Ion Exchange Membranes for Electrodialysis: A Comprehensive Review of Recent Advances

Authors

  • Chenxiao Jiang CAS Key Laboratory of Soft Matter Chemistry, Lab of Functional Membranes, School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, P.R. China
  • Md. Masem Hossain CAS Key Laboratory of Soft Matter Chemistry, Lab of Functional Membranes, School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, P.R. China
  • Yan Li CAS Key Laboratory of Soft Matter Chemistry, Lab of Functional Membranes, School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, P.R. China
  • Yaoming Wang CAS Key Laboratory of Soft Matter Chemistry, Lab of Functional Membranes, School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, P.R. China
  • Tongwen Xu CAS Key Laboratory of Soft Matter Chemistry, Lab of Functional Membranes, School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, P.R. China

DOI:

https://doi.org/10.6000/1929-6037.2014.03.04.2

Keywords:

Electrodialysis, ion exchange membrane, anion exchange membrane, cation exchange membrane, bipolar membrane.

Abstract

Electrodialysis related processes are effectively applied in desalination of sea and brackish water, waste water treatment, chemical process industry, and food and pharmaceutical industry. In this process, fundamental component is the ion exchange membrane (IEM), which allows the selective transport of ions. The evolvement of an IEM not only makes the process cleaner and energy-efficient but also recovers useful effluents that are now going to wastes. However ion-exchange membranes with better selectivity, less electrical resistance, good chemical, mechanical and thermal stability are appropriate for these processes. For the development of new IEMs, a lot of tactics have been applied in the last two decades. The intention of this paper is to briefly review synthetic aspects in the development of new ion-exchange membranes and their applications for electrodialysis related processes.

References

Taeger A, Vogel C, Lehmann D, Jehnichen D, Komber H, Meier-Haack J, Ochoa NA, Nunes SP, Peinemann KV. Ion exchange membranes derived from sulfonated polyaramides. Reactive and Functional Polymers 2003; 57: 77-92. http://dx.doi.org/10.1016/j.reactfunctpolym.2003.10.001 DOI: https://doi.org/10.1016/j.reactfunctpolym.2003.10.001

Meier-Haack J, Taeger A, Vogel C, Schlenstedt K, Lenk W, Lehmann D. Membranes from sulfonated block copolymers for use in fuel cells. Separation and Purification Technology 2005; 41: 207-220. http://dx.doi.org/10.1016/j.seppur.2004.07.018 DOI: https://doi.org/10.1016/j.seppur.2004.07.018

Juda W, McRae WA. Coherent ion-exchange gels and membranes. Journal of the American Chemical Society 1950; 72: 1044-1044. http://dx.doi.org/10.1021/ja01158a528 DOI: https://doi.org/10.1021/ja01158a528

Winger AG, Bodamer GW, Kunin R. Some electrochemical properties of new synthetic ion exchange membranes. Journal of The Electrochemical Society 1953; 100: 178-184. http://dx.doi.org/10.1149/1.2781103 DOI: https://doi.org/10.1149/1.2781103

Nishiwaki T. Concentration of electrolytes prior to evaporation with an electro-membrane process, in: R.F. Lacey, S. Loch (Eds.), Industrial Process with Membranes. Wiley–Interscience, New York 1972.

Mihara K. Polarity reversing electrode units and electrical switching means therefor, U.S. Patent 3,453,201, (1979).

Grot WG. Laminates of support material and fluorinated polymer containing pendant side chains containing sulfonyl groups, U.S. Patent 3,770,567, (1973).

Chlanda FP, Lee LT, Liu K-J. Bipolar membranes and method of making same, in, U.S. Patent 1978.

Pourcelly G, Gavach C. Electrodialysis water splitting-application of electrodialysis with bipolar membranes, in: A.J.B. Kemperman (Ed.), Handbook on Bipolar Membrane Technology. Twente University Press, Enschede 2000; pp. 17-46.

Xu T. Ion exchange membranes: State of their development and perspective. Journal of Membrane Science 2005; 263: 1-29. http://dx.doi.org/10.1016/j.memsci.2005.05.002 DOI: https://doi.org/10.1016/j.memsci.2005.05.002

Klaysom C, Ladewig BP, Lu GQM, Wang L. Recent Advances in Ion Exchange Membranes for Desalination Applications Functional Nanostructured Materials and Membranes for Water Treatment 2013; 125-161. DOI: https://doi.org/10.1002/9783527668502.ch6

Mondor M, Masse L, Ippersiel D, Lamarche F, Masse DI. Use of electrodialysis and reverse osmosis for the recovery and concentration of ammonia from swine manure. Bioresource Technology 2008; 99: 7363-7368. http://dx.doi.org/10.1016/j.biortech.2006.12.039 DOI: https://doi.org/10.1016/j.biortech.2006.12.039

Ippersiel D, Mondor M, Lamarche F, Tremblay F, Dubreuil J, Masse L. Nitrogen potential recovery and concentration of ammonia from swine manure using electrodialysis coupled with air stripping. Journal of Environmental Management 2012; 95: S165-S169. http://dx.doi.org/10.1016/j.jenvman.2011.05.026 DOI: https://doi.org/10.1016/j.jenvman.2011.05.026

Jiang C, Wang Y, Zhang Z, Xu T. Electrodialysis of concentrated brine from RO plant to produce coarse salt and freshwater. Journal of Membrane Science 2014; 450: 323-330. http://dx.doi.org/10.1016/j.memsci.2013.09.020 DOI: https://doi.org/10.1016/j.memsci.2013.09.020

Wang Y, Zhang Z, Jiang C, Xu T. Electrodialysis Process for the Recycling and Concentrating of Tetramethylammonium Hydroxide (TMAH) from Photoresist Developer Wastewater. Industrial & Engineering Chemistry Research 2013; 52: 18356-18361. http://dx.doi.org/10.1021/ie4023995 DOI: https://doi.org/10.1021/ie4023995

Yan H, Xue S, Wu C, Wu Y, Xu T. Separation of NaOH and NaAl(OH)4 in alumina alkaline solution through diffusion dialysis and electrodialysis. Journal of Membrane Science 2014; 469: 436-446. http://dx.doi.org/10.1016/j.memsci.2014.07.002 DOI: https://doi.org/10.1016/j.memsci.2014.07.002

Wang XL, Wang YM, Zhang X, Feng HY, Li CR, Xu TW. Phosphate Recovery from Excess Sludge by Conventional Electrodialysis (CED) and Electrodialysis with Bipolar Membranes (EDBM). Industrial & Engineering Chemistry Research 2013; 52: 15896-15904. http://dx.doi.org/10.1021/ie4014088 DOI: https://doi.org/10.1021/ie4014088

Ren HY, Sun FB, Shi SY, Cong W. Ceramic membrane pretreatment of monosodium glutamate isoelectric supernatant to facilitate (NH4)2SO4 recovery by electrodialysis. Journal of Chemical Technology and Biotechnology 2008; 83: 1027-1033. http://dx.doi.org/10.1002/jctb.1909 DOI: https://doi.org/10.1002/jctb.1909

Jiang C, Wang Y, Wang Q, Feng H, Xu T. Production of Lithium Hydroxide from Lake Brines through Electro–Electrodialysis with Bipolar Membranes (EEDBM). Industrial & Engineering Chemistry Research 2014; 53: 6103-6112. http://dx.doi.org/10.1021/ie404334s DOI: https://doi.org/10.1021/ie404334s

Zhang X, Li CR, Wang XL, Wang YM, Xu TW. Recovery of hydrochloric acid from simulated chemosynthesis aluminum foils wastewater: An integration of diffusion dialysis and conventional electrodialysis Journal of Membrane Science 2012; 409: 257-263. http://dx.doi.org/10.1016/j.memsci.2012.03.062 DOI: https://doi.org/10.1016/j.memsci.2012.03.062

Lee HJ, Oh SJ, Moon SH. Recovery of ammonium sulfate from fermentation waste by electrodialysis. Water Res 2003; 37: 1091-1099. http://dx.doi.org/10.1016/S0043-1354(02)00451-7 DOI: https://doi.org/10.1016/S0043-1354(02)00451-7

Lambert J, Avila-Rodriguez M, Durand G, Rakib M. Separation of sodium ions from trivalent chromium by electrodialysis using monovalent cation selective membranes. Journal of Membrane Science 2006; 280: 219-225. http://dx.doi.org/10.1016/j.memsci.2006.01.021 DOI: https://doi.org/10.1016/j.memsci.2006.01.021

Turek M. Recovery of NaCl from saline mine water in an electrodialysis-evaporation system. Chemical Papers-Chemicke Zvesti 2003; 57: 50-52.

