Emerging Tools for Recognition and/or Removal of Dyes from Polluted Sites: Molecularly Imprinted Membranes

Authors

  • C. Algieri Research Institute on Membrane Technology, ITM-CNR, c/o University of Calabria, Via P. Bucci, Cubo 17/C, 87030 Rende (CS), Italy
  • E. Drioli Research Institute on Membrane Technology, ITM-CNR, c/o University of Calabria, Via P. Bucci, Cubo 17/C, 87030 Rende (CS), Italy
  • C. Ahmed Laboratory of Interfaces and Advanced Materials, (LIAM ), University of Monastir Bd. de l’Environnement, 5019 Monastir, Tunisia
  • I. Iben Nasser Laboratory of Interfaces and Advanced Materials, (LIAM ), University of Monastir Bd. de l’Environnement, 5019 Monastir, Tunisia
  • L. Donato Research Institute on Membrane Technology, ITM-CNR, c/o University of Calabria, Via P. Bucci, Cubo 17/C, 87030 Rende (CS), Italy

DOI:

https://doi.org/10.6000/1929-6037.2014.03.04.8

Keywords:

Specific recognition, molecular imprinting, molecularly imprinted membranes, dyes removal.

Abstract

Dyes are used in different industries as textile, paper, food processing, cosmetic, leather tanning, rubber, printing and so on. These chemical substances have negative effect on the quality of the water and food, causing human diseases and environmental problems. In view of these aspects, colorant have attracted the interest of the scientists in developing efficient routes for their detection and/or removal from the polluted sites. Although traditional technologies used for removal of dyes are efficient, there is the necessity of developing innovative systems both more cheaply and of easy performance. In this scenario, the integration of the membrane science with the molecular imprinting technology is an alternative way that present many advantages such us the removal or detection of a specific dye or a class of dyes and cost reduction processes. In fact, exploiting the benefits of these two technologies it is possible to develop molecularly imprinted membranes able to recognize a dye of interest in specific mode. This potential is promising for combatting the illegal use of dyes in food, drinks and aquaculture as well as for their removal. The main positive aspects of the imprinted membranes are their chemical stability, reusability, as well as the resistance to the pH and temperature. In addition, their preparation requires short operation time and it is not expensive. All these properties have an encouraging impact in dealing with the problem of dyes contamination.

This short review offers a description of the concept of molecular imprinting, starting from the approach of the synthesis of imprinted polymers until the description of the preparation of imprinted membranes. The application of imprinted polymers and membranes for the detection and/or removal of dyes from polluted sites will be also discussed.

References

Maulin PS. On Site Application of Pseudomonas aeruginosa ETL-1942 and bacillus cereus ETL-1949 in decolorization and degradation of remazol black. Int J Environ Biorem Biodeg 2014; 2: 139-45.

Jadhav JP, Parshetti GK, Kalme SD, Govindwar SP. Decolourization of azo dye methyl red by Saccharomyces Cerevisiae MTCC 463. Chemosphere 2007; 68: 394-00. http://dx.doi.org/10.1016/j.chemosphere.2006.12.087 DOI: https://doi.org/10.1016/j.chemosphere.2006.12.087

Banat IM, Nigam P, Singh D, Marchant R. Microbial decolorization of textile-dye-containing effluents: a review. Bioresour Technol 1996; 58: 217-27. http://dx.doi.org/10.1016/S0960-8524(96)00113-7 DOI: https://doi.org/10.1016/S0960-8524(96)00113-7

Robinson T, McMullan G, Marchant R, Nigam P. Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour Technol 2001; 77: 247-55. http://dx.doi.org/10.1016/S0960-8524(00)00080-8 DOI: https://doi.org/10.1016/S0960-8524(00)00080-8

Fu Y, Viraraghavan T. Fungal decolorization of dye wastewaters: a review. Bioresour Technol 2001; 1979: 251-62. DOI: https://doi.org/10.1016/S0960-8524(01)00028-1

Slokar YM, Majcen Le Marechal A. Methods of decolouration of textile wastewaters. Dyes Pigments 1997; 37: 335-356. http://dx.doi.org/10.1016/S0143-7208(97)00075-2 DOI: https://doi.org/10.1016/S0143-7208(97)00075-2

Pearce CI, Lloyd JR, Guthrie JT. The removal of colour from textile wastewater using whole bacterial cells: a review. Dyes Pigments 2003; 58: 179-96. http://dx.doi.org/10.1016/S0143-7208(03)00064-0

Sanghi R, Bhattacharya B. Review on decolourisation of aqueous dye solutions by low cost adsorbents. Color Technol 2002; 118: 256-69. http://dx.doi.org/10.1111/j.1478-4408.2002.tb00109.x DOI: https://doi.org/10.1111/j.1478-4408.2002.tb00109.x

Ramesh B, Parande AK, Raghu S, Kumar TP. Textile Technology. Cotton textile pressing: Waste generation and effluent treatment. J Cotton Sci 2007; 11: 141-151.

Dickey FH. Specific adsorption. J Phys Chem 1955; 59: 695-07. http://dx.doi.org/10.1021/j150530a006 DOI: https://doi.org/10.1021/j150530a006

Mayes AG. A brief history of the-New Era‖ of molecular imprinting. In Molecularly Imprinted Materials. 1st ed.; Yan N, Ramström O, Eds. Marcel Dekker: New York, NY, USA, 2005; pp. 13-23. DOI: https://doi.org/10.1201/9781420030303.ch2

Wulff, G, Sarhan A. Ǚber die Anwendung von enzymanalog gebauten polymeren zur Racemattrennung. Angew Chem 1972; 84: 364. http://dx.doi.org/10.1002/ange.19720840838 DOI: https://doi.org/10.1002/ange.19720840838

Takagishi T, Klotz I. Macromolecule-small molecule interactions; introduction of additional binding sites in polyethyleneimine by disulfide cross-linkages. Biopolymers 1972; 11: 483-91. http://dx.doi.org/10.1002/bip.1972.360110213 DOI: https://doi.org/10.1002/bip.1972.360110213

Widstrand C, Boyd B, Billing J, Rees A. Efficient extraction of toxic compounds from complex matrices using molecularly imprinted polymers. Am Lab 2007; 39: 23-24.

Alvarez-Lorenzo C, Concheiro A. Molecularly imprinted polymers for drug delivery. J Chromatogr B 2004; 804: 231–45. http://dx.doi.org/10.1016/j.jchromb.2003.12.032 DOI: https://doi.org/10.1016/j.jchromb.2003.12.032

Lavignac N, Allender CJ, Brain KR. Current status of molecularly imprinted polymers as alternatives to antibodies in sorbent assays. Anal Chim Acta 2004; 510:139-45. http://dx.doi.org/10.1016/j.aca.2003.12.066 DOI: https://doi.org/10.1016/j.aca.2003.12.066

Nilsson J, Spégel P, Nilsson S. Molecularly imprinted polymer formats for capillary electrochromatography. J Chromatog. B 2004; 804: 3-12. DOI: https://doi.org/10.1016/j.jchromb.2003.12.036

Milojkovic SS, Dusan K, Comor JJ, Nedeljkovic JM. Radiation induced synthesis of molecularly imprinted polymers. Polymer 1997; 38 (11): 2853-5. http://dx.doi.org/10.1016/S0032-3861(97)85624-8 DOI: https://doi.org/10.1016/S0032-3861(97)85624-8

Zhang LY, Chend GX, Fu C. Synthesis and characteristics of tyrosine imprinted beads via suspension polymerization. React Funct Polym 2003; 56: 167-73. http://dx.doi.org/10.1016/S1381-5148(03)00054-3 DOI: https://doi.org/10.1016/S1381-5148(03)00054-3

Perez-Moral N, Mayes AG. Comparative study of imprinted polymer particles prepared by different polymerization methods. Anal Chim Acta 2004; 504: 15-21. http://dx.doi.org/10.1016/S0003-2670(03)00533-6 DOI: https://doi.org/10.1016/S0003-2670(03)00533-6

Piletsky SA, Panasyuk TL, Piletskay EV, Nicholls IA, Ulbricht M. Receptor and transport properties of imprinted polymer membranes, a review. J Membr Sci 1999; 157: 263-78. http://dx.doi.org/10.1016/S0376-7388(99)00007-1 DOI: https://doi.org/10.1016/S0376-7388(99)00007-1

Yoshikawa, M. Molecularly imprinted polymeric membranes. Bioseparation 2002; 10: 277-86. http://dx.doi.org/10.1023/A:1021537602663 DOI: https://doi.org/10.1023/A:1021537602663

Donato L, Figoli A, Drioli E. Novel composite poly (4vinylpiridine)/polypropylene membranes with recognition properties for (S)-naproxen. J Pharmaceut Biomed Anal 2005; 37: 1003-1008. http://dx.doi.org/10.1016/j.jpba.2004.09.020

Suedee R, Bodhibukkana N, Tangthong N, Amnuaikit C, Kaewnopparat S, Srichana T. Development of a reservoir-type transdermal enantioselective controlled delivery system for racemic propanolol using a molecularly imprinted polymer composite membrane. J Control Release 2008; 129: 170-78. http://dx.doi.org/10.1016/j.jconrel.2008.05.001 DOI: https://doi.org/10.1016/j.jconrel.2008.05.001

Donato L, Mazzei R, Algieri C, Piacentini E, Poerio T, Giorno L. Molecular Recognition-driven. Membrane. Processes. In Smart Membranes and Sensors: Synthesis, Characterization, and Applications. Ed Annarosa Gugliuzza, Scrivener Publishing L.L.C. 2014; pp. 269-300. http://dx.doi.org/10.1002/9781119028642.ch10 DOI: https://doi.org/10.1002/9781119028642.ch10

Wang JY, Liu F, Xu ZL, Li K. Theophylline molecular imprint composite membranes prepared from poly (vinylidene fluoride) (PVDF) substrate. Chem Eng Sci 2010; 65: 3322-30. http://dx.doi.org/10.1016/j.ces.2010.02.024

Zayats M, Lahav M, Kharitonov AB, Willner I. Imprinting of specific molecular recognition sites in inorganic and organic thin layer membranes associated with ion-sensitive field-effect transistors. Tetrahedron 2002; 58: 815-24. http://dx.doi.org/10.1016/S0040-4020(01)01112-7 DOI: https://doi.org/10.1016/S0040-4020(01)01112-7

