Influence of a Microwave Irradiation on the Swelling and Permeation Properties of a Nafion Membrane
DOI:
https://doi.org/10.6000/1929-6037.2015.04.02.1Keywords:
Nafion membrane, microwave, hydraulic permeability, swelling, liquid uptake, water, methanol.Abstract
The effect of a microwave irradiation at 2450 MHz on the swelling and permeation properties of a Nafion membrane in water and methanol media has been studied. The influence of the irradiation power and the exposure time has been analyzed. The results found show that the irradiation hardly affects the membrane liquid uptake, but it affects the expansion properties of the membrane. The hydraulic permeability coefficient of the unmodified and the irradiated membranes has been experimentally determined. Higher hydraulic permeability has been obtained for the irradiated membranes in both water and methanol, but the degree of increment in permeability coefficient with microwave depends on kinds of permeation liquid. The results have been discussed considering the degradation effect occurring on the membrane hydrophobic matrix, which affects to the membrane elastic properties.
References
Mauritz KA, Moore RB. State of understanding of Nafion. Chem Rev 2004; 104: 4535-4585. http://dx.doi.org/10.1021/cr0207123 DOI: https://doi.org/10.1021/cr0207123
Rivin D, Kendrick CE, Gibson PW, Schneider NS. Solubility and transport behavior of water and alcohols in Nafion. Polymer 2001; 42: 623-635. http://dx.doi.org/10.1016/S0032-3861(00)00350-5 DOI: https://doi.org/10.1016/S0032-3861(00)00350-5
Randová A, Hovorka S, Izák P, Bartovská L. Swelling of Nafion in methanol-water-inorganic salt ternary mixtures. J Electroanal Chem 2008; 616: 117-121. http://dx.doi.org/10.1016/j.jelechem.2007.12.018 DOI: https://doi.org/10.1016/j.jelechem.2007.12.018
Affoune AM, Yamada A, Umeda M. Surface observation of solvent-impregnated Nafion membrane with atomic force microscopy. Langmuir 2004; 20: 6965-6968. http://dx.doi.org/10.1021/la036329q DOI: https://doi.org/10.1021/la036329q
Saarinen V, Kreuer KD, Schuster M, Merkle R, Maier J. On the swelling properties of proton conducting membranes for direct methanol fuel cells. Solid State Ionics 2007; 178: 533-537. http://dx.doi.org/10.1016/j.ssi.2006.12.001 DOI: https://doi.org/10.1016/j.ssi.2006.12.001
García-Nieto D, Barragán VM. A comparative study of the electro-osmotic behavior of cation and anion exchange membranes in alcohol-water media. Electrochim Acta 2015; 154: 166-176. http://dx.doi.org/10.1016/j.electacta.2014.12.070 DOI: https://doi.org/10.1016/j.electacta.2014.12.070
Heinzel A, Barragán VM. A review of the state-of-the-art of the methanol crossover in direct methanol fuel cells. J Power Sources 1999; 84: 70-74. http://dx.doi.org/10.1016/S0378-7753(99)00302-X DOI: https://doi.org/10.1016/S0378-7753(99)00302-X
Young SK, Trevino SF, Beck Tan NC. Investigation of the morphological changes in Nafion membranes induced by swelling with various solvents. Army Research Laboratory ARL-TR-2647 2002: 1-29. DOI: https://doi.org/10.21236/ADA398745
Choi P, Jalani NH, Datta R. Swelling in Nafion perfluorinated membrane: Effect of equivalent weight (EW) and polymer elasticity. The Electrochemical Society, Inc. 205th Meeting 2004; Abs. 376.