Wee YJ, Yun JS, Lee YY, Zeng AP, Ryu HW. Recovery of lactic acid by repeated batch electrodialysis and lactic acid production using electrodialysis wastewater. Journal of Bioscience and Bioengineering 2005; 99: 104-108. http://dx.doi.org/10.1263/jbb.99.104 DOI: https://doi.org/10.1263/jbb.99.104

Lee EG, Moon SH, Chang YK, Yoo IK, Chang HN. Lactic acid recovery using two-stage electrodialysis and its modelling. Journal of Membrane Science 1998; 145: 53-66. http://dx.doi.org/10.1016/S0376-7388(98)00065-9 DOI: https://doi.org/10.1016/S0376-7388(98)00065-9

Trinh LTP, Lee YJ, Lee JW, Bae HJ, Lee HJ. Recovery of an ionic liquid BMIM Cl from a hydrolysate of lignocellulosic biomass using electrodialysis. Separation and Purification Technology 2013; 120: 86-91. http://dx.doi.org/10.1016/j.seppur.2013.09.025 DOI: https://doi.org/10.1016/j.seppur.2013.09.025

Kameda T, Fukushima S, Shoji C, Grause G, Yoshioka T. Electrodialysis for NaCl/EG solution using ion-exchange membranes. Journal of Material Cycles and Waste Management 2013; 15: 111-114. http://dx.doi.org/10.1007/s10163-012-0098-1 DOI: https://doi.org/10.1007/s10163-012-0098-1

Roblet C, Doyen A, Amiot J, Pilon G, Marette A, Bazinet L. Enhancement of glucose uptake in muscular cell by soybean charged peptides isolated by electrodialysis with ultrafiltration membranes (EDUF): Activation of the AMPK pathway. Food Chem 2014; 147: 124-130. http://dx.doi.org/10.1016/j.foodchem.2013.09.108 DOI: https://doi.org/10.1016/j.foodchem.2013.09.108

Roblet C, Doyen A, Amiot J, Bazinet L. Impact of pH on ultrafiltration membrane selectivity during electrodialysis with ultrafiltration membrane (EDUF) purification of soy peptides from a complex matrix. Journal of Membrane Science 2013; 435: 207-217. http://dx.doi.org/10.1016/j.memsci.2013.01.045 DOI: https://doi.org/10.1016/j.memsci.2013.01.045

Poulin J-F, Amiot J, Bazinet L. Impact of Feed Solution Flow Rate on Peptide Fractionation by Electrodialysis with Ultrafiltration Membrane. Journal of agricultural and food chemistry 2008; 56: 2007-2011. http://dx.doi.org/10.1021/jf072813d DOI: https://doi.org/10.1021/jf072813d

Poulin JF, Amiot J, Bazinet L. Simultaneous separation of acid and basic bioactive peptides by electrodialysis with ultrafiltration membrane. J Biotechnol 2006; 123: 314-328. http://dx.doi.org/10.1016/j.jbiotec.2005.11.016 DOI: https://doi.org/10.1016/j.jbiotec.2005.11.016

Poulin JF, Amiot J, Bazinet L. Improved peptide fractionation by electrodialysis with ultrafiltration membrane: Influence of ultrafiltration membrane stacking and electrical field strength. Journal of Membrane Science 2007; 299: 83-90. http://dx.doi.org/10.1016/j.memsci.2007.04.024 DOI: https://doi.org/10.1016/j.memsci.2007.04.024

Sun GF, Xu JL. Treatment of Waste Phosphoric Acid Containing Metal Ions by Electrodialysis, in: K.S. Thaung (Ed.) Future Material Research and Industry Application, Pts 1 and 2 2012; pp. 1228-1231. DOI: https://doi.org/10.4028/www.scientific.net/AMR.455-456.1228

Tor A, Büyükerkek T, Çengelolu Y, Ersöz M. Simultaneous recovery of Cr(III) and Cr(VI) from the aqueous phase with ion-exchange membranes. Desalination 2005; 171: 233-241. http://dx.doi.org/10.1016/j.desal.2004.02.106 DOI: https://doi.org/10.1016/j.desal.2004.02.106

Lambert J, Rakib M, Durand G, Avila-Rodriguez M. Treatment of solutions containing trivalent chromium by electrodialysis. Desalination 2006; 191: 100-110. http://dx.doi.org/10.1016/j.desal.2005.06.035 DOI: https://doi.org/10.1016/j.desal.2005.06.035

Kim KW, Hyun JT, Lee KY, Lee EH, Chung DY, Moon JK. Evaluation of recovery characteristic of acidic and alkaline solutions from NaNO3 using conventional electrodialysis and electrodialysis with bipolar membranes. Korean J Chem Eng 2013; 30: 1760-1769. http://dx.doi.org/10.1007/s11814-013-0089-5 DOI: https://doi.org/10.1007/s11814-013-0089-5

Kim HH, Kang SH, Chang YK. Recovery of Potassium Clavulanate from Fermentation Broth by Ion Exchange Chromatography and Desalting Electrodialysis. Biotechnology and Bioprocess Engineering 2009; 14: 803-810. http://dx.doi.org/10.1007/s12257-008-0161-x DOI: https://doi.org/10.1007/s12257-008-0161-x

Husson E, Araya-Farias M, Desjardins Y, Bazinet L. Selective anthocyanins enrichment of cranberry juice by electrodialysis with ultrafiltration membranes stacked. Innovative Food Science & Emerging Technologies 2013; 17: 153-162. http://dx.doi.org/10.1016/j.ifset.2012.09.011 DOI: https://doi.org/10.1016/j.ifset.2012.09.011

Habe H, Fukuoka T, Kitamoto D, Sakaki K. Application of electrodialysis to glycerate recovery from a glycerol containing model solution and culture broth. Journal of Bioscience and Bioengineering 2009; 107: 425-428. http://dx.doi.org/10.1016/j.jbiosc.2008.12.008 DOI: https://doi.org/10.1016/j.jbiosc.2008.12.008

Firdaous L, Dhulster P, Amiot J, Gaudreau A, Lecouturier D, Kapel R, Lutin F, Vezina LP, Bazinet L. Concentration and selective separation of bioactive peptides from an alfalfa white protein hydrolysate by electrodialysis with ultrafiltration membranes. Journal of Membrane Science 2009; 329: 60-67. http://dx.doi.org/10.1016/j.memsci.2008.12.012 DOI: https://doi.org/10.1016/j.memsci.2008.12.012

Hoshino T. Lithium Recovery from Seawater by Electrodialysis using Ionic Liquid-based Membrane Technology. Lithium-Ion Batteries 2014; 58: 173-177. DOI: https://doi.org/10.1149/05848.0173ecst

Hoshino T. Preliminary studies of lithium recovery technology from seawater by electrodialysis using ionic liquid membrane. Desalination 2013; 317: 11-16. http://dx.doi.org/10.1016/j.desal.2013.02.014

Hoshino T. Development of technology for recovering lithium from seawater by electrodialysis using ionic liquid membrane. Fusion Eng Des 2013; 88: 2956-2959. http://dx.doi.org/10.1016/j.fusengdes.2013.06.009 DOI: https://doi.org/10.1016/j.fusengdes.2013.06.009