Donato L, Greco MC, Drioli E. Preparation of molecularly imprinted membranes and evaluation of their performance in the selective recognition of dimethoate. Desalin Water Treat 2011; 30: 171-77. http://dx.doi.org/10.5004/dwt.2011.1960 DOI: https://doi.org/10.5004/dwt.2011.1960

Garcia Del Blanco S, Donato L, Drioli E. Development of molecularly imprinted membranes for selective recognition of primary amines in organic medium. Sep Purif Technol 2012; 87: 40-6. http://dx.doi.org/10.1016/j.seppur.2011.11.018 DOI: https://doi.org/10.1016/j.seppur.2011.11.018

Ye L, Mosbach K. Molecular imprinting synthetic materials as substitutes for biological antibodies and receptors. Chem Mater 2008; 20: 859-68. http://dx.doi.org/10.1021/cm703190w DOI: https://doi.org/10.1021/cm703190w

Longo L, Vasapollo G. Molecularly imprinted polymers as nucleotide receptors. Mini-Rev Org Chem 2008; 5: 163-70. http://dx.doi.org/10.2174/157019308785161620 DOI: https://doi.org/10.2174/157019308785161620

Puoci F, Iemma F, Picci N. Stimuli-responsive molecularly imprinted polymers for drug delivery: A review. Curr Drug Deliv 2008; 5: 85-96. http://dx.doi.org/10.2174/156720108783954888 DOI: https://doi.org/10.2174/156720108783954888

Haginaka J. Monodispersed, molecularly imprinted polymers as affinity-based chromatography media. J Chromatogr B 2008; 66: 3-13. http://dx.doi.org/10.1016/j.jchromb.2007.07.019 DOI: https://doi.org/10.1016/j.jchromb.2007.07.019

Wei S, Mizaikoff B. Recent advances on noncovalent molecular imprints for affinity separations. J Sep Sci 2007; 30: 1794-05. http://dx.doi.org/10.1002/jssc.200700166 DOI: https://doi.org/10.1002/jssc.200700166

Piletsky SA, Turner NW, Laitenberger P. Molecularly imprinted polymers in clinical diagnostics-future potential and existing problems. Med Eng Phys 2006; 28: 971-977. http://dx.doi.org/10.1016/j.medengphy.2006.05.004 DOI: https://doi.org/10.1016/j.medengphy.2006.05.004

Li W, Li S. Molecular imprinting A versatile tool for separation, sensors and catalysis. Adv Polym Sci 2007; 206: 191-10. http://dx.doi.org/10.1007/12_2006_105 DOI: https://doi.org/10.1007/12_2006_105

Morelli I, Chiono V, Vozzi G, Ciardelli G, Silvestri D, Giusti P. Molecularly imprinted submicronspheres for applications in a

novel model biosensor-film. Sens Actuators B 2010; 150: 394-01. http://dx.doi.org/10.1016/j.snb.2010.06.046 DOI: https://doi.org/10.1016/j.snb.2010.06.046

Pichon V, Chapuis-Hugon F. Role of molecularly imprinted polymers for selective determination of environmental pollutants-A review. Anal Chim Acta 2008; 622: 48-61. http://dx.doi.org/10.1016/j.aca.2008.05.057 DOI: https://doi.org/10.1016/j.aca.2008.05.057

Vasapollo, G. Del Sole, R, Mergola, L, Lazzoi MR, Scardino A. Molecularly imprinted polymers: Present and future prospective. Int J Mol Sci 2011; 12: 5908-5945. http://dx.doi.org/10.3390/ijms12095908 DOI: https://doi.org/10.3390/ijms12095908

Cormack PAG, Elorza AZ. Molecularly imprinted polymers: synthesis and characterization. J Chromatogr B 2004;m 804: 173-82. DOI: https://doi.org/10.1016/j.jchromb.2004.02.013

Shelke CR, Kawtikwar PS, Sakarkar DM, Kulkarni Nikhil P. Synthesis and characterization of MIPs-a viable commercial venture. Pharmaceutically. Review, 6(5), (http://www. pharmainfo.net/reviews/synthesis-and-characterization-m,ips-viable-commercial-venture) (Accessed on Jan 2010).

Trotta F, Biasizzo M, Caldera F. Molecularly Imprinted Membranes. Membranes 2012; 2: 440-77. http://dx.doi.org/10.3390/membranes2030440 DOI: https://doi.org/10.3390/membranes2030440

Yan H, Row KH. Characteristic and Synthetic Approach of Molecularly Imprinted Polymer. Int J Mol Sci. 2006; 7: 155-78. http://dx.doi.org/10.3390/i7050155 DOI: https://doi.org/10.3390/i7050155

Algieri C, Drioli E, Guzzo L, Donato L. Bio-Mimetic Sensors Based on Molecularly Imprinted Membranes. Sensors 2014; 14: 13863-13912. http://dx.doi.org/10.3390/s140813863 DOI: https://doi.org/10.3390/s140813863

Yungerman I, Srebnik S. Factors Contributing to Binding-Site Imperfections in Imprinted Polymers. Chem Mater 2006; 18; 657-63. http://dx.doi.org/10.1021/cm050598f DOI: https://doi.org/10.1021/cm050598f

Li J, Wei G, Zhang, Y. Molecularly imprinted polymers as recognition elements in sensors. In Molecularly Imprinted Sensors: Overview and Applications. Li S, Ge Y, Piletsky, SAA, Lunec J, Eds. Elsevier: Amsterdam (Netherlands) 2012; pp. 35-55. http://dx.doi.org/10.1016/B978-0-444-56331-6.00002-5 DOI: https://doi.org/10.1016/B978-0-444-56331-6.00002-5

Toufaili, FAE, Brüggemann VA. Screening combinatorial libraries of molecularly imprinted polymer films casted on membranes in single-use membrane modules. J Chromatogr B 2004; 840: 135-39. http://dx.doi.org/10.1016/j.jchromb.2004.02.016 DOI: https://doi.org/10.1016/j.jchromb.2004.02.016

Hilal N, Kochkodan V, Busca G, Kochkodan O, Atkin BP. Thin layer compositemolecularly imprinted membranes for selective separation of cAMP. Sep Purif Tec 2003; 31: 281-89. http://dx.doi.org/10.1016/S1383-5866(02)00205-8

Chen L, Xu S, Li J. Recent advances in molecular imprinting technology: current status, challenges and highlighted applications. Chem Soc Rev 2011; 40: 2922-42. http://dx.doi.org/10.1039/c0cs00084a

Yoshimatsu K, Reimhult K, Krozer A, Mosbach K, Sode K, Ye L. Uniform molecularly imprinted microspheres and nanoparticles prepared by precipitation polymerization: The control of particle size suitable for different analytical applications. Anal Chim Acta 2007; 584: 112-21. http://dx.doi.org/10.1016/j.aca.2006.11.004 DOI: https://doi.org/10.1016/j.aca.2006.11.004

Kandimalla, VB, Ju H. Molecular imprinting a dynamique technique for diverse applications in analytical chemistry. Anal. Bioanal. Chem. 2004, 380, 587-605. http://dx.doi.org/10.1007/s00216-004-2793-9 DOI: https://doi.org/10.1007/s00216-004-2793-9

Kobaiashi MA, Tate M, Rix C, Jakubov TS, Mainwaring DE. The effect of molecular imprinting on the pore size distribution of polymers. Adsorption 2007; 13: 315-21. http://dx.doi.org/10.1007/s10450-007-9062-0 DOI: https://doi.org/10.1007/s10450-007-9062-0

Ramström O, Andersson LI, Mosbach K. Recognition sites incorporating both pyridinyl and carboxy functionalities prepared by molecular imprinting. J Org Chem 1993; 58: 7562-64. http://dx.doi.org/10.1021/jo00078a041 DOI: https://doi.org/10.1021/jo00078a041

Golker K, Karlsson BCG, Olsson GD, Rosengren AM, Nicholls IA. Influence of Composition and Morphology on Template Recognition in Molecularly Imprinted Polymers, Macromolecules 2013; 46: 1408-14. http://dx.doi.org/10.1021/ma3024238 DOI: https://doi.org/10.1021/ma3024238

Baggiani C, Giovannoli C, Anfossi L, Passini C, Baravalle P, Giraudi G. A Connection between the Binding Properties of Imprinted and Non imprinted Polymers: A Change of Perspective in Molecular Imprinting, J Am Chem Soc 2012; 134: 1513-18. http://dx.doi.org/10.1021/ja205632t DOI: https://doi.org/10.1021/ja205632t

Mijangos I, Navarro-Villoslada F, Guerreiro A, Piletska E, Chianella I, Karim K, Turner A, Piletsky S. The Influence of Initiator and Different Polymerisation Conditions on the Performance of Molecularly Imprinted Polymer, Biosens Bioelectron 2006; 22: 381-87. http://dx.doi.org/10.1016/j.bios.2006.05.012 DOI: https://doi.org/10.1016/j.bios.2006.05.012

Skudar K, Bruggemann O, Wittelsberger A, Ramstrom O. Selective recognition and separation of β-lactam antibiotics using molecularly imprinted polymers. Anal Comm 1999; 36: 327-31. http://dx.doi.org/10.1039/a905151a DOI: https://doi.org/10.1039/a905151a

Piletsky S.A, Mijangos I, Guerriro A, Piletska EV, Chianella I, Karim K, Turner APF. Macromolecules 2005; 38: 1410-14. http://dx.doi.org/10.1021/ma048021r DOI: https://doi.org/10.1021/ma048021r

Lu Y, Li C, Wang X, Sun P, Xing X. Influence of polymerization temperature on the molecular recognition of imprinted polymers. J Chromatogr B 2004; 804: 53-9. http://dx.doi.org/10.1016/j.jchromb.2003.10.013

Wulf G. Molecular inprinting in cross-linked materials with the aid of molecular template-A way towards artificial antibodies. Angew Chem Int. Ed. Engl 1995; 34: 1812-32. http://dx.doi.org/10.1002/anie.199518121 DOI: https://doi.org/10.1002/anie.199518121

Mosbach K. Molecular imprinting. Trends Biochem Sci 1994; 19: 9-14. http://dx.doi.org/10.1016/0968-0004(94)90166-X DOI: https://doi.org/10.1016/0968-0004(94)90166-X