Villaluenga JPG, Barragán VM, Izquierdo-Gil MA, Godino MP, Seoane B, Ruiz-Bauzá C. Comparative study of liquid uptake and permeation characteristics of sulfonated cation-exchange membranes in water and methanol. J Membrane Sci 2008; 323: 421-427. http://dx.doi.org/10.1016/j.memsci.2008.06.049 DOI: https://doi.org/10.1016/j.memsci.2008.06.049
Barragán VM, Villaluenga JPG, Godino MP, Izquierdo-Gil MA, Ruiz-Bauzá C, Seoane B. Experimental estimation of equilibrium and transport properties of sulfonated cation-exchange membranes with different morphologies. J Colloid Interf Sci 2009; 333: 497-502. http://dx.doi.org/10.1016/j.jcis.2009.02.015 DOI: https://doi.org/10.1016/j.jcis.2009.02.015
Peron J, Mani A, Zhao X, et al. Properties of Nafion NR-211 membranes for PEMFCs. J Membrane Sci 2010; 356: 44-51. http://dx.doi.org/10.1016/j.memsci.2010.03.025 DOI: https://doi.org/10.1016/j.memsci.2010.03.025
Azher H, Scholes CA, Stevens GW, Kentish SE. Water permeation and sorption properties of Nafion 115 at elevated temperatures. J Membrane Sci 2014; 459: 104-113. http://dx.doi.org/10.1016/j.memsci.2014.01.049 DOI: https://doi.org/10.1016/j.memsci.2014.01.049
Kusoglu A, Karlsson AM, Santare MH. Structure-property relationship in ionomer membranes. Polymer 2010; 51: 1457-1464. http://dx.doi.org/10.1016/j.polymer.2010.01.046 DOI: https://doi.org/10.1016/j.polymer.2010.01.046
Duan Q, Wang H, Benziger J. Transport of liquid water through Nafion membranes. J Membrane Sci 2012; 392-393: 88-94. http://dx.doi.org/10.1016/j.memsci.2011.12.004 DOI: https://doi.org/10.1016/j.memsci.2011.12.004
Choi WC, Kim JD, Woo SI. Modification of proton conducting membrane for reducing methanol crossover in a direct-methanol fuel cell. J Power Sources 2001; 96: 411-414. http://dx.doi.org/10.1016/S0378-7753(00)00602-9 DOI: https://doi.org/10.1016/S0378-7753(00)00602-9
Hobson LJ, Ozu H, Yamaguchi M, Hayase S. Modified Nafion 117 as an improved polymer electrolyte membrane for direct methanol fuel cells. J Electrochem Soc 2001; 148: A1185-A1190. http://dx.doi.org/10.1149/1.1402980 DOI: https://doi.org/10.1149/1.1402980
Liu X, Suo C, Zhang Y, Wang X, Sun C, Li L, Zhang L. Novel modification of Nafion 117 for a MEMS-based micro direct methanol fuel cell (DMFC). J Micromech Microeng 2006; 16: S226-S232. http://dx.doi.org/10.1088/0960-1317/16/9/S09 DOI: https://doi.org/10.1088/0960-1317/16/9/S09
Wang X, Li X, Fu X, Chen R, Gao B. Effect of ultrasound irradiation on polymeric microfiltration membranes. Desalination 2005; 175: 187-196. http://dx.doi.org/10.1016/j.desal.2004.08.044 DOI: https://doi.org/10.1016/j.desal.2004.08.044
Liu L, Ding Z, Chang L, Ma R, Yang Z. Ultrasonic enhancement of membrane-based deoxygenation and simultaneous influence on polymeric hollow fiber membrane. Sep Purif Technol 2007; 56: 133-142. http://dx.doi.org/10.1016/j.seppur.2007.01.023 DOI: https://doi.org/10.1016/j.seppur.2007.01.023
Kaeselev B, Kingshott P, Jonsson G. Influence of the surface structure on the filtration performance of UV-modified PES membranes. Desalination 2002; 146: 265-271. http://dx.doi.org/10.1016/S0011-9164(02)00485-X DOI: https://doi.org/10.1016/S0011-9164(02)00485-X
Pieracci J, Crivello JV, Belfort G. Increasing membrana permeaiblity of UV-modified poly(ether sulfone) ultrafiltration membranas. J Membrane Sci 2002; 202: 1-16. http://dx.doi.org/10.1016/S0376-7388(01)00624-X DOI: https://doi.org/10.1016/S0376-7388(01)00624-X
Ilconich JB, Xu X, Coleman M, Simpson PJ. Impact of ion beam irradiation on microstructure and gas permeance of polysulfone asymmetric membranes. J Membrane Sci. 2003; 214: 143-156. http://dx.doi.org/10.1016/S0376-7388(02)00543-4 DOI: https://doi.org/10.1016/S0376-7388(02)00543-4
Choi Y, Kang M, Kim S, Cho J, Moon S. Characterization of LDPE/polystyrene cation exchange membranes prepared by monomer sorption and UV radiation polymerisation. J Membrane Sci 2003; 223: 201-215. http://dx.doi.org/10.1016/S0376-7388(03)00339-9 DOI: https://doi.org/10.1016/S0376-7388(03)00339-9
Vázquez MI, Galán P, Casado J, Ariza MJ, Benavente J. Effect of radiation and thermal treatment on structural and transport parameters for cellulose regenerated membranes. Appl Surf Sci 2004; 238: 415-422. http://dx.doi.org/10.1016/j.apsusc.2004.05.161 DOI: https://doi.org/10.1016/j.apsusc.2004.05.161
Sionkowska A, Wisniewski M, Skopinska J, et al. Thermal and mechanical properties of UV irradiated collagen/chitosan thin films. Polym Degrad Stabil 2006; 91: 3026-3032. http://dx.doi.org/10.1016/j.polymdegradstab.2006.08.009 DOI: https://doi.org/10.1016/j.polymdegradstab.2006.08.009
Nagata S, Konishi Y, Tsuchiya B, Toh K, et al. Ion beam effects on electrical characteristics of proton conductive polymer. Nucl Instrum Meth 2007; B 257: 519-522. DOI: https://doi.org/10.1016/j.nimb.2007.01.111
Bykov YV, Egorov SV, Eremeev AG, Rybakov KI, Semenov VE, Sorokin AA, Evidence for microwave enhanced mass transport in the annealing of nanoporous alumina membranes. J Mater Sci 2001; 36: 131-136. http://dx.doi.org/10.1023/A:1004893104413 DOI: https://doi.org/10.1023/A:1004893104413
Nakai Y, Yoshimizu H, Tsujita Y. Enhanced gas permeability of cellulose acetate membranes under microwave irradiation. J Membrane Sci 2005; 256: 72-77. http://dx.doi.org/10.1016/j.memsci.2005.02.008 DOI: https://doi.org/10.1016/j.memsci.2005.02.008
Nakai Y, Tsujita Y, Yoshimizu H. Control of gas permeability for cellulose acetate membrane by microwave irradiation. Desalination 2002; 145: 375-377. http://dx.doi.org/10.1016/S0011-9164(02)00439-3 DOI: https://doi.org/10.1016/S0011-9164(02)00439-3
Metaxas RC, Meredith RJ. Industrial Microwave Heating. Peter Pereginus Ltd: London; 1983.