Fidaleo M, Moresi M. Modeling of sodium acetate recovery from aqueous solutions by electrodialysis. Biotechnol Bioeng 2005; 91: 556-568. http://dx.doi.org/10.1002/bit.20413 DOI: https://doi.org/10.1002/bit.20413

Chen SS, Li CW, Hsu HD, Lee PC, Chang YM, Yang CH. Concentration and purification of chromate from electroplating wastewater by two-stage electrodialysis processes. Journal of hazardous materials 2009; 161: 1075-1080. http://dx.doi.org/10.1016/j.jhazmat.2008.04.106 DOI: https://doi.org/10.1016/j.jhazmat.2008.04.106

Frenzel I, Holdik H, Stamatialis DF, Pourcelly G, Wessling A. Chromic acid recovery by electro-electrodialysis - I. Evaluation of anion-exchange membrane Journal of Membrane Science 2005; 261: 49-57. http://dx.doi.org/10.1016/j.memsci.2005.03.031 DOI: https://doi.org/10.1016/j.memsci.2005.03.031

Eszter M, Matild E, Kornelia K, Nandor N, Jeno F, Katalin BB. Utilization of electrodialysis for galacturonic acid recovery. Desalination 2009; 241: 81-85. http://dx.doi.org/10.1016/j.desal.2008.01.059 DOI: https://doi.org/10.1016/j.desal.2008.01.059

Zhang Y, Desmidt E, Van Looveren A, Pinoy L, Meesschaert B, Van der Bruggen B. Phosphate Separation and Recovery from Wastewater by Novel Electrodialysis. Environ Sci Technol 2013; 47: 5888-5895. http://dx.doi.org/10.1021/es4004476 DOI: https://doi.org/10.1021/es4004476

Zelic B, Hadolin M, Bauman D, Vasic-Racki D. Recovery and purification of rosmarinic acid from rosemary using electrodialysis. Acta Chimica Slovenica 2005; 52: 126-130.

Frenzel I, Holdik H, Stamatialis DF, Pourcelly G, Wessling A. Chromic acid recovery by electro-electrodialysis II. Pilot scale process, development, and optimization. Separation and Purification Technology 2005; 47: 27-35. http://dx.doi.org/10.1016/j.seppur.2005.06.002 DOI: https://doi.org/10.1016/j.seppur.2005.06.002

Dzyaz'ko YS, Rozwestvenskaya LM, Pal'chik AV. Recovery of nickel ions from dilute solutions by electrodialysis combined with ion exchange. Russian Journal of Applied Chemistry 2005; 78: 414-421. http://dx.doi.org/10.1007/s11167-005-0307-y DOI: https://doi.org/10.1007/s11167-005-0307-y

Haerens K, De Vreese P, Matthijs E, Pinoy L, Binnemans K, Van der Bruggen B. Production of ionic liquids by electrodialysis. Separation and Purification Technology 2012; 97: 90-95. http://dx.doi.org/10.1016/j.seppur.2012.02.017 DOI: https://doi.org/10.1016/j.seppur.2012.02.017

Dzyazko YS, Belyakov VN. Purification of a diluted nickel solution containing nickel by a process combining ion exchange and electrodialysis. Desalination 2004; 162: 179-189. http://dx.doi.org/10.1016/S0011-9164(04)00041-4 DOI: https://doi.org/10.1016/S0011-9164(04)00041-4

Wang XL, Nie Y, Zhang XP, Zhang SJ, Li JW. Recovery of ionic liquids from dilute aqueous solutions by electrodialysis. Desalination 2012; 285: 205-212. http://dx.doi.org/10.1016/j.desal.2011.10.003 DOI: https://doi.org/10.1016/j.desal.2011.10.003

Tanaka Y, Moon S-H, Nikonenko VV, Xu T. Ion-Exchange Membranes. International Journal of Chemical Engineering 2012; 2012: 3. DOI: https://doi.org/10.1155/2012/906952

Sadyrbaeva TZ. Gold(III) recovery from non-toxic electrolytes using hybrid electrodialysis-electrolysis process. Separation and Purification Technology 2012; 86: 262-265. http://dx.doi.org/10.1016/j.seppur.2011.10.007 DOI: https://doi.org/10.1016/j.seppur.2011.10.007

Sadyrbaeva TZ. Hybrid liquid membrane — Electrodialysis process for extraction of manganese(II). Desalination 2011; 274: 220-225. http://dx.doi.org/10.1016/j.desal.2011.02.022 DOI: https://doi.org/10.1016/j.desal.2011.02.022

Park H-M, Park S-G, Hwang CW, Hwang TS. Effect of aminating agents on the permselectivity for nitrate of aminated poly(vinyl benzylchloride-co-styrene-co-hydroxy ethylacrylate) membranes. Journal of Membrane Science 2013; 447: 253-259. http://dx.doi.org/10.1016/j.memsci.2013.06.058 DOI: https://doi.org/10.1016/j.memsci.2013.06.058

Sharma S, Dinda M, Sharma CR, Ghosh PK. A safer route for preparation of anion exchange membrane from inter-polymer film and performance evaluation in electrodialytic application. Journal of Membrane Science 2014; 459: 122-131. http://dx.doi.org/10.1016/j.memsci.2014.02.011 DOI: https://doi.org/10.1016/j.memsci.2014.02.011

Bertran O, Armelin E, Estrany F, Gomes A, Torras J, Alemán C. Poly (2-thiophen-3-yl-malonic acid), a polythiophene with two carboxylic acids per repeating unit. The Journal of Physical Chemistry B 2010; 114: 6281-6290. http://dx.doi.org/10.1021/jp1006796 DOI: https://doi.org/10.1021/jp1006796

Nagarale R, Gohil G, Shahi VK, Rangarajan R. Preparation and electrochemical characterization of sulfonated polysulfone cation‐exchange membranes: Effects of the solvents on the degree of sulfonation. Journal of Applied Polymer Science 2005; 96: 2344-2351. http://dx.doi.org/10.1002/app.21630 DOI: https://doi.org/10.1002/app.21630

Asquith BM, Meier-Haack J, Vogel C, Butwilowski W, Ladewig BP. Side-chain sulfonated copolymer cation

exchange membranes for electro-driven desalination applications. Desalination 2013; 324: 93-98. http://dx.doi.org/10.1016/j.desal.2013.05.023 DOI: https://doi.org/10.1016/j.desal.2013.05.023

Klaysom C, Ladewig BP, Lu GQM, Wang L. Preparation and characterization of sulfonated polyethersulfone for cation-exchange membranes. Journal of Membrane Science 2011; 368: 48-53. http://dx.doi.org/10.1016/j.memsci.2010.11.006 DOI: https://doi.org/10.1016/j.memsci.2010.11.006

Klaysom C, Moon S-H, Ladewig BP, Lu GQM, Wang L. Preparation of porous ion-exchange membranes (IEMs) and their characterizations. Journal of Membrane Science 2011; 371: 37-44. http://dx.doi.org/10.1016/j.memsci.2011.01.008 DOI: https://doi.org/10.1016/j.memsci.2011.01.008

Mabrouk W, Ogier L, Vidal S, Sollogoub C, Matoussi F, Fauvarque JF. Ion exchange membranes based upon crosslinked sulfonated polyethersulfone for electrochemical applications. Journal of Membrane Science 2014; 452: 263-270. http://dx.doi.org/10.1016/j.memsci.2013.10.006 DOI: https://doi.org/10.1016/j.memsci.2013.10.006

Park AM, Turley FE, Wycisk RJ, Pintauro PN. Electrospun and Cross-Linked Nanofiber Composite Anion Exchange Membranes. Macromolecules 2014; 47: 227-235. http://dx.doi.org/10.1021/ma401932h DOI: https://doi.org/10.1021/ma401932h

Balster J, Krupenko O, Punt I, Stamatialis D, Wessling M. Preparation and characterisation of monovalent ion selective cation exchange membranes based on sulphonated poly(ether ether ketone). Journal of Membrane Science 2005; 263: 137-145. http://dx.doi.org/10.1016/j.memsci.2005.04.019 DOI: https://doi.org/10.1016/j.memsci.2005.04.019