Tasselli F, Donato L, Drioli E. Evaluation of molecularly imprinted membranes based on different acrylic copolymers. J Membr Sci 2008; 320: 167-72. http://dx.doi.org/10.1016/j.memsci.2008.03.071

Chen L, Xuand S, Li J. Recent advances in molecular imprinting technology: current status, challenges and highlighted applications. Chem Soc Rev 2011; 40: 2922-42. http://dx.doi.org/10.1039/c0cs00084a DOI: https://doi.org/10.1039/c0cs00084a

Piletska EV, Guerriero AR, Whitcombe MJ, Piletsky SA. Influence of the polymerization conditions on the performance of molecularly imprinted polymers. Macromolecules 2009; 42: 4921-928. http://dx.doi.org/10.1021/ma900432z DOI: https://doi.org/10.1021/ma900432z

Wang CC, Lee W.C. Chromatographic characteristics of cholesterol-imprinted polymers prepared by covalent and non-covalent imprinting methods. J Chromatogr A 2002; 962: 69-78. http://dx.doi.org/10.1016/S0021-9673(02)00559-9 DOI: https://doi.org/10.1016/S0021-9673(02)00559-9

Garcia R, Cabrita MJ, Costa Freitas AM. Application of Molecularly Imprinted Polymers for the Analysis of Pesticide Residues in Food-A Highly Selective and Innovative Approach. Am J Anal Chem 2011; 2: 16-25. http://dx.doi.org/10.4236/ajac.2011.228119 DOI: https://doi.org/10.4236/ajac.2011.228119

Whitcombe MJ, Rodriguez ME, Villar P, Vulfson EN. A new method for the introduction of recognition site into polymers prepared by molecular imprinting: synthesis and characterization of polymer receptors for cholesterol. J Am Chem Soc 1995; 117: 7105-111. http://dx.doi.org/10.1021/ja00132a010 DOI: https://doi.org/10.1021/ja00132a010

Annamma KM, Mathew B. Design of 2,4-dichlorophenoxy acetic acid imprinted polymer with high specificity and selectivity. Mater Sci Appl 2011; 2: 131-40. DOI: https://doi.org/10.4236/msa.2011.23017

Del Sole R, De Luca A, Catalano M, Mele G, Vasapollo G. Non covalent imprinted microsphere: Preparation, evaluation and selectivity of DBU template. J Appl Polym Sci 2007; 105: 2190-197. http://dx.doi.org/10.1002/app.26208 DOI: https://doi.org/10.1002/app.26208

Nor AY, Siti K, Rahman A, Hussein MZ, Nor AI. Preparation and Characterization of Molecularly Imprinted Polymer as SPE Sorbent for Melamine Isolation, Polymers 2013; 5: 1215-1228. http://dx.doi.org/10.3390/polym5041215 DOI: https://doi.org/10.3390/polym5041215

Westermarck S. Use of mercury porosimetry and nitrogen adsorption in characterisation of the pore structure of mannitol and microcrystalline cellulose powders, granules and tablets: thesis (2000) University of Helsinki Finland.

Allen T. Particle size measurement, 5Th Ed. Chapman & Hall New York (USA) 1997 p. 251.

Carli F, Motta A. Particle size and surface area distributions of pharmaceutical powders by microcomputerized mercury porosimetry. J Pharm Sci 1984; 73: 197-03. http://dx.doi.org/10.1002/jps.2600730213 DOI: https://doi.org/10.1002/jps.2600730213

Brown SM, Lard EW. A comparison of nitrogen and mercury pore size distributions of silicas of varying pore volume. Powder Technol 1974; 9: 187-90. http://dx.doi.org/10.1016/0032-5910(74)80031-8 DOI: https://doi.org/10.1016/0032-5910(74)80031-8

Conner WC, Cevallos-Candau, JF, Weist EL, Pajares J, Mendioroz S, Cortés A. Characterization of pore structure: Porosimetry and sorption. Langmuir 1986; 2: 151-54. http://dx.doi.org/10.1021/la00068a006 DOI: https://doi.org/10.1021/la00068a006

Webb PA, Orr C. Analytical methods in fine particle technology. Micromeritics Instrument Corp. Norcross, GA (USA) 1997; p. 301.

Zhong DD, Liu X, Pang QQ, Huang YP, Liu ZS. Rapid preparation of molecularly imprinted polymer by frontal polymerization. Anal Bioanal Chem 2013; 405: 3205-214. http://dx.doi.org/10.1007/s00216-013-6722-7 DOI: https://doi.org/10.1007/s00216-013-6722-7

Lu Y, Li C, Wang X, Sun P, Xing X. Influence of polymerization temperature on the molecular recognition of imprinted polymers. J Chromatography B 2004; 804: 53-59. http://dx.doi.org/10.1016/j.jchromb.2003.10.013 DOI: https://doi.org/10.1016/j.jchromb.2003.10.013

Spivak DA. Optimization, evaluation, and characterization of molecularly imprinted polymers. Adv Drug Deliver Rev 2005; 57: 1779-794. http://dx.doi.org/10.1016/j.addr.2005.07.012 DOI: https://doi.org/10.1016/j.addr.2005.07.012

Sellergren B, Shea KJ. Influence of polymer morphology on the ability of imprinted network polymers to resolve enantiomers J Chromatography 1993; 635: 31-49. http://dx.doi.org/10.1016/0021-9673(93)83112-6 DOI: https://doi.org/10.1016/0021-9673(93)83112-6

Liu Y, Wang F, Tan T, Lei M. Study of the properties of molecularly imprinted polymers by computational and conformational analysis. Anal Chim Acta 2007; 581: 137-46. http://dx.doi.org/10.1016/j.aca.2006.08.015 DOI: https://doi.org/10.1016/j.aca.2006.08.015

Dineiro Y, Menendez I, Blanco-Lopez MC, Lobo-Castanon MJ, Miranda-Ordieres AJ, Tunon-Blanco P. Computational predictions and experimental affinity distributions for a homovanillic acid amolecularly imprinted polymer. Biosens. Bioelectron 2006; 22: 364-371. http://dx.doi.org/10.1016/j.bios.2006.03.027 DOI: https://doi.org/10.1016/j.bios.2006.03.027

Piletska EV, Turner NW, Turner APF, Piletsky SA. Controlled release of the herbicide simazine from computationally designed molecularly imprinted polymers. J Control Release 2005; 108: 132-39. http://dx.doi.org/10.1016/j.jconrel.2005.07.016 DOI: https://doi.org/10.1016/j.jconrel.2005.07.016

Wie S, Jakusch M, Mizaikoff, B. Capturing molecules with templated materials-Analysis and rational design of molecu-larly imprinted polymers. Anal Chim Acta 2006; 578; 50-58. http://dx.doi.org/10.1016/j.aca.2006.06.077 DOI: https://doi.org/10.1016/j.aca.2006.06.077

Riah S, Eynollahi S, Ganjali MR, P. Norouzi. Computational Approach to Investigation of Template/Monomer Complex in Imprinted Polymers; Dinitrobenzene Sensor. Int J Electrochem Sci 2010; 5: 509-16. DOI: https://doi.org/10.1016/S1452-3981(23)15302-8

Lulińsk P, Maciejewska D, Bamburowicz-Klimkowska M, Szutowski M. Dopamine-Imprinted Polymers: Template-Monomer Interactions, Analysis of Template Removal and Application to Solid Phase Extraction. Molecules 2007; 12: 2434-449. http://dx.doi.org/10.3390/12112434 DOI: https://doi.org/10.3390/12112434

De Luca, G, Donato L, García Del Blanco S, Tasselli F, Drioli E. On the cause of controlling affinity to small molecules of imprinted polymeric membranes prepared by noncovalent approach: A computational and experimental investigation. J Phys Chem B 2011; 115: 9345-351. http://dx.doi.org/10.1021/jp2006638 DOI: https://doi.org/10.1021/jp2006638

Pietrzyk A, Kutner W, Chitt R, Zandler ME, D’Souza F, Sannicolò F, Mussini PR. Melamine acoustic chemosensor based on molecularly imprinted polymer film. Anal Chem 2009; 81: 10061-070. http://dx.doi.org/10.1021/ac9020352 DOI: https://doi.org/10.1021/ac9020352

Lattach Y, Archirel P, Remita S. Influence of the chemical functionalities of a molecularly imprinted conducting polymer on its sensing properties: Electrochemical measurements and semiempirical DFT calculations. J Phys Chem B 2012; 116: 1467-481. http://dx.doi.org/10.1021/jp2071524 DOI: https://doi.org/10.1021/jp2071524

Prasad BB, Rai G. Study on monomer suitability toward the template in molecularly imprinted polymer. An ab initio approach. Spectrochim Acta Part A-Mol Biomol Spectros 2012; 88: 82-89. http://dx.doi.org/10.1016/j.saa.2011.11.061 DOI: https://doi.org/10.1016/j.saa.2011.11.061

Donato L, Tasselli F, De Luca G, Garcia Del Blanco S, Drioli E. Novel hybrid molecularly imprinted membranes for targeted 4,4’-methylendianiline. Sep Purif Technol 2013; 116: 184-91. http://dx.doi.org/10.1016/j.seppur.2013.05.027 DOI: https://doi.org/10.1016/j.seppur.2013.05.027

Ho WSW, Sirkar K. Membrane Handbook, Kluwer Academic Publishers, Dordrecht 1992. http://dx.doi.org/10.1007/978-1-4615-3548-5 DOI: https://doi.org/10.1007/978-1-4615-3548-5

Ulbricht M. Membrane separations using molecularly imprinted polymers. Review. J Chromatography B 2004; 804: 113-25. http://dx.doi.org/10.1016/j.jchromb.2004.02.007 DOI: https://doi.org/10.1016/j.jchromb.2004.02.007

Charcosset C. Membrane processes in biotechnology: An overview. Biotech Adv 2006; 24: 482-92. http://dx.doi.org/10.1016/j.biotechadv.2006.03.002 DOI: https://doi.org/10.1016/j.biotechadv.2006.03.002

Baker RW. Overview of Membrane Science and Technology, Membrane Technology and Applications. John Wiley & Sons Chichester (UK) 2012; p. 1-14. http://dx.doi.org/10.1002/9781118359686.ch1 DOI: https://doi.org/10.1002/9781118359686.ch1

Vienken J. Membranes in Hemodialysis, in Membranes for the Life Sciences. Edited by Klaus-Viktor Peinemann and Suzana Pereira Nunes WILEY-VCH Verlag GmbH & Co. KGaA 2008.

