A Novel Approach to Synthesize Helix Wave Hollow Fiber Membranes for Separation Applications
DOI:
https://doi.org/10.6000/1929-6037.2015.04.01.2Keywords:
Helix wave, hollow fiber membranes, poly (ether sulfone), asymmetric coagulation.Abstract
Helix wave hollow fiber membranes are promising candidate to mitigate fouling and polarization effects in membrane operations. Current study describes a novel but simple approach to synthesize hollow fiber membranes with helix wave configuration. Poly(ether sulfone) (PES) based helix-waved hollow fiber membranes have been fabricated by dry-wet phase inversion process by using asymmetric coagulation conditions. Frequencies of the wave cycle have been observed approximately 20 and the wave length 7.1-7.6mm under the specifically required operating conditions defined by dope solution extrudate rate of 1g/min through 4cm of air-gap heights with 8.6m/min of winding speeds. On the other hand, simple hollow fibers are formed when the elongation force exerted by the winder is much higher than the surface tension of the external coagulant. The process can be useful for making polymer fibers for other applications as well.
References
Drioli E, Brunetti A, Pro D, Barbieri G. Green Chemistry Process intensi fi cation strategies and membrane engineering. Green Chem 2012; 14: 1561-1572. http://dx.doi.org/10.1039/c2gc16668b DOI: https://doi.org/10.1039/c2gc16668b
Jaffrin MY. Hydrodynamic Techniques to Enhance Membrane Filtration. Annu Rev Fluid Mech 2012; 44: 77-96. http://www.annualreviews.org/doi/abs/10.1146/annurev-fluid-120710-101112 DOI: https://doi.org/10.1146/annurev-fluid-120710-101112
Scott K, Mahmood AJ, Jachuck RJ, Hu B. Intensified membrane filtration with corrugated membranes. J Memb Sci 2000; 173: 1-16. http://dx.doi.org/10.1016/S0376-7388(00)00327-6 DOI: https://doi.org/10.1016/S0376-7388(00)00327-6
Moulin P, Rouch JC, Serra C, Clifton MJ, Aptel P. Mass transfer improvement by secondary flows: Dean vortices in coiled tubular membranes. J Memb Sci 1996; 114(2): 235-244. http://dx.doi.org/10.1016/0376-7388(95)00323-1 DOI: https://doi.org/10.1016/0376-7388(95)00323-1
Teoh MM, Bonyadi S, Chung T. Investigation of different hollow fiber module designs for flux enhancement in the membrane distillation process. J Memb Sci 2008; 311: 371-379. http://dx.doi.org/10.1016/j.memsci.2007.12.054 DOI: https://doi.org/10.1016/j.memsci.2007.12.054
Mallubhotla H, Hoffmann S, Schmidt M, Vente J, Belfort G. “Flux enhancement during dean vortex tubular membrane nano ® ltration. J Memb Sci 1998; 141: 183-195. http://dx.doi.org/10.1016/S0376-7388(97)00302-5 DOI: https://doi.org/10.1016/S0376-7388(97)00302-5
Ali A, Macedonio F, Drioli E, Aljlil S, Alharbi OA. Experimental and theoretical evaluation of temperature polarization phenomenon in direct contact membrane distillation. Chem Eng Res Des 2013; 91(10): 1966-1977. http://dx.doi.org/10.1016/j.cherd.2013.06.030 DOI: https://doi.org/10.1016/j.cherd.2013.06.030
Mart´ınez JMR-ML. Characterization of membrane distillation modules and analysis of mass flux enhancement by channel spacers. J Memb Sci 2006; 274: 123-137. http://dx.doi.org/10.1016/j.memsci.2005.07.045 DOI: https://doi.org/10.1016/j.memsci.2005.07.045
Chernyshov MN, Meindersma GW, De Haan AB. Comparison of spacers for temperature polarization reduction in air gap membrane distillation. Desalination 2005; 183: 363-374. http://dx.doi.org/10.1016/j.desal.2005.04.029 DOI: https://doi.org/10.1016/j.desal.2005.04.029
Martinez-Diez, Vazquez-Gonzalez, Florido-Diaz. Study of membrane distillation using channel spacers. J Memb Sci 1998; 144: 45-56. http://dx.doi.org/10.1016/S0376-7388(98)00024-6 DOI: https://doi.org/10.1016/S0376-7388(98)00024-6
Phattaranawik J, Jiraratananon R, Fane A. Heat transport and membrane distillation coefficients in direct contact membrane distillation. J Memb Sci 2003; 212(1-2): 177-193. http://dx.doi.org/10.1016/S0376-7388(02)00498-2 DOI: https://doi.org/10.1016/S0376-7388(02)00498-2
Xing Yang AGF, Yu H, Wang R. Optimization of microstructured hollow fiber design for membrane distillation applications using CFD modeling. J Memb Sci 2012; 421-422: 258-270. http://dx.doi.org/10.1016/j.memsci.2012.07.022