Gohil GS, Nagarale RK, Binsu VV, Shahi VK. Preparation and characterization of monovalent cation selective sulfonated poly(ether ether ketone) and poly(ether sulfone) composite membranes. Journal of Colloid and Interface Science 2006; 298: 845-853. http://dx.doi.org/10.1016/j.jcis.2005.12.069 DOI: https://doi.org/10.1016/j.jcis.2005.12.069

Kerres J, Cui W, Disson R, Neubrand W. Development and characterization of crosslinked ionomer membranes based upon sulfinated and sulfonated PSU crosslinked PSU blend membranes by disproportionation of sulfinic acid groups. Journal of Membrane Science 1998; 139: 211-225. http://dx.doi.org/10.1016/S0376-7388(97)00253-6 DOI: https://doi.org/10.1016/S0376-7388(97)00253-6

Cui W, Kerres J, Eigenberger G. Development and characterization of ion-exchange polymer blend membranes. Separation and Purification Technology 1998; 14: 145-154. http://dx.doi.org/10.1016/S1383-5866(98)00069-0 DOI: https://doi.org/10.1016/S1383-5866(98)00069-0

Wu L, Xu T, Yang W. Fundamental studies of a new series of anion exchange membranes: Membranes prepared through chloroacetylation of poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) followed by quaternary amination. Journal of Membrane Science 2006; 286: 185-192. http://dx.doi.org/10.1016/j.memsci.2006.09.035 DOI: https://doi.org/10.1016/j.memsci.2006.09.035

Xu T, Zha F. Fundamental studies on a new series of anion exchange membranes: effect of simultaneous amination-crosslinking processes on membranes ion-exchange capacity and dimensional stability. Journal of Membrane Science 2002; 199: 203-210. http://dx.doi.org/10.1016/S0376-7388(02)00261-2 DOI: https://doi.org/10.1016/S0376-7388(01)00698-6

Tongwen X, Weihua Y. Fundamental studies of a new series of anion exchange membranes: membrane preparation and characterization. Journal of Membrane Science 2001; 190: 159-166. http://dx.doi.org/10.1016/S0376-7388(01)00434-3 DOI: https://doi.org/10.1016/S0376-7388(01)00434-3

Tongwen X, Weihua Y, Binglin H. Ionic conductivity threshold in sulfonated poly (phenylene oxide) matrices: a combination of three-phase model and percolation theory. Chemical Engineering Science 2001; 56: 5343-5350. http://dx.doi.org/10.1016/S0009-2509(01)00242-1 DOI: https://doi.org/10.1016/S0009-2509(01)00242-1

Johnson B, Yilgör I, Tran C, Iqbal M, Wightman J, Lloyd D, McGrath J. Synthesis and characterization of sulfonated poly

(acrylene ether sulfones). Journal of Polymer Science: Polymer Chemistry Edition 1984; 22: 721-737. http://dx.doi.org/10.1002/pol.1984.170220320 DOI: https://doi.org/10.1002/pol.1984.170220320

Liu B, Robertson GP, Kim D-S, Sun X, Jiang Z, Guiver MD. Enhanced thermo-oxidative stability of sulfophenylated poly (ether sulfone)s. Polymer 2010; 51: 403-413. http://dx.doi.org/10.1016/j.polymer.2009.12.014 DOI: https://doi.org/10.1016/j.polymer.2009.12.014

Omichi H, Chundury D, Stannett V. Electrical and other properties of mutual radiation‐induced methacrylic acid grafted polyethylene films. Journal of Applied Polymer Science 1986; 32: 4827-4836. http://dx.doi.org/10.1002/app.1986.070320505 DOI: https://doi.org/10.1002/app.1986.070320505

Kostov GK, Matsuda O, Machi S, Tabata Y. Radiation synthesis of ion-exchange carboxylic fluorine containing membranes. Journal of Membrane Science 1992; 68: 133-140. http://dx.doi.org/10.1016/0376-7388(92)80156-E DOI: https://doi.org/10.1016/0376-7388(92)80156-E

Choi E-Y, Strathmann H, Park J-M, Moon S-H. Characterization of non-uniformly charged ion-exchange membranes prepared by plasma-induced graft polymerization. Journal of Membrane Science 2006; 268: 165-174. http://dx.doi.org/10.1016/j.memsci.2005.06.052 DOI: https://doi.org/10.1016/j.memsci.2005.06.052

Choi S-H, Han Jeong Y, Jeong Ryoo J, Lee K-P. Desalination by electrodialysis with the ion-exchange membrane prepared by radiation-induced graft polymerization. Radiation Physics and Chemistry 2001; 60: 503-511. http://dx.doi.org/10.1016/S0969-806X(00)00397-2 DOI: https://doi.org/10.1016/S0969-806X(00)00397-2

Tzanetakis N, Varcoe J, Slade R, Scott K. Salt splitting with radiation grafted PVDF anion-exchange membrane. Electrochemistry Communications 2003; 5: 115-119. http://dx.doi.org/10.1016/S1388-2481(02)00554-4 DOI: https://doi.org/10.1016/S1388-2481(02)00554-4

Hensley JE, Way JD. Synthesis and characterization of perfluorinated carboxylate/sulfonate ionomer membranes for separation and solid electrolyte applications. Chemistry of Materials 2007; 19: 4576-4584. http://dx.doi.org/10.1021/cm070138h DOI: https://doi.org/10.1021/cm070138h

Singh S, Jasti A, Kumar M, Shahi VK. A green method for the preparation of highly stable organic-inorganic hybrid anion-exchange membranes in aqueous media for electrochemical processes. Polymer Chemistry 2010; 1: 1302. http://dx.doi.org/10.1039/c0py00084a DOI: https://doi.org/10.1039/c0py00084a

Nagarale RK, Shahi VK, Rangarajan R. Preparation of polyvinyl alcohol–silica hybrid heterogeneous anion-exchange membranes by sol–gel method and their characterization. Journal of Membrane Science 2005; 248: 37-44. http://dx.doi.org/10.1016/j.memsci.2004.09.025 DOI: https://doi.org/10.1016/j.memsci.2004.09.025

Klaysom C, Marschall R, Wang L, Ladewig BP, Lu GQM. Synthesis of composite ion-exchange membranes and their electrochemical properties for desalination applications. Journal of Materials Chemistry 2010; 20: 4669. http://dx.doi.org/10.1039/b925357b DOI: https://doi.org/10.1039/b925357b

Klaysom C, Marschall R, Moon S-H, Ladewig BP, Lu GQM, Wang L. Preparation of porous composite ion-exchange membranes for desalination application. Journal of Materials Chemistry 2011; 21: 7401. http://dx.doi.org/10.1039/c0jm04142d DOI: https://doi.org/10.1039/c0jm04142d

Klaysom C, Moon SH, Ladewig BP, Lu GQ, Wang L. The effects of aspect ratio of inorganic fillers on the structure and property of composite ion-exchange membranes. Journal of Colloid and Interface Science 2011; 363: 431-439. http://dx.doi.org/10.1016/j.jcis.2011.07.071 DOI: https://doi.org/10.1016/j.jcis.2011.07.071

Klaysom C, Moon S-H, Ladewig BP, Lu GQM, Wang L. The Influence of Inorganic Filler Particle Size on Composite Ion-Exchange Membranes for Desalination. The Journal of Physical Chemistry C 2011; 115: 15124-15132. http://dx.doi.org/10.1021/jp112157z DOI: https://doi.org/10.1021/jp112157z

Zuo X, Shi W, Tian Z, Yu S, Wang S, He J. Desalination of water with a high degree of mineralization using SiO2/PVDF membranes. Desalination 2013; 311: 150-155. http://dx.doi.org/10.1016/j.desal.2012.11.034 DOI: https://doi.org/10.1016/j.desal.2012.11.034