Hou DY, Wang J, Qu D, Luan ZK, Zhao CW, Ren XJ. Desalination of brackish groundwater by direct contact membrane distillation. Water Sci Tech 2010; 61: 2010-13. DOI: https://doi.org/10.2166/wst.2010.110

Algieri C, Drioli E, Donato L. Development of Mixed Matrix Membranes for Controlled Release of Ibuprofen. J Appl Polym Sci 2013; 128: 754-60. http://dx.doi.org/10.1002/app.38102 DOI: https://doi.org/10.1002/app.38102

Donato L, Algieri C, Rizzi A, Giorno L. Kinetic study of tyrosinase immobilized on polymeric membrane. J Memb Sci 2014; 454: 346-50. http://dx.doi.org/10.1016/j.memsci.2013.12.029 DOI: https://doi.org/10.1016/j.memsci.2013.12.029

Kim JH, Koros WJ, Paul DR. Effects of CO2 exposure and physical aging on the gas permeability of thin 6FDA-based

polyimide membranes: part 2 with crosslinking, J Membr Sci 2006; 282: 32-43. http://dx.doi.org/10.1016/j.memsci.2006.05.003 DOI: https://doi.org/10.1016/j.memsci.2006.05.003

Cassano A, Donato L, Drioli E. Ultrafiltration of kiwi fruit juice: Operating parameters, juice quality and membrane fouling, J Food Eng 2007; 79: 613-21. http://dx.doi.org/10.1016/j.jfoodeng.2006.02.020 DOI: https://doi.org/10.1016/j.jfoodeng.2006.02.020

Drioli E, Romano M. Progress and new perspectives on integrated membrane operations for sustainable industrial growth. Ind Eng Chem Rev 2001; 40: 1277-300. http://dx.doi.org/10.1021/ie0006209 DOI: https://doi.org/10.1021/ie0006209

Pala P, Sikdera J, Royb S, Giorno L. Process intensification in lactic acid production: A review of membrane based processes. Chem Eng Prog 2009; 48: 1549-59. http://dx.doi.org/10.1016/j.cep.2009.09.003 DOI: https://doi.org/10.1016/j.cep.2009.09.003

Piletsky SA, Piletskaya EV, Panasyuk TL, Elskaya AV, Levi R, Karube I, Wulff G. Imprinted membranes for sensors technology: opposite behavior of covalently and noncovalently imprinted membranes. Macromolecules 1998, 31, 2137-40. http://dx.doi.org/10.1021/ma970818d DOI: https://doi.org/10.1021/ma970818d

Kobayashi T, Fukaya T, Abe M, Fujii N. Phase inversion molecular imprinting by using template copolymers for high substrate Langmuir 2002; 18: 2866-72. http://dx.doi.org/10.1021/la0106586 DOI: https://doi.org/10.1021/la0106586

Yang HH, Zhang SQ, Yang W, Chen XL, Zhuang ZX, Xu JG, Wang XR. Molecularly imprinted sol-gel nanotubes membrane for biochemical separations. J Am Chem Soc 2004; 126: 4054-5. http://dx.doi.org/10.1021/ja0389570 DOI: https://doi.org/10.1021/ja0389570

Wang P, Hu W, Su W. Molecularly imprinted poly(methacrylamide-co-methacrylic acid) composite membranes for recognition of curcumin. Anal Chim Acta 2008; 615: 54-62. http://dx.doi.org/10.1016/j.aca.2008.03.040

Shan PX, Yun L, Li QS, Al Qin L. Preparation and Recognition Properties of Levodropopizine Molecularly Imprinted Composite Membranes. Adv Mat Res 2011; 355: 399-401. DOI: https://doi.org/10.4028/www.scientific.net/AMR.399-401.355

Tao Zhu, Dan Xu, Yiguang Wu, Jian Li, Meimei Zhou, Tian Tian, Yin Jiang, Fengting Li, Guangtao Li. Surface molecularly imprinted electrospun affinity membranes with multimodal pore structures for efficient separation of proteins, J Mater Chem B 2013; 1: 6449-6458. http://dx.doi.org/10.1039/c3tb20973c DOI: https://doi.org/10.1039/c3tb20973c

Piletsky SA, Dubei IY, Fedroyak DM, Kukhar VP. Substrate-selective polymeric membranes: selective transfer of nucleic acid components. Biopolym. Kletka 1990; 6: 55-58. http://dx.doi.org/10.7124/bc.00028D DOI: https://doi.org/10.7124/bc.00028D

S Marx-Tibbon, I Willner. Photostimulated polymers: A light-regulated medium for transport of amino acids. J Chem Soc Chem Commun 1994; 10: 1261-62. http://dx.doi.org/10.1039/c39940001261 DOI: https://doi.org/10.1039/C39940001261

Sergeyeva TA, Piletsky SA, Brovko AA et al. Conductometric sensor for atrazine detection based on molecularly imprinted polymer membrane. Analyst 1999; 124:331-34. http://dx.doi.org/10.1039/a808484j DOI: https://doi.org/10.1039/a808484j

Kimaro A, Kelly LA, Murray GM. Molecularly imprinted ionically permeable membrane for uranyl ion. Chem Comm 2001; 14: 1282-83. http://dx.doi.org/10.1039/b103077a DOI: https://doi.org/10.1039/b103077a

Ulbricht, M. Advanced functional polymer membranes. Polymer 2006: 47: 2217-262. DOI: https://doi.org/10.1016/j.polymer.2006.01.084

Joong KP, Jeong IS. Characteristics of Phenylalanine Imprinted Membrane Prepared by the Wet Phase Inversion Method. Korean J Chem Eng 2002; 19(6): 940-48. http://dx.doi.org/10.1007/BF02707215 DOI: https://doi.org/10.1007/BF02707215

Yoshikawa M, Izumi J, Kitao T, Sakamoto S. Molecularly imprinted polymeric membranes for optical resolution. J Membr Sci 1995; 108:171-75. http://dx.doi.org/10.1016/0376-7388(95)00160-8 DOI: https://doi.org/10.1016/0376-7388(95)00160-8

Yoshikawa M, Izumi J, Kitao T. Alternative molecular imprinting, a facile way to introduce chiral recognition sites. React Funct Polym 1999; 42: 93-102. http://dx.doi.org/10.1016/S1381-5148(98)00063-7 DOI: https://doi.org/10.1016/S1381-5148(98)00063-7

Yoshikawa M, Ooi T, Izumi J. Alternative molecularly imprinted membranes from a derivative of a natural polymer, cellulose acetate. J Appl Polym Sci 1999; 72: 493-99. http://dx.doi.org/10.1002/(SICI)1097-4628(19990425)72:4<493::AID-APP5>3.0.CO;2-U DOI: https://doi.org/10.1002/(SICI)1097-4628(19990425)72:4<493::AID-APP5>3.0.CO;2-U

Yoshikawa M, Izumi J, Guiver MD, Robertson GP. Recognition and selective transport of nucleic acid components through molecularly imprinted polymeric membranes. Macromol Mater Eng 2001; 286: 52-59. http://dx.doi.org/10.1002/1439-2054(20010101)286:1<52::AID-MAME52>3.0.CO;2-R DOI: https://doi.org/10.1002/1439-2054(20010101)286:1<52::AID-MAME52>3.0.CO;2-R

Kobayashi T, Wang HY, Wang, Fujii N. Molecular Imprinting of Theophylline in Acrylonitrile-acrylic Acid Copolymer Membrane. Chem Lett 1995; 24: 927-28. http://dx.doi.org/10.1246/cl.1995.927 DOI: https://doi.org/10.1246/cl.1995.927

Trotta F, Baggiani C, Luda MP, Drioli E, Massari T. A molecular imprinted membrane for molecular discrimination of tetracycline hydrochloride. J Membr Sci 2005; 254: 13-19. http://dx.doi.org/10.1016/j.memsci.2004.11.013 DOI: https://doi.org/10.1016/j.memsci.2004.11.013

Ramamoorthy M, Mathias U. Evaluation of molecularly imprinted polymer blend filtration membranes under solid phase extraction conditions. Sep Purif Technol 2004; 39: 211-19. http://dx.doi.org/10.1016/j.seppur.2003.12.005 DOI: https://doi.org/10.1016/j.seppur.2003.12.005

Silvestri D, Barbani N, Coluccio ML, Pegoraro C, Giusti P, Cristallini C, Ciardelli G. Poly(ethylene-co-vinyl alcohol) Membranes with Specific Adsorption Properties for Potential Clinical Application. Sep Sci Technol 2007; 42: 2829-47. http://dx.doi.org/10.1080/01496390701558292 DOI: https://doi.org/10.1080/01496390701558292

Donato L, Tasselli F, Drioli E. Molecularly imprinted membranes with affinity properties for folic acid. Separ Sci Technol 2010; 45: 2273-79. http://dx.doi.org/10.1080/01496395.2010.510089 DOI: https://doi.org/10.1080/01496395.2010.510089

Tasselli F, Donato L, Drioli E. Evaluation of molecularly imprinted membranes based on different acrylic copolymers. J Membr Sci 2008; 320: 167-72. http://dx.doi.org/10.1016/j.memsci.2008.03.071 DOI: https://doi.org/10.1016/j.memsci.2008.03.071

Trotta F, Drioli E, Baggiani C, Lacopo D. Molecular imprinted polymeric membrane for naringin recognition. J Membr Sci 2002; 201: 77-84. http://dx.doi.org/10.1016/S0376-7388(01)00705-0 DOI: https://doi.org/10.1016/S0376-7388(01)00705-0

Pegoraro C, Silvestri D, Ciardelli G, Cristallini C, Barbani N. Molecularly imprinted poly(ethylene-co-vinyl alcohol) membranes for the specific recognition of phospholipids. Biosens Bioelectron 2008; 24: 748-55. http://dx.doi.org/10.1016/j.bios.2008.06.050 DOI: https://doi.org/10.1016/j.bios.2008.06.050

Faizal CK.M, Hoshina Y, Kobayashi T. Scaffold membranes for selective adsorption of α-tocopherol by phase inversion covalently imprinting technique. J Membr Sci 2008; 322: 503-11. http://dx.doi.org/10.1016/j.memsci.2008.05.046 DOI: https://doi.org/10.1016/j.memsci.2008.05.046