Yang X, Wang R, Fane AG. Novel designs for improving the performance of hollow fiber membrane distillation modules. J Memb Sci 2011; 384(1-2): 52-62. http://www.sciencedirect. com/science/article/pii/S0376738811006788 DOI: https://doi.org/10.1016/j.memsci.2011.09.007
Bikson B, Salvatore G. Methods for gas separation using helically wound hollow fibers permeable membrane cartridge. US Patent 48819551989. http://www.google.com.py/patents/ EP0359175B1?cl=en
G. T. Leypoldt JK, Cheung AK, Agodoa LY, Daugirdas JT and K. PR, “Hemodialyzer mass transfer-area coefficients for urea increase at high dialysate flow rates. The Hemodialysis (HEMO) Study. Kidney Int 1997; 51: 1913-1917. http://www.ncbi.nlm.nih.gov/pubmed/9186896 DOI: https://doi.org/10.1038/ki.1997.274
Ronco C, Brendolan A, Crepaldi C, Rodighiero M, Scabardi M. Blood and Dialysate Flow Distributions in Hollow-Fiber Hemodialyzers Analyzed by Computerized Helical Scanning Technique. J Am Scoiety Nephrol 2002; 13: 53-61. http://www.ncbi.nlm.nih.gov/pubmed/11792763 DOI: https://doi.org/10.1681/ASN.V13suppl_1s53
Akai KIS. Technical Characterization of Dialysis Fluid Flow of Newly Developed Dialyzers Using Mass Transfer Correlation. ASAIO 2009; pp. 231-235. http://www.ncbi.nlm.nih.gov/ pubmed/19357496
Tatebe K, Yamazaki M. Oxygenator using porous hollow fiber membrane. US 54893821996. http://www.google.com/ patents/US6495101
Taniguchi T, Suga N, Otoyo T. United States Patent, Method for purifying aqueous suspension. 6495041 B22002.
Osabe M, Nakamatsu O, Sugaya H. Hollow fiber membranes and hollow fiber membrane modules having the same included therein. 0000936 A12010. http://www.freepatents-online.com/y2010/0000936.html
Akai KIS. Technical Characterization of Dialysis Fluid Flow of Newly Developed Dialyzers Using Mass Transfer Correlation Equations. ASAIO 2009; pp. 231-235. http://www.ncbi.nlm. nih.gov/pubmed/19357496 DOI: https://doi.org/10.1097/MAT.0b013e318198d870
Yang X, Yu H, Wang R, Fane AG. Optimization of microstructured hollow fiber design for membrane distillation applications using CFD modeling. J Memb Sci 2012; 421-422: 258-270. http://dx.doi.org/10.1016/j.memsci.2012.07.022 DOI: https://doi.org/10.1016/j.memsci.2012.07.022
Peng N, Widjojo N, Sukitpaneenit P, May M, Lipscomb GG, Chung T, Lai J. Evolution of polymeric hollow fibers as sustainable technologies : Past, present, and future. Prog Polym Sci 2012; 37(10): 1401-1424. http://dx.doi.org/10.1016/j.progpolymsci.2012.01.001 DOI: https://doi.org/10.1016/j.progpolymsci.2012.01.001
Monisa MD. A Simplified Nonlinear Generalized Maxwell Model for Predicting the Time Dependent Behavior of Viscoelastic Materials. World J Mech 2011; 1: 158-167. http://dx.doi.org/10.4236/wjm.2011.13021 DOI: https://doi.org/10.4236/wjm.2011.13021
Bonyadi S, Chung TS, Krantz WB. Investigation of corrugation phenomenon in the inner contour of hollow fibers during the non-solvent induced phase-separation process. J Memb Sci 2007; 299: 200-210. http://dx.doi.org/10.1016/j.memsci.2007.04.045 DOI: https://doi.org/10.1016/j.memsci.2007.04.045
Drioli E, Ali A, Simone S, Macedonio F, AL-Jlil SA, Al Shabonah FS, Al-Romaih HS, Al-Harbi O, Figoli A, Criscuoli A. Novel PVDF hollow fiber membranes for vacuum and direct contact membrane distillation applications. Sep Purif Technol 2013; 115: 27-38. http://dx.doi.org/10.1016/j.seppur.2013.04.040 DOI: https://doi.org/10.1016/j.seppur.2013.04.040
Christopher C. Crimped melt spun copolymer filaments. US Patent 5,427,8451995. http://www.google.co.in/patents/ US5427845
Andrej Demsar FS. Crimped polypropylene yarns. Kovine, Zlitine, Tehnol 1999; 33(6): 523-526. http://www.worldcat. org/title/curling-phenomenon-of-polypropylene-yarns/oclc/451177654
Downloads
Published
How to Cite
Issue
Section
License
Policy for Journals/Articles with Open Access
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work
Policy for Journals / Manuscript with Paid Access
Authors who publish with this journal agree to the following terms:
- Publisher retain copyright .
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work .