Zuo X, Yu S, Xu X, Xu J, Bao R, Yan X. New PVDF organic–inorganic membranes: The effect of SiO2 nanoparticles content on the transport performance of anion-exchange membranes. Journal of Membrane Science 2009; 340: 206-213. http://dx.doi.org/10.1016/j.memsci.2009.05.032 DOI: https://doi.org/10.1016/j.memsci.2009.05.032

Zuo X, Yu S, Xu X, Bao R, Xu J, Qu W. Preparation of organic–inorganic hybrid cation-exchange membranes via blending method and their electrochemical characterization. Journal of Membrane Science 2009; 328: 23-30. http://dx.doi.org/10.1016/j.memsci.2008.08.012 DOI: https://doi.org/10.1016/j.memsci.2008.08.012

Khodabakhshi A, Madaeni S, Hosseini S. Comparative studies on morphological, electrochemical, and mechanical properties of S-polyvinyl chloride based heterogeneous cation-exchange membranes with different resin ratio loading. Industrial & Engineering Chemistry Research 2010; 49: 8477-8487. http://dx.doi.org/10.1021/ie9014205 DOI: https://doi.org/10.1021/ie9014205

Shah BG, Shahi VK, Thampy SK, Rangarajan R, Ghosh PK. Comparative studies on performance of interpolymer and heterogeneous ion-exchange membranes for water desalination by electrodialysis. Desalination 2005; 172: 257-265. http://dx.doi.org/10.1016/j.desal.2004.06.204 DOI: https://doi.org/10.1016/j.desal.2004.06.204

Hosseini SM, Koranian P, Gholami A, Madaeni SS, Moghadassi AR, Sakinejad P, Khodabakhshi AR. Fabrication of mixed matrix heterogeneous ion exchange membrane by multiwalled carbon nanotubes: Electrochemical characterization and transport properties of mono and bivalent cations. Desalination 2013; 329: 62-67. http://dx.doi.org/10.1016/j.desal.2013.09.007 DOI: https://doi.org/10.1016/j.desal.2013.09.007

Hosseini SM, Jeddi F, Nemati M, Madaeni SS, Moghadassi AR. Electrodialysis heterogeneous anion exchange membrane modified by PANI/MWCNT composite nanoparticles: Preparation, characterization and ionic transport property in desalination. Desalination 2014; 341: 107-114. http://dx.doi.org/10.1016/j.desal.2014.03.001 DOI: https://doi.org/10.1016/j.desal.2014.03.001

Hosseini SM, Madaeni SS, Khodabakhshi AR, Zendehnam A. Preparation and surface modification of PVC/SBR heterogeneous cation exchange membrane with silver nanoparticles by plasma treatment. Journal of Membrane Science 2010; 365: 438-446. http://dx.doi.org/10.1016/j.memsci.2010.09.043 DOI: https://doi.org/10.1016/j.memsci.2010.09.043

Khodabakhshi AR, Madaeni SS, Hosseini SM. Investigation of electrochemical and morphological properties of S-PVC based heterogeneous cation-exchange membranes modified by sodium dodecyl sulphate. Separation and Purification Technology 2011; 77: 220-229. http://dx.doi.org/10.1016/j.seppur.2010.12.009 DOI: https://doi.org/10.1016/j.seppur.2010.12.009

Khodabakhshi AR, Madaeni SS, Hosseini SM. Preparation and characterization of monovalent ion-selective poly(vinyl chloride)-blend-poly(styrene-co-butadiene) heterogeneous anion-exchange membranes. Polymer International 2011; 60: 466-474. http://dx.doi.org/10.1002/pi.2970 DOI: https://doi.org/10.1002/pi.2970

Hosseini SM, Madaeni SS, Zendehnam A, Moghadassi AR, Khodabakhshi AR, Sanaeepur H. Preparation and characterization of PVC based heterogeneous ion exchange membrane coated with Ag nanoparticles by (thermal-plasma) treatment assisted surface modification. Journal of Industrial and Engineering Chemistry 2013; 19: 854-862. http://dx.doi.org/10.1016/j.jiec.2012.10.031 DOI: https://doi.org/10.1016/j.jiec.2012.10.031

Hosseini SM, Madaeni SS, Heidari AR, Moghadassi AR. Preparation and characterization of polyvinyl chloride/styrene butadiene rubber blend heterogeneous cation exchange membrane modified by potassium perchlorate. Desalination 2011; 279: 306-314. http://dx.doi.org/10.1016/j.desal.2011.06.022 DOI: https://doi.org/10.1016/j.desal.2011.06.022

Hosseini SM, Madaeni SS, Heidari AR, Amirimehr A. Preparation and characterization of ion-selective polyvinyl chloride based heterogeneous cation exchange membrane modified by magnetic iron–nickel oxide nanoparticles. Desalination 2012; 284: 191-199. http://dx.doi.org/10.1016/j.desal.2011.08.057 DOI: https://doi.org/10.1016/j.desal.2011.08.057

Kariduraganavar MY, Nagarale RK, Kulkarni SS. Electrodialytic transport properties of heterogeneous cation-exchange membranes prepared by gelation and solvent evaporation methods. Journal of Applied Polymer Science 2006; 100: 198-207. http://dx.doi.org/10.1002/app.22808 DOI: https://doi.org/10.1002/app.22808

Ferreira CA, Casanovas J, Rodrigues MA, Muller F, Armelin E, Alemán C. Transport of metallic ions through polyaniline-containing composite membranes. Journal of Chemical & Engineering Data 2010; 55: 4801-4807. http://dx.doi.org/10.1021/je1004033 DOI: https://doi.org/10.1021/je1004033

Amado FDR, Rodrigues MAS, Bertuol DA, Bernardes AM, Ferreira JZ, Ferreira CA. The effect of production method on the properties of high impact polystyrene and polyaniline membranes. Journal of Membrane Science 2009; 330: 227-232. http://dx.doi.org/10.1016/j.memsci.2008.12.065 DOI: https://doi.org/10.1016/j.memsci.2008.12.065

Amado FD, Rodrigues MA, Morisso FD, Bernardes AM, Ferreira JZ, Ferreira CA. High-impact polystyrene/polyaniline membranes for acid solution treatment by electrodialysis: preparation, evaluation, and chemical calculation. Journal of Colloid and Interface Science 2008; 320: 52-61. http://dx.doi.org/10.1016/j.jcis.2007.11.054 DOI: https://doi.org/10.1016/j.jcis.2007.11.054

Kattan Readi OM, Kuenen HJ, Zwijnenberg HJ, Nijmeijer K. Novel membrane concept for internal pH control in electrodialysis of amino acids using a segmented bipolar membrane (sBPM) Journal of Membrane Science 2013; 443: 219-226. http://dx.doi.org/10.1016/j.memsci.2013.04.045 DOI: https://doi.org/10.1016/j.memsci.2013.04.045

Hao JH, Li L, Yu LX, Jiang WJ. Preparation of Bipolar Membranes (I). Journal of Applied Polymer Science 2001; 80: 1658-1663. http://dx.doi.org/10.1002/app.1260 DOI: https://doi.org/10.1002/app.1260

Fu R, Xu T, Yang W, Pan Z. Preparation of a mono-sheet bipolar membrane by simultaneous irradiation grafting polymerization of acrylic acid and chloromethylstyrene Journal of Applied Polymer Science 2003; 90: 572-576. http://dx.doi.org/10.1002/app.12776 DOI: https://doi.org/10.1002/app.12776

Li S-D, Wang C-C, Chen C-Y. Preparation and characterization of a novel bipolar membrane by plasma-induced polymerization. Journal of Membrane Science 2008; 318: 429-434. http://dx.doi.org/10.1016/j.memsci.2008.03.016 DOI: https://doi.org/10.1016/j.memsci.2008.03.016