Silvestri D, Barbani N, Cristallini C, Giusti P, Ciardelli G. Molecularly imprinted membranes for an improved recognition of biomolecules in aqueous medium. J Membr Sci 2006; 282: 284-95. http://dx.doi.org/10.1016/j.memsci.2006.05.031 DOI: https://doi.org/10.1016/j.memsci.2006.05.031

Fan P, Wang B. Preparation of molecularly imprinted polymer membrane with blending trimethoprim-MIP and polysulfone and its transport properties. Kor J Chem Eng 2009; 26: 1813-20. http://dx.doi.org/10.1007/s11814-009-0256-x DOI: https://doi.org/10.1007/s11814-009-0256-x

Wang X, Zhang L, Ma C, Song R, Hou H, Li D. Enrichment and separation of silver from waste solutions by metal ion imprinted membrane. Hydrometallurgy 2009; 100: 82-6. http://dx.doi.org/10.1016/j.hydromet.2009.10.006 DOI: https://doi.org/10.1016/j.hydromet.2009.10.006

Ul-Haq N, Khan T, Park J.K. Enantioseparation with D-Phe- and L-Phe-imprinted PAN-based membranes by ultrafiltration. Chem Technol Biotechnol 2008; 83: 524-33. http://dx.doi.org/10.1002/jctb.1827 DOI: https://doi.org/10.1002/jctb.1827

Wang HY, Xia SL, Sun H, Liu YK, Cao SK, Kobayashi, T. Molecularly imprinted copolymer membranes functionalized by phase inversion imprinting for uracil recognition and permselective binding. J Chromatogr B 2004; 804: 127-34. http://dx.doi.org/10.1016/j.jchromb.2004.01.036 DOI: https://doi.org/10.1016/j.jchromb.2004.01.036

Bryjak M, Duraj I. Molecularly imprinted membranes for removal of bisphenol A. Solvent Extr. Ion Exch. 201; 29: 432-39. DOI: https://doi.org/10.1080/07366299.2011.573446

Székely G, Valtcheva IB, Kim JF, Livingston A.G. Molecularly imprinted organic solvent nanofiltration membranes-Revealing molecular recognition and solute. React Funct Polym 2014, doi:10.1016/j.reactfunctpolym 2014; 03: 008.

Takeda K, Kobayashi T. Hybrid molecularly imprinted membranes for targeted bisphenol derivatives. J Membr Sci 2006; 275: 61-9. http://dx.doi.org/10.1016/j.memsci.2005.09.004 DOI: https://doi.org/10.1016/j.memsci.2005.09.004

Takeda K, Uemura K, Kobayashi T. Hybrid molecular imprinted membranes having selectivity and separation behavior to targeted indole derivatives. Anal Chim Acta 2007; 591: 40-8. http://dx.doi.org/10.1016/j.aca.2007.02.017 DOI: https://doi.org/10.1016/j.aca.2007.02.017

Silvestri D, Borrelli C, Giusti P, Cristallini C, Ciardelli G. Polymeric devices containing imprinted nanospheres: a novel approach to improve recognition in water for clinical uses, Anal. Chim Acta 2005; 542: 3-13. http://dx.doi.org/10.1016/j.aca.2004.12.005 DOI: https://doi.org/10.1016/j.aca.2004.12.005

Ku C, Faizal M, Kobayashi T. Tocopherol-Targeted Membrane Adsorbents Prepared by Hybrid Molecular Imprinting. Polym Eng Sci 2008; 48: 1085-93. http://dx.doi.org/10.1002/pen.21053 DOI: https://doi.org/10.1002/pen.21053

Borrelli C, Barsanti S, Silvestri D, Manesiotis P, Ciardelli G, Sellergren B. Selective depletion of riboflavine from beer using membranes incorporating imprinted polymer particles. J Food Process Pres 2011; 35: 112-28. http://dx.doi.org/10.1111/j.1745-4549.2009.00464.x DOI: https://doi.org/10.1111/j.1745-4549.2009.00464.x

Rebelo TSCR, Almeida, SAA, Rafaela J, Guerreiro L, Conceição M, Montenegro BSM, Goreti M, Sales F. Trimethoprim-selective electrodes with molecularly imprinted polymers acting as ionophores and potentiometric transduction on graphite solid-contact. Microchem J 2011; 98: 21-8. http://dx.doi.org/10.1016/j.microc.2010.10.006 DOI: https://doi.org/10.1016/j.microc.2010.10.006

Kamel, AH, Moreira, FTC, Rebelo TSCR, Sales MGF. Molecularly-imprinted materials for potentiometric transduction: Application to the antibiotic enrofloxacin. Anal Lett 2011; 44: 2107-23. http://dx.doi.org/10.1080/00032719.2010.546021 DOI: https://doi.org/10.1080/00032719.2010.546021

Guerreiro JRL, Freitas V, Sales MGF. New sensing materials of molecularly-imprinted polymers for the selective reco-gnition of chlortetracycline. Microchem J 2011; 97: 173-81. http://dx.doi.org/10.1016/j.microc.2010.08.011 DOI: https://doi.org/10.1016/j.microc.2010.08.011

Hong W, Yanyan Z, Mingcheng N, Zhongyi J. Molecularly imprinted organic-inorganic hybrid membranes for selective separation of phenylalanine isomers and its analogue. Sep Purif Technol 2009; 68: 97-104. http://dx.doi.org/10.1016/j.seppur.2009.04.014 DOI: https://doi.org/10.1016/j.seppur.2009.04.014

Kalim R, Schomäcker R, Yüce S, Brüggemann O. Catalysis of β-elimination applying membranes with incorporated molecularly imprinted polymer particles. Polym Bull 2005; 55: 287-97. http://dx.doi.org/10.1007/s00289-005-0438-6 DOI: https://doi.org/10.1007/s00289-005-0438-6

Yuqing Z, Xing Shan S, Xiaoquan G. Development of a molecularly imprinted membrane for selective separation of flavonoids. Sep Purif Technol 2011; 76: 337-44. http://dx.doi.org/10.1016/j.seppur.2010.10.024 DOI: https://doi.org/10.1016/j.seppur.2010.10.024

Asman S, Yusof NA, Abdullah AA, Haron MDJ. Synthesis and characterization of hybrid molecularly imprinted polymer (MIP) membranes for removal of methylene blue (MB). Molecules 2012; 17: 1916-28. http://dx.doi.org/10.3390/molecules17021916

Wang HY, Kobayashi T, Fujii N. Surface molecular imprinting on photo-sensitive dithiocarbanoyl polyacrylonitrile membranes using photograft polymerization. J Chem Technol Biot 1997; 70: 355-62. http://dx.doi.org/10.1002/(SICI)1097-4660(199712)70:4<355::AID-JCTB793>3.0.CO;2-# DOI: https://doi.org/10.1002/(SICI)1097-4660(199712)70:4<355::AID-JCTB793>3.0.CO;2-#

Ulbricht M, Kochkodan V, Weigel W. Molecularly imprinted composite membranes for selective binding of desmetryn from aqueous solutions Desalination 2002; 149: 323-28. http://dx.doi.org/10.1016/S0011-9164(02)00802-0 DOI: https://doi.org/10.1016/S0011-9164(02)00802-0

Gkementzoglou C, Kotrotsiou O, Kiparissides C. Synthesis of Novel Composite Membranes Based on Molecularly Imprinted Polymers for Removal of Triazine Herbicides from Water. Ind Eng Chem Res 2013; 52: 14001-010. http://dx.doi.org/10.1021/ie400479c DOI: https://doi.org/10.1021/ie400479c

Sergeyeva TA, Matuschewski H, Piletsky SA, Bendig J, Schedler U, Ulbricht M. Molecularly imprinted polymer membranes for substance-selective solid-phase extraction from water by surface photo-grafting polymerization. J Chromatogr A 2001; 907: 89-99. http://dx.doi.org/10.1016/S0021-9673(00)01053-0 DOI: https://doi.org/10.1016/S0021-9673(00)01053-0

Kochkodan V, Hilal N, Melnik V, Kochkodan O, Vasilenko O. Selective recognition of organic pollutants in aqueous solutions with composite imprinted membranes. Adv Colloid Interfac 2010; 159: 180-88. http://dx.doi.org/10.1016/j.cis.2010.06.006 DOI: https://doi.org/10.1016/j.cis.2010.06.006

Liu Z, Lv Y, Gao J, Li X, Zhai X, Zhao J, Xu X. Molecularly imprinted poly(MAA-co-AM) Composite membranes for selective recognition of nicosulfuron herbicide. J Appl Pol Sci 2012; 126: 1247-56. http://dx.doi.org/10.1002/app.36938 DOI: https://doi.org/10.1002/app.36938

Donato L, Figoli, A, Drioli, E. Novel composite poly(4-vinylpiridine)/polypropylene membranes with recognition properties for (S)-naproxen. J Pharm Biomed Anal 2005; 37: 1003-08. http://dx.doi.org/10.1016/j.jpba.2004.09.020 DOI: https://doi.org/10.1016/j.jpba.2004.09.020

Wang JY, Xua ZL, Wu P, Yin SJ. Binding constant and transport property of S-Naproxen molecularly imprinted composite membrane. J Membr Sci 2009; 331: 84-90. http://dx.doi.org/10.1016/j.memsci.2009.01.016 DOI: https://doi.org/10.1016/j.memsci.2009.01.016

Wang JY, Liu F, Xu ZL, Li K. Theophylline molecular imprint composite membranes prepared from poly (vinylidene fluoride) (PVDF) substrate. Chem En Sci 2010; 65: 3322-30. http://dx.doi.org/10.1016/j.ces.2010.02.024 DOI: https://doi.org/10.1016/j.ces.2010.02.024

Ye YT, Ma X-H, Xu ZL, Zhang Y. Theophylline Molecular Imprinted Composite Membranes Prepared on a Ceramic Hollow Fiber Substrate. Ind Eng Chem Res 2014; 53; 346-54. http://dx.doi.org/10.1021/ie4024534 DOI: https://doi.org/10.1021/ie4024534

Tonglairoum P, Chaijaroenluk W, Rojanarata T, Ngawhirunpat T, Akkaramongkolporn P, Opanasopit P. Development and Characterization of Propranolol Selective Molecular Imprinted Polymer Composite Electrospun Nanofiber Membrane. AAPS Pharm Sci Tech 2013; 14: 838-46. http://dx.doi.org/10.1208/s12249-013-9970-0 DOI: https://doi.org/10.1208/s12249-013-9970-0

