI: https://doi.org/10.1038/nchem.1573

García-Fernández L, Aguilar MaR, Fernández MaM, Lozano RM, Giménez G, Román JS. Antimitogenic polymer drugs based on AMPS: monomer distribution− bioactivity relationship of water-soluble macromolecules. Biomacromolecules 2010; 11: 626-34. http://dx.doi.org/10.1021/bm901194e DOI: https://doi.org/10.1021/bm901194e

Wang LR, Qin H, Nie SQ, Sun SD, Ran F, Zhao CS. Direct synthesis of heparin-like poly (ether sulfone) polymer and its blood compatibility. Acta Biomater 2013; 9: 8851-63. http://dx.doi.org/10.1016/j.actbio.2013.07.010 DOI: https://doi.org/10.1016/j.actbio.2013.07.010

Uchman M, Stepanek M, Procházka K, Mountrichas G, Pispas S, Voets IK, et al. Multicompartment nanoparticles formed by a heparin-mimicking block terpolymer in aqueous solutions. Macromolecules 2009; 42: 5605-13. http://dx.doi.org/10.1021/ma9008115 DOI: https://doi.org/10.1021/ma9008115

Zhou H, Cheng C, Qin H, Ma L, He C, Nie S, et al. Self-assembled 3D biocompatible and bioactive layer at the macro-interface via graphene-based supermolecules. Polym Sci 2014; 5: 3563-75. DOI: https://doi.org/10.1039/c4py00136b

Li LL, Cheng C, Xiang T, Tang M, Zhao WF, Sun SD, et al. Modification of polyethersulfone hemodialysis membrane by blending citric acid grafted polyurethane and its anticoagulant activity. J Membr Sci 2012; 405-406: 261-74. http://dx.doi.org/10.1016/j.memsci.2012.03.015 DOI: https://doi.org/10.1016/j.memsci.2012.03.015

Nie SQ, Xue JM, Lu Y, Liu YQ, Wang DS, Sun SD, et al. Improved blood compatibility of polyethersulfone membrane with a hydrophilic and anionic surface. Colloids Surf, B 2012; 100: 116-25. http://dx.doi.org/10.1016/j.colsurfb.2012.05.004 DOI: https://doi.org/10.1016/j.colsurfb.2012.05.004

Ran F, Nie SQ, Yin ZH, Li J, Su BH, Sun SD, et al. Synthesized negatively charged macromolecules (NCMs) for the surface modification of anticoagulant membrane biomaterials. Int J Biol Macromol 2013; 55: 269-75. http://dx.doi.org/10.1016/j.ijbiomac.2013.01.014 DOI: https://doi.org/10.1016/j.ijbiomac.2013.01.014

He C, Nie CX, Zhao WF, Ma L, Xiang T, Cheng CS, et al. Modification of polyethersulfone membranes using terpolymers engineered and integrated antifouling and anticoagulant properties. Polym Adv Technol 2013; 24: 1040-50. http://dx.doi.org/10.1002/pat.3179 DOI: https://doi.org/10.1002/pat.3179

Wang H, Yang L, Zhao X, Yu T, Du Q. Improvement of hydrophilicity and blood compatibility on polyethersulfone membrane by blending sulfonated polyethersulfone. Chin J Chem Eng 2009; 17: 324-9. http://dx.doi.org/10.1016/S1004-9541(08)60211-6 DOI: https://doi.org/10.1016/S1004-9541(08)60211-6

Tang M, Xue JM, Yan KL, Xiang T, Sun SD, Zhao CS. Heparin-like surface modification of polyethersulfone membrane and its biocompatibility. J Colloid Interface Sci 2012; 386: 428-40. http://dx.doi.org/10.1016/j.jcis.2012.07.076 DOI: https://doi.org/10.1016/j.jcis.2012.07.076

Nie SQ, Tang M, Yin ZH, Wang LR, Sun SD, Zhao CS. Biologically inspired membrane design with a heparin-like interface: prolonged blood coagulation, inhibited complement activation, and bio-artificial liver related cell proliferation. Biomater Sci 2014; 2: 98-109. http://dx.doi.org/10.1039/c3bm60165j DOI: https://doi.org/10.1039/C3BM60165J

Zhao WF, Mou QB, Zhang XX, Shi JY, Sun SD, Zhao CS. Preparation and characterization of sulfonated polyethersulfone membranes by a facile approach. Eur Polym J 2013; 49: 738-51. http://dx.doi.org/10.1016/j.eurpolymj.2012.11.018 DOI: https://doi.org/10.1016/j.eurpolymj.2012.11.018