Hao JH, Yu L, Chen C, Li L, Jiang W. Preparation of bipolar membranes. II. Journal of Applied Polymer Science 2001; 82: 1733-1738. http://dx.doi.org/10.1002/app.2014 DOI: https://doi.org/10.1002/app.2014

Xu T, Yang W. Fundamental studies on a novel series of bipolar membranes prepared from poly(2,6-dimethyl-1,4-phenylene oxide) (PPO)I. Effect of anion exchange layers on I–V curves of bipolar membranes. Journal of Membrane Science 2004; 238: 123-129. http://dx.doi.org/10.1016/j.memsci.2004.03.028 DOI: https://doi.org/10.1016/j.memsci.2004.03.028

Chen G, Xu T, Liu J. Irradiation-induced grafting of polyacrylamide onto the sulphonated poly(2,6-dimethyl-1,4-phenylene oxide) (SPPO) films as well as its use as catalytical layer in a bipolar membrane. Journal of Applied Polymer Science 2008; 109: 1447-1453. http://dx.doi.org/10.1002/app.28276 DOI: https://doi.org/10.1002/app.28276

Xue Y, Xu T, Fu R, Cheng Y, Yang W. Catalytic water dissociation using hyperbranched aliphatic polyester (Boltorn series) as the interface of a bipolar membrane. Journal of Colloid and Interface Science 2007; 316: 604-611. http://dx.doi.org/10.1016/j.jcis.2007.08.052 DOI: https://doi.org/10.1016/j.jcis.2007.08.052

Rajesh AM, Kumar M, Shahi VK. Functionalized biopolymer based bipolar membrane with poly ethylene glycol interfacial layer for improved water splitting. Journal of Membrane Science 2011; 372: 249-257. http://dx.doi.org/10.1016/j.memsci.2011.02.009 DOI: https://doi.org/10.1016/j.memsci.2011.02.009

Venugopal K, Dharmalingam S. Desalination efficiency of a novel bipolar membrane based on functionalized polysulfone. Desalination 2012; 296: 37-45. http://dx.doi.org/10.1016/j.desal.2012.04.006 DOI: https://doi.org/10.1016/j.desal.2012.04.006

Jeevananda T, Yeon K-H, Moon S-H. Synthesis and characterization of bipolar membrane using pyridine functionalized anion exchange layer. Journal of Membrane Science 2006; 283: 201-208. http://dx.doi.org/10.1016/j.memsci.2006.06.029 DOI: https://doi.org/10.1016/j.memsci.2006.06.029

Peng F, Peng S, Huang C, Xu T. Modifying bipolar membranes with palygorskite and FeCl3. Journal of Membrane Science 2008; 322: 122-127. http://dx.doi.org/10.1016/j.memsci.2008.05.027 DOI: https://doi.org/10.1016/j.memsci.2008.05.027

Chen R-Y, Chen Z, Zheng X, Chen X, Wu S-Y. Preparation and characterization of mSA/mCS bipolar membranes modified by CuTsPc and CuTAPc. Journal of Membrane Science 2010; 355: 1-6. http://dx.doi.org/10.1016/j.memsci.2010.01.013 DOI: https://doi.org/10.1016/j.memsci.2010.01.013

Wang A, Peng S, Wu Y, Huang C, Xu T. A hybrid bipolar membrane. Journal of Membrane Science 2010; 365: 269-275. http://dx.doi.org/10.1016/j.memsci.2010.09.016 DOI: https://doi.org/10.1016/j.memsci.2010.09.016

Xue YH, Fu RQ, Fu YX, Xu TW. Fundamental studies on the intermediate layer of a bipolar membrane V. Effect of silver halide and its dope in gelatin on water dissociation at the interface of a bipolar membrane. Journal of Colloid and Interface Science 2006; 298: 313-320. http://dx.doi.org/10.1016/j.jcis.2005.11.049 DOI: https://doi.org/10.1016/j.jcis.2005.11.049

VDV.N. Wilhelm FG, Wessling M, Strathmann H. Bipolar Membrane Preparation. In Handbook on Bipolar Membrane Technology, Kemperman, A. J. B, Ed.; Twente University Press: Enschede 2002; 79-108.

Fu R, Xu T, Wang G, Yang W, Pan Z. PEG–catalytic water splitting in the interface of a bipolar membrane. Journal of Colloid and Interface Science 2003; 263: 386-390. http://dx.doi.org/10.1016/S0021-9797(03)00307-2 DOI: https://doi.org/10.1016/S0021-9797(03)00307-2

Fu RQ, Xue YH, Xu TW, Yang WH. Fundamental studies on the intermediate layer of a bipolar membrane part IV. Effect of polyvinyl alcohol (PVA) on water dissociation at the interface of a bipolar membrane. Journal of Colloid and Interface Science 2005; 285: 281-287. http://dx.doi.org/10.1016/j.jcis.2004.11.050 DOI: https://doi.org/10.1016/j.jcis.2004.11.050

Fu RQ, Xu TW, Yang WH, Pan ZX. Fundamental studies on the intermediate layer of a bipolar membrane. Part II. Effect of bovine serum albumin (BSA) on water dissociation at the interface of a bipolar membrane Journal of Colloid and Interface Science 2004; 278: 318-324. http://dx.doi.org/10.1016/j.jcis.2004.06.006 DOI: https://doi.org/10.1016/j.jcis.2004.06.006

Fu R. Fundamental studies on the intermediate layer of a bipolar membranePart III. Effect of starburst dendrimer PAMAM on water dissociation at the interface of a bipolar membrane. Journal of Membrane Science 2004; 240: 141-147. http://dx.doi.org/10.1016/j.memsci.2004.05.002 DOI: https://doi.org/10.1016/j.memsci.2004.05.002

Bauer FJGB, Strathmann H. Development of bipolar membranes. Desalination 1988; 68: 279-292. http://dx.doi.org/10.1016/0011-9164(88)80061-4 DOI: https://doi.org/10.1016/0011-9164(88)80061-4

Balster J, Srinkantharajah S, Sumbharaju R, Pünt I, Lammertink RGH, Stamatialis DF, Wessling M. Tailoring the interface layer of the bipolar membrane. Journal of Membrane Science 2010; 365: 389-398. http://dx.doi.org/10.1016/j.memsci.2010.09.034 DOI: https://doi.org/10.1016/j.memsci.2010.09.034

Kang MS, Choi YJ, Moon SH. Effects of inorganic substances on water splitting in ion-exchange membranes; II. Optimal contents of inorganic substances in preparing bipolar membranes. Journal of Colloid and Interface Science 2004; 273: 533-539. http://dx.doi.org/10.1016/j.jcis.2004.01.051 DOI: https://doi.org/10.1016/j.jcis.2004.01.051

Wakamatsu Y, Matsumoto H, Minagawa M, Tanioka A. Effect of ion-exchange nanofiber fabrics on water splitting in bipolar membrane. Journal of Colloid and Interface Science 2006; 300: 442-445. http://dx.doi.org/10.1016/j.jcis.2006.03.077 DOI: https://doi.org/10.1016/j.jcis.2006.03.077

Abdu S, Sricharoen K, Wong JE, Muljadi ES, Melin T, Wessling M. Catalytic polyelectrolyte multilayers at the bipolar membrane interface. ACS Applied Materials & Interfaces 2013; 5: 10445-10455. http://dx.doi.org/10.1021/am403019y DOI: https://doi.org/10.1021/am403019y

Huang CH, Xu TW, Zhang YP, Xue YH, Chen GW. Application of electrodialysis to the production of organic acids: State-of-the-art and recent developments. Journal of Membrane Science 2007; 288: 1-12. http://dx.doi.org/10.1016/j.memsci.2006.11.026 DOI: https://doi.org/10.1016/j.memsci.2006.11.026

Xu TW. Electrodialysis processes with bipolar membranes (EDBM) in environmental protection - a review. Resources Conservation and Recycling 2002; 37: 1-22. http://dx.doi.org/10.1016/S0921-3449(02)00032-0 DOI: https://doi.org/10.1016/S0921-3449(02)00032-0