Wang SJ, Xu ZL, Feng JL, Bing NC, Yang ZG. Molecular imprinted membranes for the recognition of lovastatin acid in aqueous medium by a template analogue strategy. J Membr Sci 2008; 313: 97-105. http://dx.doi.org/10.1016/j.memsci.2007.12.067 DOI: https://doi.org/10.1016/j.memsci.2007.12.067

Zhu XY, Zheng ZJ, Xie J, Wang P. Selective separation of magnolol using molecularly imprinted membranes. J Sep Sci 2012; 35: 315-319. http://dx.doi.org/10.1002/jssc.201100731 DOI: https://doi.org/10.1002/jssc.201100731

Hilal N, Kochkodan V, Busca G, Kochkodan O, Atkin BP. Thin layer composite molecularly imprinted membranes for selective separation of cAMP. Sep Purif Technol 2003; 31: 281-89. http://dx.doi.org/10.1016/S1383-5866(02)00205-8 DOI: https://doi.org/10.1016/S1383-5866(02)00205-8

Ciardelli G, Borrelli C, Silvestri D, Cristallini C, Barbani N, Giusti P. Supported imprinted nanospheres for the selective recognition of cholesterol. Biosens Bioelectron 2006; 21: 2329-38. http://dx.doi.org/10.1016/j.bios.2005.12.027 DOI: https://doi.org/10.1016/j.bios.2005.12.027

Zhou Y, Yu B, Levon K. Potentiometric sernsor for dipicolinic acid. Biosens Bioelectron 2005; 20: 1851-55. http://dx.doi.org/10.1016/j.bios.2004.05.005 DOI: https://doi.org/10.1016/j.bios.2004.05.005

Ceolin G, Navarro-Villoslada F, Moreno-Bondi MC, Horvai G, Horvath V. Accelerated development procedure for molecularly imprinted polymers using membrane filterplates. J Comb Chem 2009; 11: 645-52. http://dx.doi.org/10.1021/cc900022u DOI: https://doi.org/10.1021/cc900022u

Zhang M, Huang J, Yu P, Chen X. Preparation and characteristics of protein molecularly imprinted membranes on the surface of multiwalled carbon nanotubes. Talanta 2010; 81: 162-66. http://dx.doi.org/10.1016/j.talanta.2009.11.052 DOI: https://doi.org/10.1016/j.talanta.2009.11.052

Kunitake T, Lee SW. Molecular imprinting in ultrathin titania gel films via surface gel process. Anal Chim Acta 2004; 504: 1-6. http://dx.doi.org/10.1016/S0003-2670(03)00811-0 DOI: https://doi.org/10.1016/S0003-2670(03)00811-0

Whitcombe MJ, Kirsch N, Nicholls IA. Molecular imprinting science and technology: A survey of the literature for the years 2004-2011. J Mol Recognit 2014; 27: 297-401. http://dx.doi.org/10.1002/jmr.2347 DOI: https://doi.org/10.1002/jmr.2347

Crini G. Studies on adsorption of dyes on beta-cyclodextrin polymer. Bioresource Technol 2003; 90: 193-8. http://dx.doi.org/10.1016/S0960-8524(03)00111-1 DOI: https://doi.org/10.1016/S0960-8524(03)00111-1

Pearce CI, Lloyd JR, Guthrie JT. The removal of colour from textile wastewater using whole bacterial cells: a review. Dyes Pigments 2003; 58: 179-86. http://dx.doi.org/10.1016/S0143-7208(03)00064-0 DOI: https://doi.org/10.1016/S0143-7208(03)00064-0

Vandevivere PC, Bianche R, Verstraete W. Treatment and reuse of wasdtewater from the textile wet-processing industry: review of emerging technologies. I Chem Technol Biotechnol 72: 289-302. DOI: https://doi.org/10.1002/(SICI)1097-4660(199808)72:4<289::AID-JCTB905>3.0.CO;2-#

Namasivayam C, Muniasamy N, Gayatri K, Rani M, Ranganathan K. Removal of dyes from aqueous solutions by cellulosic waste orange peel. Bioresour Technol 1996; 57: 37-43. http://dx.doi.org/10.1016/0960-8524(96)00044-2 DOI: https://doi.org/10.1016/0960-8524(96)00044-2

Kyzas GZ, Bikiaris DN, Lazaridi NK. Selective separation of basic and reactive dyes by molecularly imprintedpolymers (MIPs), Chem Eng J 2009; 149: 263-72. http://dx.doi.org/10.1016/j.cej.2008.11.002

Crini G. Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog Polymer Sci 2005; 30: 38-70. http://dx.doi.org/10.1016/j.progpolymsci.2004.11.002 DOI: https://doi.org/10.1016/j.progpolymsci.2004.11.002

Kiernan JA. Classification and naming of dyes, stains and fluorochromes. Biotech Histochem 2001; 76: 261-78. http://dx.doi.org/10.1080/bih.76.5-6.261.278 DOI: https://doi.org/10.1080/714028154

Forgacs E, Cserhàti, Oros G. Removal of synthetic dyes from wastewaters: a review, Environ Int 2004; 30: 953-71. http://dx.doi.org/10.1016/j.envint.2004.02.001 DOI: https://doi.org/10.1016/j.envint.2004.02.001

Chiou MS, Ho PY, Li HY. Adsoprtion of anionic dyes in acid solutions using chemically cross-linked chitosan beads, Dyes Pigments 2004; 60: 69-84. http://dx.doi.org/10.1016/S0143-7208(03)00140-2 DOI: https://doi.org/10.1016/S0143-7208(03)00140-2

Kyzas GZ, Lazaridis NK. Reactive and basic dyes removal by sorption onto chitosan derivatives. Colloid Interf Sci 2009; 331: 32-9. http://dx.doi.org/10.1016/j.jcis.2008.11.003 DOI: https://doi.org/10.1016/j.jcis.2008.11.003

Juang RS, Tseng RL, Wu FC. Role of microporosity of activated carbons on their adsorption abilities for phenols and dyes. Adsorption 2001; 7: 65-72. http://dx.doi.org/10.1023/A:1011225001324 DOI: https://doi.org/10.1023/A:1011225001324

Yagub MT, Sen TK, Afroze S, Ang HM. Dye and its removal from acqueous solution by adsorption: A review, Adv Colloid Interfac 2014; 209: 172-84. http://dx.doi.org/10.1016/j.cis.2014.04.002 DOI: https://doi.org/10.1016/j.cis.2014.04.002

Sun D, Zhang Z, Wang M, Wu Y. Adsortpion of reactive dyes on activated cabon developed from Enteromorpha prolifera, Am J Anal Chem 2013; 4: 17-26. http://dx.doi.org/10.4236/ajac.2013.47A003 DOI: https://doi.org/10.4236/ajac.2013.47A003

Babel S, Kurniawan TA. Low-cost adsorbents for heavy metals uptake from contaminated water: a review. J Hazard Mater 2003; 97: 219-43. http://dx.doi.org/10.1016/S0304-3894(02)00263-7 DOI: https://doi.org/10.1016/S0304-3894(02)00263-7

Dragan ES, Dinu IA. Removal of azp dyes from aqueous solution by coagulation/flocculation with strong polycations, Res J Chem Environ 2008; 12: 5-11.

Meyers RA. Encyclopedia of environmental analysis and remediation. Wiley. New York 1998; 1422-65.

Singh K, Arora S. Removal of synthetic textile dyes from wastewaters: a critical review on present treatment technologies. Envir Sci Tech 2011; 41: 807-78. http://dx.doi.org/10.1080/10643380903218376 DOI: https://doi.org/10.1080/10643380903218376

Gao BY, Wang Y, Yue QY, Wei JC, Li Q. Color removal from simulated dye water and actul wastewater using a composite coagulant prepared by polyferric chloride and polydimethyldiallylammonium chloride. Sep Purif Technol 2007; 54: 157-63. http://dx.doi.org/10.1016/j.seppur.2006.08.026 DOI: https://doi.org/10.1016/j.seppur.2006.08.026

Sudha M, Saranya A, Selvakumar G, Sivakumar N. Microbial degradation of Azo Dyes: A review. Int J Microbial App Sci 2014; 3: 670-90.

Mugdha A, Usha M. Enzymatic treatment of wastewater containing dyestuff using different delivery systems. Sci Rews Chem Com 2012; 2: 31-40.

Adam W, Lzarus M, Saha-Mollera C, Weichold O, Hoch U, Haring D, Schreirer P. Biotransformation with peroxidase. Adv Biochem Eng Biotechnol 1999; 63: 73-107. http://dx.doi.org/10.1007/3-540-69791-8_4 DOI: https://doi.org/10.1007/3-540-69791-8_4

Chacko JT, Subramaniam K. Enzymatic degradation of azo-dyes-A review. Int J Environ Sci 2011; 1: 1250-60.