Xiang T, Wang LR, Ma L, Han ZY, Wang R, Cheng C, et al. From commodity polymers to functional polymers. Sci Rep 2014; 4: 4604. http://dx.doi.org/10.1038/srep04604 DOI: https://doi.org/10.1038/srep04604

Qin H, Sun CC, He C, Wang DS, Cheng C, Nie SQ, et al. High efficient protocol for the modification of polyethersulfone membranes with anticoagulant and antifouling properties via in situ cross-linked copolymerization. J Membr Sci 2014; 468: 172-83. http://dx.doi.org/10.1016/j.memsci.2014.06.006 DOI: https://doi.org/10.1016/j.memsci.2014.06.006

Ma L, Qin H, Cheng C, Xia Y, He C, Nie C, et al. Mussel-inspired self-coating at macro-interface with improved biocompatibility and bioactivity via dopamine grafted heparin-like polymers and heparin. J Mater Chem, B 2014; 2: 363-75. http://dx.doi.org/10.1039/c3tb21388a DOI: https://doi.org/10.1039/C3TB21388A

Aravind UK, Mathew J, Aravindakumar C. Transport studies of BSA, lysozyme and ovalbumin through chitosan/polystyrene sulfonate multilayer membrane. J Membr Sci 2007; 299: 146-55. http://dx.doi.org/10.1016/j.memsci.2007.04.036 DOI: https://doi.org/10.1016/j.memsci.2007.04.036

Malaisamy R, Bruening ML. High-flux nanofiltration membranes prepared by adsorption of multilayer polyelectrolyte membranes on polymeric supports. Langmuir 2005; 21: 10587-92. http://dx.doi.org/10.1021/la051669s DOI: https://doi.org/10.1021/la051669s

Xia Y, Cheng C, Wang R, Qin H, Zhang Y, Ma L, et al. Surface-engineered nanogel assemblies with integrated blood compatibility, cell proliferation and antibacterial property: towards multifunctional biomedical membranes. Polym Sci 2014. http://dx.doi.org/10.1039/C4PY00870G DOI: https://doi.org/10.1039/C4PY00870G

Taniguchi M, Belfort G. Low protein fouling synthetic membranes by UV-assisted surface grafting modification: varying monomer type. J Membr Sci 2004; 231: 147-57. http://dx.doi.org/10.1016/j.memsci.2003.11.013 DOI: https://doi.org/10.1016/j.memsci.2003.11.013

Taniguchi M, Kilduff JE, Belfort G. Low fouling synthetic membranes by UV-assisted graft polymerization: monomer selection to mitigate fouling by natural organic matter. J Membr Sci 2003; 222: 59-70. http://dx.doi.org/10.1016/S0376-7388(03)00192-3 DOI: https://doi.org/10.1016/S0376-7388(03)00192-3

Zhao CS, Liu XD, Rikimaru S, Nomizu M, Nishi N. Surface characterization of polysulfone membranes modified by DNA immobilization. J Membr Sci 2003; 214: 179-89. http://dx.doi.org/10.1016/S0376-7388(02)00524-0 DOI: https://doi.org/10.1016/S0376-7388(02)00524-0

Xiang T, Wang R, Zhao WF, Zhao CS. Covalent deposition of zwitterionic polymer and citric acid by click chemistry-enabled layer-by-layer assembly for improving the blood compatibility of polysulfone membrane. Langmuir 2014; 30: 5115-25. http://dx.doi.org/10.1021/la5001705 DOI: https://doi.org/10.1021/la5001705

Xiang T, Zhang LS, Wang R, Xia Y, Su BH, Zhao CS. Blood compatibility comparison for polysulfone membranes modified by grafting block and random zwitterionic copolymers via surface-initiated ATRP. J Colloid Interface Sci 2014; 432: 47-56. http://dx.doi.org/10.1016/j.jcis.2014.06.044 DOI: https://doi.org/10.1016/j.jcis.2014.06.044

Downloads

Published

2014-08-29

How to Cite

Xiang, T., Cheng, C., & Zhao, C. (2014). Heparin-Mimicking Polymer Modified Polyethersulfone Membranes - A Mini Review. Journal of Membrane and Separation Technology, 3(3), 162–177. https://doi.org/10.6000/1929-6037.2014.03.03.7

Issue

Section

Articles