Huang CH, Xu TW. Electrodialysis with bipolar membranes for sustainable development. Environ Sci Technol 2006; 40: 5233-5243. http://dx.doi.org/10.1021/es060039p DOI: https://doi.org/10.1021/es060039p

Xu TW, Huang CH. Electrodialysis-Based Separation Technologies: A Critical Review. AIChE Journal 2008; 54: 3147-3159. http://dx.doi.org/10.1002/aic.11643 DOI: https://doi.org/10.1002/aic.11643

Wang X, Wang Y, Zhang X, Jiang C, Xu T. Noteworthy issues for producing and transforming bioproducts by electrodalysis. Journal of Chemical Technology & Biotechnology 2014; 89: 1437-1444. http://dx.doi.org/10.1002/jctb.4415 DOI: https://doi.org/10.1002/jctb.4415

Logan BE, Elimelech M. Membrane-based processes for sustainable power generation using water Nature 2012; 488: 313-319. http://dx.doi.org/10.1038/nature11477 DOI: https://doi.org/10.1038/nature11477

Post JW, Hamelers HVM, Buisman CJN. Energy recovery from controlled mixing salt and fresh water with a reverse electrodialysis system. Environ Sci Technol 2008; 42: 5785-5790. http://dx.doi.org/10.1021/es8004317 DOI: https://doi.org/10.1021/es8004317

Luo X, Cao XX, Mo YH, Xiao K, Zhang XY, Liang P, Huang X. Power generation by coupling reverse electrodialysis and ammonium bicarbonate: Implication for recovery of waste heat Electrochemistry Communications 2012; 19: 25-28. http://dx.doi.org/10.1016/j.elecom.2012.03.004 DOI: https://doi.org/10.1016/j.elecom.2012.03.004

Akyeva SC, Berkelieva LK, Evzhanov KN. Wastewater treatment of phosphate ions by the electrodialysis method. Journal of Water Chemistry and Technology 2008; 30: 246-250. http://dx.doi.org/10.3103/S1063455X08040085 DOI: https://doi.org/10.3103/S1063455X08040085

Young CL, Ingall ED. Marine Dissolved Organic Phosphorus Composition: Insights from Samples Recovered Using Combined Electrodialysis/Reverse Osmosis. Aquat Geochem 2010; 16: 563-574. http://dx.doi.org/10.1007/s10498-009-9087-y DOI: https://doi.org/10.1007/s10498-009-9087-y

Keramati N, Moheb A, Ehsani MR. Effect of operating parameters on NaOH recovery from waste stream of Merox tower using membrane systems: Electrodialysis and electrodeionization processes. Desalination 2010; 259: 97-102. http://dx.doi.org/10.1016/j.desal.2010.04.027 DOI: https://doi.org/10.1016/j.desal.2010.04.027

Onuki K, Hwane GJ, Shimizu S. Electrodialysis of hydriodic acid in the presence of iodine. Journal of Membrane Science 2000; 175: 171-179. http://dx.doi.org/10.1016/S0376-7388(00)00415-4 DOI: https://doi.org/10.1016/S0376-7388(00)00415-4

Sow PK, Shukla A. Electro-electrodialysis for concentration of hydroiodic acid Int J Hydrogen Energ 2012; 37: 3931-3937. http://dx.doi.org/10.1016/j.ijhydene.2011.04.157 DOI: https://doi.org/10.1016/j.ijhydene.2011.04.157

Rohman FS, Aziz N. Optimization of batch electrodialysis for hydrochloric acid recovery using orthogonal collocation method. Desalination 2011; 275: 37-49. http://dx.doi.org/10.1016/j.desal.2011.02.025 DOI: https://doi.org/10.1016/j.desal.2011.02.025

Rohman FS, Othman MR, Aziz N. Modeling of batch electrodialysis for hydrochloric acid recovery. Chemical Engineering Journal 2010; 162: 466-479. http://dx.doi.org/10.1016/j.cej.2010.05.030 DOI: https://doi.org/10.1016/j.cej.2010.05.030

Amara M, Kerdjoudj H. Modified membranes applied to metallic ion separation and mineral acid concentration by electrodialysis. Separation and Purification Technology 2002; 29: 79-87. http://dx.doi.org/10.1016/S1383-5866(02)00084-9 DOI: https://doi.org/10.1016/S1383-5866(02)00084-9

Paquay E, Clarinval AM, Delvaux A, Degrez M, Hurwitz HD. Applications of electrodialysis for acid pickling wastewater treatment. Chemical Engineering Journal 2000; 79: 197-201. http://dx.doi.org/10.1016/S1385-8947(00)00208-4 DOI: https://doi.org/10.1016/S1385-8947(00)00208-4

Boucher M, Turcotte N, Guillemette V, Lantagne G, Chapotot A, Pourcelly G, Sandeaux R, Gavach C. Recovery of spent acid by electrodialysis in the zinc hydrometallurgy industry: Performance study of different cation-exchange membranes. Hydrometallurgy 1997; 45: 137-160. http://dx.doi.org/10.1016/S0304-386X(96)00069-2 DOI: https://doi.org/10.1016/S0304-386X(96)00069-2

Lan SJ, Wen XM, Zhu ZH, Shao F, Zhu CL. Recycling of spent nitric acid solution from electrodialysis by diffusion dialysis. Desalination 2011; 278: 227-230. http://dx.doi.org/10.1016/j.desal.2011.05.031 DOI: https://doi.org/10.1016/j.desal.2011.05.031

Moresi M, Sappino F. Effect of some operating variables on citrate recovery from model solutions by electrodialysis. Biotechnol Bioeng 1998; 59: 344-350. http://dx.doi.org/10.1002/(SICI)1097-0290(19980805)59:3<344::AID-BIT10>3.0.CO;2-E DOI: https://doi.org/10.1002/(SICI)1097-0290(19980805)59:3<344::AID-BIT10>3.0.CO;2-E

Xu TW, Yang WH. Effect of cell configurations on the performance of citric acid production by a bipolar membrane electrodialysis. Journal of Membrane Science 2002; 203: 145-153. http://dx.doi.org/10.1016/S0376-7388(01)00795-5 DOI: https://doi.org/10.1016/S0376-7388(01)00795-5

Xu TW, Yang WH. Citric acid production by electrodialysis with bipolar membranes. Chemical Engineering and Processing 2002; 41: 519-524. http://dx.doi.org/10.1016/S0255-2701(01)00175-1 DOI: https://doi.org/10.1016/S0255-2701(01)00175-1

Pinacci P, Radaelli M. Recovery of citric acid from fermentation broths by electrodialysis with bipolar membranes Desalination 2002; 148: 177-179. http://dx.doi.org/10.1016/S0011-9164(02)00674-4 DOI: https://doi.org/10.1016/S0011-9164(02)00674-4

Novalic S, Kulbe KD. Separation and concentration of citric acid by means of electrodialytic bipolar membrane technology. Food Technol Biotech 1998; 36: 193-195.

Ling LP, Leow HF, Sarmidi MR. Citric acid concentration by electrodialysis: ion and water transport modelling. Journal of Membrane Science 2002; 199: 59-67. http://dx.doi.org/10.1016/S0376-7388(01)00678-0 DOI: https://doi.org/10.1016/S0376-7388(01)00678-0

Luo GS, Shan XY, Qi X, Lu YC. Two-phase electro-electrodialysis for recovery and concentration of citric acid. Separation and Purification Technology 2004; 38: 265-271. http://dx.doi.org/10.1016/j.seppur.2003.12.002 DOI: https://doi.org/10.1016/j.seppur.2003.12.002

Bai L, Wang XL, Nie Y, Dong HF, Zhang XP, Zhang SJ. Study on the recovery of ionic liquids from dilute effluent by electrodialysis method and the fouling of cation-exchange membrane. Sci China Chem 2013; 56: 1811-1816. http://dx.doi.org/10.1007/s11426-013-5016-4 DOI: https://doi.org/10.1007/s11426-013-5016-4

I.A.f.R.o. Cancer, IARC monographs on the evaluation of carcinogenic risks to humans, volume 49-Chromium, nickel and welding, Lyon, IARC 1990; p. 677.