Blanquez P, Casa N, Font X, Gabarrel, X, Sarra M, Caminal, G, Vincent T. Mechanism of textile metal dye biotransformation by Trametes versicolour. J Water Res 2004; 38: 2166-72. http://dx.doi.org/10.1016/j.watres.2004.01.019 DOI: https://doi.org/10.1016/j.watres.2004.01.019

Novotny C, Svobodova K, Kasinath A, Erbanova P. Biodegradation of synthetic dyes by Irpex lacteus under various growth conditions. Dech Monog 2004; 54: 215-23. DOI: https://doi.org/10.1016/j.ibiod.2004.06.003

Chivukula M, Renganathan V. Phenolic azo dyes oxidation by laccase from Pyricularia oryzae. Appl Environ Microbial 1995; 61: 4347-77. DOI: https://doi.org/10.1128/aem.61.12.4374-4377.1995

Wong Y, Yu J. Laccase-catalysed decolorization of synthetic dyes. Water Res 1999; 33: 3512-20. http://dx.doi.org/10.1016/S0043-1354(99)00066-4 DOI: https://doi.org/10.1016/S0043-1354(99)00066-4

Duran N, Esposito E. Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatment: a review. Appl Catal B-Environ 2000; 28: 83-99. http://dx.doi.org/10.1016/S0926-3373(00)00168-5 DOI: https://doi.org/10.1016/S0926-3373(00)00168-5

Bhunia A, Durani S, Wangikar PP. Horseradish peroxidase catalyzed degradation of industrially important dyes. Biotechnol Bioeng 2001; 72: 562-67. http://dx.doi.org/10.1002/1097-0290(20010305)72:5<562::AID-BIT1020>3.0.CO;2-S DOI: https://doi.org/10.1002/1097-0290(20010305)72:5<562::AID-BIT1020>3.0.CO;2-S

Zucca P, Rescigno A, Pintus M, Rinaldi AC, Sanjust E. Degradation of textile dyes using immobilized lignin peroxidase-like metalloporhirines under mild experimental conditions. Chem Cent J 2012; 6: 161-67. http://dx.doi.org/10.1186/1752-153X-6-161 DOI: https://doi.org/10.1186/1752-153X-6-161

Kuo WG. Decolorazing dye wastewater with Fenton’s reagent. Water Res 1992; 26: 881-86. http://dx.doi.org/10.1016/0043-1354(92)90192-7 DOI: https://doi.org/10.1016/0043-1354(92)90192-7

Matafonova G, Batoev V. Recent progress on application of UV excilasmps for degradation of organic pollutants and microbial inactivation. Chemosfere 2012; 89: 637-47. http://dx.doi.org/10.1016/j.chemosphere.2012.06.012 DOI: https://doi.org/10.1016/j.chemosphere.2012.06.012

Thomas S, Sreekanth R, Sijiumon VA, Aravind UK, Aravindakumar CT. Oxidative degradation of Acid Red 1 in aqueous medium. Chem Eng J 2014; 244: 473-82. http://dx.doi.org/10.1016/j.cej.2014.01.037 DOI: https://doi.org/10.1016/j.cej.2014.01.037

Khan H, Ahmad N, Yasar A, Shahid R. Advanced oxidative decolorization of red C1-5B: effects of dye concentration, process optimization and reaction kinetics. Polish J Environ Stud. 2010; 19: 83-92.

Wang Y. Solar photocatalytic degradation of eight commercial dyes in TiO2 suspension. Water Res 2000; 34: 990-994. http://dx.doi.org/10.1016/S0043-1354(99)00210-9 DOI: https://doi.org/10.1016/S0043-1354(99)00210-9

Zhang Z, Wang W, Shang M, Yin W. Low-temperature combustion synthesis of Bi2WO6 nanoparticles as a visible-light-driven photocatalyst. J Hazard Mater 2010; 177: 1013-18. http://dx.doi.org/10.1016/j.jhazmat.2010.01.020 DOI: https://doi.org/10.1016/j.jhazmat.2010.01.020

Khataee A, Fathinia M, Aber S, Zarei M. Optimization of photocatalytic treatment of dye solution on supported TiO2 nanoparticles by central composite design: Intermediates identification. J Hazard Mater 2010; 181: 886-97. http://dx.doi.org/10.1016/j.jhazmat.2010.05.096 DOI: https://doi.org/10.1016/j.jhazmat.2010.05.096

Augugliro V, Baiocchi C, Prevot AB, García-López E, Loddo V, Malato S, Marcì G, Palmisano L, Pazzi M, Premauro E. Azo-dyes photocatalytic degradation in aqueous suspension of TiO2 under solar irradiation. Chemosphere 2002; 49: 1223-30. http://dx.doi.org/10.1016/S0045-6535(02)00489-7 DOI: https://doi.org/10.1016/S0045-6535(02)00489-7

Riga A, Soutsas K, Ntampegliotis K, Karayannis V, Papapolymerou G. Effect of system parameters and of inorganic salts on the decolorization and degradation of Procion H-dyes. Comparison of H2O2/UV, Fenton, UV/Fenton, TiO2/UV and TiO2/UV/H2O2 processes. Desalination 2007; 211: 72-86. http://dx.doi.org/10.1016/j.desal.2006.04.082 DOI: https://doi.org/10.1016/j.desal.2006.04.082

Pelizzetti E. Concluding remarks on heterogeneous solar photocatalysis. Sol Energy mater sol Cells 1995; 38: 453-457. http://dx.doi.org/10.1016/0927-0248(94)00237-1 DOI: https://doi.org/10.1016/0927-0248(94)00237-1

Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972; 37: 238-250. DOI: https://doi.org/10.1038/238037a0

Gupta VK, Jain R, Mittal A, Saleh TA, Nayak A, Agarwal S, Sikarwar S. Photo-catalytic degradation of toxic dye amaranth on TiO2/UV in aqueous suspensions. Mater Sci Eng 2012; C32: 12-17. http://dx.doi.org/10.1016/j.msec.2011.08.018 DOI: https://doi.org/10.1016/j.msec.2011.08.018

Balachandran K, Venkatesh R, Sivaraj R, Rajiv P. TiO2 nanoparticles versus TiO2-SiO2 nanocomposites: A comparative study of photo catalysis on acid red 88. Spetreochim Acta A Mol Biomol Spectrosc 2014; 128: 468-74. http://dx.doi.org/10.1016/j.saa.2014.02.127 DOI: https://doi.org/10.1016/j.saa.2014.02.127

Srisukphun T, Chiemchaisri C, Urase T, Yamamoto K. Experimentation and modeling of foulant interaction and reverse osmosis membrane fouling during textile wastewater reclamation Sep Purif Technol 2009; 68: 37-49. DOI: https://doi.org/10.1016/j.seppur.2009.04.006

Akbari A, Remigy JC, Aptel P. 2002. Treatment of textile dye effluent using a polyamide-based nanofiltration membrane. Chem Eng Process 2002; 41: 601-09. http://dx.doi.org/10.1016/S0255-2701(01)00181-7 DOI: https://doi.org/10.1016/S0255-2701(01)00181-7

Lau WJ, Ismail AF. Polymeric nanofiltration membranes for textile dye wastewater treatment: Preparation, perforemance evaluation, transport modelling, and fouling control-a review. Desalination 2009; 245: 321-48. http://dx.doi.org/10.1016/j.desal.2007.12.058 DOI: https://doi.org/10.1016/j.desal.2007.12.058

Petrinic I, Andersen NPR, Šostar-Turk S, Le Marechal AM. The removal of reactive dye printing compounds using nanofiltration. Dyes Pigments 2007; 74: 512-18. http://dx.doi.org/10.1016/j.dyepig.2006.11.003 DOI: https://doi.org/10.1016/j.dyepig.2006.11.003

Vishnu G, Joseph K. Nanofiltration and ozonation for decolorisation and salt recovery from reactive dye bath. Color Technol 2007; 1223: 260-66. http://dx.doi.org/10.1111/j.1478-4408.2007.00093.x DOI: https://doi.org/10.1111/j.1478-4408.2007.00093.x

Liasng CZ, Sun SP, Li FY, Ong YK, Chung TS. Treatment of highly concentrated wastewater containing multiple synthetic dyes by a combined process of coaugulation/flocculation and nanofilitration. J Membr Sci 2014; 469: 306-15. http://dx.doi.org/10.1016/j.memsci.2014.06.057 DOI: https://doi.org/10.1016/j.memsci.2014.06.057

Mustafa N, Al Nakib H. Reverse osmisi polyamide membrane for the removal of blue and yellow dye from waste water. Iraqi J Chem Petrol Eng 2013; 14: 49-55. DOI: https://doi.org/10.31699/IJCPE.2013.2.7

Fradj AB, Hamouda SB, Ouni H, Lafi R, Gzara L, Hafiane A. Removal of methylene blue from aqueous solutions by poly(acrylic acid) and (polyammonium acrylate) assisted ultr.

Gong SL, Yu ZJ, Meng LZ, Hu L, He YB. Dye-Molecular-Imprinted Polysiloxanes. II. Preparation, Characterization, and Recognition Behavior. Journal of Appl Poly Sci 2004; 93: 637-643. http://dx.doi.org/10.1002/app.20486 DOI: https://doi.org/10.1002/app.20486

Yan S, Gao Z, Fang Y, Cheng Y, Zhou H, Wang H. Characterization and quality assessment of binding properties of malachite green molecularly imprinted polymers prepared by precipitation polymerization in acetonitrile. Dyes and Pigments 2007; 74: 572-577. http://dx.doi.org/10.1016/j.dyepig.2006.03.021 DOI: https://doi.org/10.1016/j.dyepig.2006.03.021

Culp SJ, Beland FA. Malachite green: a toxicological review. J Am Coll Toxicol 1996; 15: 219-38. http://dx.doi.org/10.3109/10915819609008715 DOI: https://doi.org/10.3109/10915819609008715

Fernandes C, Lalitha VS, Rao KVK. Enhancing effect of malachite green on the development of hepatic pre-neoplastic lesions induced by N-nitrosodiethylamine in rats. Carcinogenesis 1991; 12: 839-45. http://dx.doi.org/10.1093/carcin/12.5.839 DOI: https://doi.org/10.1093/carcin/12.5.839

Ramamoorthy M, Ulbricht M. Molecular imprinting of cellulose acetate-sulfonated polysulfone blend membranes for Rhodamine B by phase inversion technique. J Membr Sci 2003; 217: 207-14. http://dx.doi.org/10.1016/S0376-7388(03)00133-9 DOI: https://doi.org/10.1016/S0376-7388(03)00133-9

Ma Y, Jin X, Zhou M, Zhang Z, Teng X, Chen H. Chemiluminescence behavior based on oxidation reac-tion of Rhodamine B with cerium(IV) in sulfuric acid medium. Anal Chim Acta 2003; 489: 173-81. http://dx.doi.org/10.1016/S0003-2670(03)00756-6 DOI: https://doi.org/10.1016/S0003-2670(03)00756-6

Yua JX, Li BH, Sun XM, Yuan J, Chia R. Polymer modified biomass of bakers yeast for enhancement adsorption of methylene blue, Rhodamine B and basic magenta. J Hazard Mater 2009; 168: 1147-54. http://dx.doi.org/10.1016/j.jhazmat.2009.02.144 DOI: https://doi.org/10.1016/j.jhazmat.2009.02.144

Li L, Liu H, Lei X, Zhai Y. Electrospun nanofiber membranes containing molecularly imprinted polymer (MIP) for Rhodamine B (RhB). Adv Chem Eng Sci 2012; 2: 266-74. http://dx.doi.org/10.4236/aces.2012.22031 DOI: https://doi.org/10.4236/aces.2012.22031

