Synthesis and Characterization of Nanocomposite Hydroxy-Sodalite/Ceramic Membrane via Pore-Plugging Hydrothermal Synthesis Technique

Authors

  • M.O. Daramola School of Chemical and Metallurgical Engineering, Faculty of Engineering and the Built Environment, University of the Witwatersrand, Private Bag X3, Wits 2050, Johannesburg, South Africa
  • A. Dinat School of Chemical and Metallurgical Engineering, Faculty of Engineering and the Built Environment, University of the Witwatersrand, Private Bag X3, Wits 2050, Johannesburg, South Africa
  • S. Hasrod School of Chemical and Metallurgical Engineering, Faculty of Engineering and the Built Environment, University of the Witwatersrand, Private Bag X3, Wits 2050, Johannesburg, South Africa

DOI:

https://doi.org/10.6000/1929-6037.2015.04.01.1

Keywords:

Hydroxy sodalite, Nanocomposites, Membranes, Ceramics, Porous materials, Thin films.

Abstract

In this article, synthesis and characterization of nanocomposite hydroxy sodalite (H-SOD)/α-alumina membrane via the so-called “pore-plugging” hydrothermal synthesis (PPH) protocol is reported for the first time. In nanocomposite architecture membranes, zeolite crystals are embedded within the pores of the supports instead of forming thin-film layers of the zeolite crystals on the surface of the supports. The as-prepared membranes were characterized with SEM and FTIR for morphology and purity of the H-SOD crystals. Compared to the conventional in-situ direct hydrothermal synthesis, membranes obtained from PPH possess higher mechanical and thermal stability. In addition, defect control with nanocomposite architecture membrane is possible because the zeolite crystals are embedded within the support pores of the membrane, thereby limiting the maximum defect size to the pore sizes of support. The nanocomposite architecture nature of the membranes safeguards the membrane from shocks or abrasion that could promote defects/inter-crystalline pores formation. These advantages could be helpful in the scale-up process of the preparation procedure of membranes at the commercial level with less-demanding conditions.

References

Khajavi S, Jansen JC, Kapteijn F. In: From zeolite to Porous MOF Materials, Xu R, Gao Z, Chen J, Yan W, Eds. Elsevier, The Netherlands 2007; pp. 1028-1035. DOI: https://doi.org/10.1016/S0167-2991(07)80956-6

Khajavi S, Jansen JC, Kapteijn F. Production of ultra pure water by desalination of sea water using a hydroxy sodalite membrane. J Membr Sci 2010; 356: 52-57. http://dx.doi.org/10.1016/j.memsci.2010.03.026 DOI: https://doi.org/10.1016/j.memsci.2010.03.026

Khajavi S, Jansen JC, Kapteijn F. Application of hydroxy sodalite films as novel water selective. J Membr Sci 2009; 326: 153-160. http://dx.doi.org/10.1016/j.memsci.2008.09.046 DOI: https://doi.org/10.1016/j.memsci.2008.09.046

Khajavi S, Kapteijn F, Janssen JC. Synthesis of thin defect-free hydroxy sodalite membranes: New candidate for activated water permeation. J Membr Sci 2007; 299: 63-72. http://dx.doi.org/10.1016/j.memsci.2007.04.027 DOI: https://doi.org/10.1016/j.memsci.2007.04.027

Breck DW. Zeolite Molecular Sieves: Structure, Chemistry and Use, USA, New York: Wiley 1974.

Khajavi S, Jansen JC, Kapteijn F. Application of a sodalite membrane reactor in esterification-coupling reaction and separation. Catalysis Today 2010; 156: 132-139. http://dx.doi.org/10.1016/j.cattod.2010.02.042 DOI: https://doi.org/10.1016/j.cattod.2010.02.042

Daramola MO, Aransiola EF, Ojumu TV. Potential Applications of Zeolite Membranes in Reaction Coupling Separation Processes. Materials 2012; 5: 2101-2136. http://dx.doi.org/10.3390/ma5112101 DOI: https://doi.org/10.3390/ma5112101

Daramola MO, Burger AJ, Pera-Titus M, Giroir-Fendler A, Lorenzen L, Miachon S, Dalmon J-A. Nanocomposite MFI hollow-fibre membranes via pore-plugging synthesis: prospects for xylene isomer separation. J Membr Sci 2009; 337: 106-112. http://dx.doi.org/10.1016/j.memsci.2009.03.028 DOI: https://doi.org/10.1016/j.memsci.2009.03.028