Gayathri R, Kumar PS. Recovery and reuse of hexavalent chromium from aqueous solutions by a hybrid technique of electrodialysis and ion exchange. Brazilian Journal of Chemical Engineering 2010; 27: 71-78. http://dx.doi.org/10.1590/S0104-66322010000100006 DOI: https://doi.org/10.1590/S0104-66322010000100006

Nataraj SK, Hosamani KM, Aminabhavi TM. Potential application of an electrodialysis pilot plant containing ion-exchange membranes in chromium removal. Desalination 2007; 217: 181-190. http://dx.doi.org/10.1016/j.desal.2007.02.012 DOI: https://doi.org/10.1016/j.desal.2007.02.012

Peng CS, Meng H, Song SX, Lu S, Lopez-Valdivieso A. Elimination of Cr(VI) from electroplating wastewater by electrodialysis following chemical precipitation. Separation Science and Technology 2004; 39: 1501-1517. http://dx.doi.org/10.1081/SS-120030788 DOI: https://doi.org/10.1081/SS-120030788

Benvenuti T, Krapf RS, Rodrigues MAS, Bernardes AM, Zoppas-Ferreira J. Recovery of nickel and water from nickel electroplating wastewater by electrodialysis. Separation and Purification Technology 2014; 129: 106-112. http://dx.doi.org/10.1016/j.seppur.2014.04.002 DOI: https://doi.org/10.1016/j.seppur.2014.04.002

Li CL, Zhao HX, Tsuru T, Zhou D, Matsumura M. Recovery of spent electroless nickel plating bath by electrodialysis. Journal of Membrane Science 1999; 157: 241-249. http://dx.doi.org/10.1016/S0376-7388(98)00381-0 DOI: https://doi.org/10.1016/S0376-7388(98)00381-0

Spoor PB, Grabovska L, Koene L, Janssen LJJ, ter Veen WR. Pilot scale deionisation of a galvanic nickel solution using a hybrid ion-exchange/electrodialysis system. Chemical Engineering Journal 2002; 89: 193-202. http://dx.doi.org/10.1016/S1385-8947(02)00009-8 DOI: https://doi.org/10.1016/S1385-8947(02)00009-8

Dermentzis K. Removal of nickel from electroplating rinse waters using electrostatic shielding electrodialysis/ electrodeionization. Journal of Hazardous Materials 2010; 173: 647-652. http://dx.doi.org/10.1016/j.jhazmat.2009.08.133 DOI: https://doi.org/10.1016/j.jhazmat.2009.08.133

De Ketelaere RF, Linden JV. Selective recovery of nickel from industrial effluents by supported liquid membranes (SLM) and modified electrodialysis (MED) 1999.

Bolger PT, Szlag DC. Investigation into the rejuvenation of spend electroless nickel baths by electrodialysis. Environ Sci Technol 2002; 36: 2273-2278. http://dx.doi.org/10.1021/es015610t DOI: https://doi.org/10.1021/es015610t

Hoshino T. Development of high-efficiency lithium recovery from seawater by electrodialysis using ionic liquid. Abstracts of Papers of the American Chemical Society 2013; 245. DOI: https://doi.org/10.1016/j.desal.2013.02.014

Peng CS, Liu YY, Bi JJ, Xu HZ, Ahmed AS. Recovery of copper and water from copper-electroplating wastewater by the combination process of electrolysis and electrodialysis. Journal of Hazardous Materials 2011; 189: 814-820. http://dx.doi.org/10.1016/j.jhazmat.2011.03.034 DOI: https://doi.org/10.1016/j.jhazmat.2011.03.034

Caprarescu S, Purcar V, Vaireanu D-I. Separation of Copper Ions from Synthetically Prepared Electroplating Wastewater at Different Operating Conditions using Electrodialysis. Separation Science and Technology 2012; 47: 2273-2280.

Nunez P, Hansen HK. Electroleaching of Copper Waste with Recovery of Copper by Electrodialysis, in: N. Pirrone (Ed.) Proceedings of the 16th International Conference on Heavy Metals in the Environment 2013. DOI: https://doi.org/10.1051/e3sconf/20130131003

Mahmoud A, Hoadley AFA. An evaluation of a hybrid ion exchange electrodialysis process in the recovery of heavy metals from simulated dilute industrial wastewater. Water Res 2012; 46: 3364-3376. http://dx.doi.org/10.1016/j.watres.2012.03.039 DOI: https://doi.org/10.1016/j.watres.2012.03.039

Chakrabarty T, Shah B, Srivastava N, Shahi VK, Chudasama U. Zirconium tri-ethylene tetra-amine ligand-chelator complex based cross-linked membrane for selective recovery of Cu2+ by electrodialysis. Journal of Membrane Science 2013; 428: 462-469. http://dx.doi.org/10.1016/j.memsci.2012.10.056 DOI: https://doi.org/10.1016/j.memsci.2012.10.056

Chen J, Jiang YF. A Feasibility Study of Wastewater Containing Pb(II) Recovery Using Electrodialysis Reversal, in: H. Li, Q.J. Xu, D. Zhang (Eds.) Progress in Environmental Science and Engineering 2012; pp. 2007-2014. DOI: https://doi.org/10.4028/www.scientific.net/AMR.356-360.2007

Abou-Shady A, Peng CS, Bi JJ, Xu HZ, O JA. Recovery of Pb (II) and removal of NO3- from aqueous solutions using integrated electrodialysis, electrolysis, and adsorption process. Desalination 2012; 286: 304-315. http://dx.doi.org/10.1016/j.desal.2011.11.041 DOI: https://doi.org/10.1016/j.desal.2011.11.041

Cifuentes L, Garcia I, Arriagada P, Casas JM. The use of electrodialysis for metal separation and water recovery from CuSO4-H2SO4-Fe solutions. Separation and Purification Technology 2009; 68: 105-108. http://dx.doi.org/10.1016/j.seppur.2009.04.017 DOI: https://doi.org/10.1016/j.seppur.2009.04.017

Amado FDR, Rodrigues LF, Rodrigues MAS, Bernardes AM, Ferreira JZ, Ferreira CA. Development of polyurethane/polyaniline membranes for zinc recovery through electrodialysis. Desalination 2005; 186: 199-206. http://dx.doi.org/10.1016/j.desal.2005.05.019 DOI: https://doi.org/10.1016/j.desal.2005.05.019

Sadyrbaeva TZ. Recovery of manganese(II) by electrodialysis with liquid membranes based on di(2-ethylhexyl)phosphoric acid. Russian Journal of Applied Chemistry 2009; 82: 1008-1013. http://dx.doi.org/10.1134/S1070427209060147 DOI: https://doi.org/10.1134/S1070427209060147

Meguro Y, Kato A, Watanabe Y, Takahashi K. Asme, Separation and recovery of sodium nitrate from low-level radioactive liquid waste by electrodialysis, Proceedings of the 13th International Conference on Environmental Remediation and Radioactive Waste Management 2010; Vol. 1. DOI: https://doi.org/10.1115/ICEM2010-40082

Majewska-Nowak K. Recovery of Dyes and Mineral Salts from Process Waters by Batch Electrodialysis with Monoanion Selective Ion-exchange Membranes. Ochrona Srodowiska 2012; 34: 35-42.

Strathmann H. Ion-exchange membrane separation processes, Elsevier 2004.

Downloads

Published

2014-12-03

How to Cite

Jiang, C., Hossain, M. M., Li, Y., Wang, Y., & Xu, T. (2014). Ion Exchange Membranes for Electrodialysis: A Comprehensive Review of Recent Advances. Journal of Membrane and Separation Technology, 3(4), 185–205. https://doi.org/10.6000/1929-6037.2014.03.04.2

Issue

Section

Articles