Greiner A, Wendorff JH. Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew Chem Int Edit 2006; 46: 5670-703. http://dx.doi.org/10.1002/anie.200604646 DOI: https://doi.org/10.1002/anie.200604646

Liu X, Yu D, Yu Y, Ji S. Preparation of a magnetic molecularly imprinted polymer for selective recognition of Rhodamine B. Appl Surf Sci 2014; 320: 138-145. http://dx.doi.org/10.1016/j.apsusc.2014.08.122 DOI: https://doi.org/10.1016/j.apsusc.2014.08.122

Su X, Li X, Li J, Liu M, Lei F, Tan X, Li P, Luo W. Synthesis and characterization of core–shell magnetic molecularly imprinted polymers for solid-phase extraction and determination of Rhodamine B in food. Food Chem 2015; 171: 292-97. http://dx.doi.org/10.1016/j.foodchem.2014.09.024 DOI: https://doi.org/10.1016/j.foodchem.2014.09.024

Okutucu B, Akkaya A, Pazarlioglu NK. Molecularly imprinted polymers for some reactive dyes. Preparative Biochemistry and Biotechnology, 2010; 40: 366-376. http://dx.doi.org/10.1080/10826068.2010.525428 DOI: https://doi.org/10.1080/10826068.2010.525428

Al-Degs YS, Abu-Surrah AS, Ibrahim KA. Preparation of highly selective solid-phase extractants for Cibacron reactive dyes using molecularly imprinted polymers. Anal and Bioanal Chem 2009; 393: 1055-62. http://dx.doi.org/10.1007/s00216-008-2502-1 DOI: https://doi.org/10.1007/s00216-008-2502-1

Kyzas GZ, Bikiaris DN, Lazaridis NK. Selective separation of basic and reactive dyes by molecularly imprinted polymers (MIPs). Chem Eng J 2009; 149: 263-72. http://dx.doi.org/10.1016/j.cej.2008.11.002 DOI: https://doi.org/10.1016/j.cej.2008.11.002

Kyzas GZ, Lazaridis NK, Bikiaris DN. Optimization of chitosan and cyclodextrin molecularly imprinted polymer synthesis for dye adsorption. Carbohyd Polym 2013; 91: 198-208. http://dx.doi.org/10.1016/j.carbpol.2012.08.016 DOI: https://doi.org/10.1016/j.carbpol.2012.08.016

Asman S, Yusof NA, Abdullah AH, Haron MJ. Synthesis and characterization of hybrid molecularly imprinted polymer (MIP) membranes for removal of methylene blue (MB). Molecules 2012; 17: 1916-28. http://dx.doi.org/10.3390/molecules17021916 DOI: https://doi.org/10.3390/molecules17021916

Zhao K, Feng L, Lin H, Fu Y, Lin B, Cui W, Li S, Wei J. Adsorption and photocatalytic degradation of methyl orange imprinted composite membranes using TiO2/calcium alginate hydrogel as matrix. Catal Today 2014; 236: 127-34. http://dx.doi.org/10.1016/j.cattod.2014.03.041 DOI: https://doi.org/10.1016/j.cattod.2014.03.041

Luo X, Zhan Y, Tu X, Huang Y, Luo S, Yan L. Novel molecularly imprinted polymer using 1-(α-methyl acrylate)-3-methyl imidazolium bromide as functional monomer for simultaneous extraction and determination of water-soluble acid dyes in wastewater and soft drink by solid phase extraction and high performance liquid chromatography. J Chromatogr A 2011; 1218: 1115-21. http://dx.doi.org/10.1016/j.chroma.2010.12.081 DOI: https://doi.org/10.1016/j.chroma.2010.12.081

Fana L, Y Z, Li X, Luo C, Lu F, Qiu H. Removal of Alizarin red from water environment using magnetic chitosan with Alizarin Red as imprinted molecules, Colloid Surface B 2012; 91: 250-57. http://dx.doi.org/10.1016/j.colsurfb.2011.11.014 DOI: https://doi.org/10.1016/j.colsurfb.2011.11.014

Krupadam RJ1, Khan MS, Wate SR. Removal of probable human carcinogenic polycyclic aromatic hydrocarbons from contaminated water using molecularly imprinted polymer. Water Res 2010; 44: 681-8. http://dx.doi.org/10.1016/j.watres.2009.09.044 DOI: https://doi.org/10.1016/j.watres.2009.09.044

Puoci F, Garrafa C, Iemma F, Muzzalupo R, Spizzirri U, Picci N. Molecularly imprinted solid phase extraction for detection of Sudan I in food matrices. Food Chem 2005; 93: 349-53. http://dx.doi.org/10.1016/j.foodchem.2004.11.014 DOI: https://doi.org/10.1016/j.foodchem.2004.11.014

Baggiani C, Anfossi L, Baravalle Pa, Giovannoli C, Giraudi G, Barolo C, Viscardi G. Determination of banned Sudan dyes in food samples molecularly imprinted solid phase extraction-high performance liquid chromatography. J Sep Sci 2009; 32: 3292-300. http://dx.doi.org/10.1002/jssc.200900126 DOI: https://doi.org/10.1002/jssc.200900126

Xu XY, Tian XG, Cai LG, Xu ZL, Lei HT, Wang H, Sun YM. Molecularly imprinted polymer based surface plasmon resonance sensors for detection of Sudan dyes, Anal. Methods 2014; 6: 3751-57. http://dx.doi.org/10.1039/c3ay42230e DOI: https://doi.org/10.1039/C3AY42230E

Hu X, Fan Y, Zhang Y, Dai G, Cai Q, Cao Y, Guo C. Molecularly imprinted polymer coated solid-phase micr-oextraction fiber prepared by surface reversible addition-fragmentation chain transfer polymerization for monitoring of Sudan dyes in chilly tomato sauce and chilly pepper samples. Anal Chim Acta 2012; 731: 40-48. http://dx.doi.org/10.1016/j.aca.2012.04.013 DOI: https://doi.org/10.1016/j.aca.2012.04.013

Qiao FX, Chen P. Molecularly imprinted-solid phase extraction for multi-residues analysis of Sudan dyes in sausage. Asian J Chem 2012: 24. 1107-10.

Yan H, Qiao J, Pei Y, Long T, Ding W, Xie K. Molecularly imprinted solid-phase extraction coupled to liquid chromatography for determination of Sudan dyes in preserved beancurds. Food Chem 2012; 132: 649-54. http://dx.doi.org/10.1016/j.foodchem.2011.10.105 DOI: https://doi.org/10.1016/j.foodchem.2011.10.105

Qiao F, Geng Y, He C, Wu Y, Pan P. Molecularly imprinted microspheres as SPE sorbent for selective extraction of four Sudan dyes in catsup products. J Chromatogr B 2011; 879: 2891-96. http://dx.doi.org/10.1016/j.jchromb.2011.08.019 DOI: https://doi.org/10.1016/j.jchromb.2011.08.019

Hu Xi, Cai Q, Fan Y, Ye T, Cao Y, Guo C. Molecularly imprinted polymer coated solid-phase microextraction fibers for determination of Sudan I-IV dyes in hot chili powder and poultry feed samples. J Chromatogr A 2012; 1219: 39-46. http://dx.doi.org/10.1016/j.chroma.2011.10.089 DOI: https://doi.org/10.1016/j.chroma.2011.10.089

Yan H, Wang H, Qiao J, Yang G. Molecularly imprinted matrix solid-phase dispersion combined with dispersive liquid-liquid microextraction for the determination of four Sudan dyes in egg yolk. J Chromatogr A 2011; 1218: 2182-88. http://dx.doi.org/10.1016/j.chroma.2011.02.042 DOI: https://doi.org/10.1016/j.chroma.2011.02.042

Chen S, Du D, Huang J, Zhang A, Tu H, Zhang A. Rational design and application of molecularly imprinted sol–gel polymer for the electrochemically selective and sensitive determination of Sudan I. Talanta 2011; 84: 451-56. http://dx.doi.org/10.1016/j.talanta.2011.01.047 DOI: https://doi.org/10.1016/j.talanta.2011.01.047

Zhan J, Fang G, Yan Z, Pan M, Liu C, Wang S. Preparation of a semicovalent, molecularly surface imprinted polymer for the rapid determination of trace acid orange II in food and environmental samples. Anal Bioanal Chem 2013; 405: 6353-63. http://dx.doi.org/10.1007/s00216-013-7036-5 DOI: https://doi.org/10.1007/s00216-013-7036-5

Li Xi, Li M, Li J, Lei F, Su X, Liu M, Lia P, Tan X. Synthesis and characterization of molecularly imprinted polymers with modified rosin as a crosslinker and selective SPE-HPLC detection of basic orange II in foods. Anal Methods 2014; 6:6397-406. http://dx.doi.org/10.1039/C4AY00810C DOI: https://doi.org/10.1039/C4AY00810C

Long Z, Lu Y, Zhang M, Qiu H. Selective recognition and discrimination of water-soluble azo dyes by a seven-channel molecularly imprinted polymer sensor array. J Sep Sci 2014; 37: 2764-70. http://dx.doi.org/10.1002/jssc.201400684 DOI: https://doi.org/10.1002/jssc.201400684

Wang P, Hu W, Su W. Molecularly imprinted poly (methacryl amide-co-methacrylic acid) composite membranes for recognition of curcumin. Anal Chim Acta 2008; 615: 54-62. http://dx.doi.org/10.1016/j.aca.2008.03.040 DOI: https://doi.org/10.1016/j.aca.2008.03.040

Han Q, Wang Xi, Yang Z, Zhu W, Zhou X, Jiang H. Fe3O4@rGO doped molecularly imprinted polymer membrane based on magnetic field directed self-assembly for the determination of amaranth. Talanta 2014; 123: 101-08. http://dx.doi.org/10.1016/j.talanta.2014.01.060 DOI: https://doi.org/10.1016/j.talanta.2014.01.060

Downloads

Published

2014-12-03

How to Cite

Algieri, C., Drioli, E., Ahmed, C., Nasser, I. I., & Donato, L. (2014). Emerging Tools for Recognition and/or Removal of Dyes from Polluted Sites: Molecularly Imprinted Membranes. Journal of Membrane and Separation Technology, 3(4), 243–266. https://doi.org/10.6000/1929-6037.2014.03.04.8

Issue

Section

Articles

Most read articles by the same author(s)