Li Y, Pera-Titus M, Xiong G, Yang W, Landrivon E, Miachon S, Dalmon J-A. Nanocomposite MFI zeolite – alumina membranes via pore-plugging synthesis: genesis of the material. J Membr Sci 2008; 325: 973-981. http://dx.doi.org/10.1016/j.memsci.2008.09.030 DOI: https://doi.org/10.1016/j.memsci.2008.09.030

Miachon S, Dalmon J-A. Catalysis in membrane reactors: what about the catalyst? Topics in Catalysis 2004; 29: 59-65. http://dx.doi.org/10.1023/B:TOCA.0000024928.63811.8b DOI: https://doi.org/10.1023/B:TOCA.0000024928.63811.8b

Miachon S, Landrivon E, Aouine M, Sun Y, Kumakiri I, Li Y, Pachtova Prokopova O, Guilhaume N, Giroir-Fendler A, Mozzanega H, Dalmon J-A. Nanocomposite MFI-alumina membranes via pore-plugging synthesis: preparation and

morphological characterization. J Membr Sci 2006; 281: 228-238. http://dx.doi.org/10.1016/j.memsci.2006.03.036 DOI: https://doi.org/10.1016/j.memsci.2006.03.036

Daramola MO, Burger AJ, Pera-Titus M, Giroir-Fendler A, Lorenzen L, Dalmon J-A. Xylene vapor mixture separation in nanocomposite MFI-alumina tubular membranes: Influence of operating variables. Sep Sci Technol 2010; 45(1): 21-27. http://dx.doi.org/10.1080/01496390903402141 DOI: https://doi.org/10.1080/01496390903402141

Alshebani A, Pera-Titus M, Landrivon E, Schiestel T, Miachon S, Dalmon J-A. Nanocomposite MFI-ceramic hollow fibres: Prospects for CO2 separation. Micropor Mesopor Mater 2008; 115: 197-205. http://dx.doi.org/10.1016/j.micromeso.2007.11.050 DOI: https://doi.org/10.1016/j.micromeso.2007.11.050

Bayati B, Babaluo AA, Karimi R. Hydrothermal synthesis of nanostructure NaAzeolite: The effect of synthesis parameters on zeolite seed size and crystallinity. J Eur Ceram Soc 2008; 28: 2653-2657. http://dx.doi.org/10.1016/j.jeurceramsoc.2008.03.033 DOI: https://doi.org/10.1016/j.jeurceramsoc.2008.03.033

Naskar MK, Kundu D, Chatterjee M. Effect of process parameters on surfactant-based synthesis of hydroxy sodalite particles. Mater Lett 2011; 65: 436-438. http://dx.doi.org/10.1016/j.matlet.2010.11.008 DOI: https://doi.org/10.1016/j.matlet.2010.11.008

Kundu D, Dey B, Naskar MK, Chatterjee M. Emulsion-derived urchin-shaped hydroxy sodalite particles. Mater Lett 2010: 64: 1630-1633. http://dx.doi.org/10.1016/j.matlet.2010.04.015 DOI: https://doi.org/10.1016/j.matlet.2010.04.015

Chen X, Qiao M, Xie S, Fan K, Zhou WZ, He H. Self-construction of core-shell and hollow zeolite analcime icositetrahedra: a reversed crystal growth process via recrystallization from surface to core. J Am Chem Soc 2007; 129: 13305-13312. http://dx.doi.org/10.1021/ja074834u DOI: https://doi.org/10.1021/ja074834u

Buhl J-C, Schuster K, Robben L. Nanocrystalline sodalite grown from superalkaline NaCl bearing gels at low temperature (333 K) and the influence of TEA on crystallization process. Micropor Mesopor Mater 2011; 142: 666-671. http://dx.doi.org/10.1016/j.micromeso.2011.01.020 DOI: https://doi.org/10.1016/j.micromeso.2011.01.020

Thompson RW. In: Verified synthesis of zeolitic Materials, H. Robson (Eds.), Elsevier Science 2001; pp. 21-23. http://dx.doi.org/10.1016/B978-044450703-7/50100-9 DOI: https://doi.org/10.1016/B978-044450703-7/50100-9

Downloads

Published

2015-03-13

How to Cite

Daramola, M., Dinat, A., & Hasrod, S. (2015). Synthesis and Characterization of Nanocomposite Hydroxy-Sodalite/Ceramic Membrane via Pore-Plugging Hydrothermal Synthesis Technique. Journal of Membrane and Separation Technology, 4(1), 1–7. https://doi.org/10.6000/1929-6037.2015.04.01.1

Issue

Section

Articles