Tian ZQ, Wang XL, Zhang HM, Yi BL, Jiang SP. Microwave-assisted synthesis of PTFE/C nanocomposite for polymer
electrolyte fuel cells. Electrochem Commun 2006; 8: 1158-1162. http://dx.doi.org/10.1016/j.elecom.2006.05.011 DOI: https://doi.org/10.1016/j.elecom.2006.05.011
Barragán VM, Ruiz-Bauzá C. Streaming potential and hydraulic permeation through cation-exchange membranes. J Non-Equil Thermody 1997; 22: 374-385. http://dx.doi.org/10.1515/jnet.1997.22.4.374 DOI: https://doi.org/10.1515/jnet.1997.22.4.374
Skou E, Kauranen P, Hentschel J. Water and methanol uptake in proton conducting Nafion (R) membranes. Solid State Ionics 1997; 97: 333-337. http://dx.doi.org/10.1016/S0167-2738(97)00033-7 DOI: https://doi.org/10.1016/S0167-2738(97)00033-7
Dimitrova P, Friedrich KA, Vogt B, Stimming U. Transport properties of ionomer composite membranes for direct methanol fuel cells. J Electroanal Chem 2002; 532: 75-83. http://dx.doi.org/10.1016/S0022-0728(02)01006-9 DOI: https://doi.org/10.1016/S0022-0728(02)01006-9
Chaabane L, Dammak L, Grande D, et al. Sweelling and permeability of Nafion 117 in water-methanol solutions: An experimental and modeling investigation. J Membrane Sci 2011; 377: 54-74. http://dx.doi.org/10.1016/j.memsci.2011.03.037 DOI: https://doi.org/10.1016/j.memsci.2011.03.037
Morris DR, Sun X. Water-sortion and transport properties of Nafion 117 H. J Appl Polym Sci 1993; 50: 1445-1452. http://dx.doi.org/10.1002/app.1993.070500816 DOI: https://doi.org/10.1002/app.1993.070500816
Chaabane L, Dammak L, Nikonenko VV, Bulvestre G, Auclair B. The influence of absorbed methanol on the conductivity and the microstructure of ion-exchange membranes. J Membrane Sci 2007; 298: 126-135. http://dx.doi.org/10.1016/j.memsci.2007.04.010 DOI: https://doi.org/10.1016/j.memsci.2007.04.010
Plazanet M, Sacchetti F, Petrillo C, Demé B, Bartolini P, Torre R. Water in a polymeric electrolyte membrane: Sorption/desorption and freezing phenomena. J Membrane Sci 2014; 453: 419-424. http://dx.doi.org/10.1016/j.memsci.2013.11.026 DOI: https://doi.org/10.1016/j.memsci.2013.11.026
Koter S. Transport of simple electrolyte solutions through ion-exchange membranes: the capillary model. J Membrane Sci 2002; 206: 201-215. http://dx.doi.org/10.1016/S0376-7388(01)00763-3 DOI: https://doi.org/10.1016/S0376-7388(01)00763-3
Majsztrik P, Bocarsly A, Benziger J. Water permeation through Nafion membranes: The role of water activity. J Phys Chem B 2008; 112: 16280-16289. http://dx.doi.org/10.1021/jp804197x DOI: https://doi.org/10.1021/jp804197x
Evans CE, Noble RD, Nazeri-Thompson S, Nazeri B, Koval CA. Role of conditioning on water uptake and hydraulic permeability of Nafion membranes. J Membrane Sci 2006; 279: 521-528. http://dx.doi.org/10.1016/j.memsci.2005.12.046 DOI: https://doi.org/10.1016/j.memsci.2005.12.046
Meier F, Eigenberger G. Transport parameters for the modelling of water transport in ionomer membranes for PEM-fuel cells. Electrochim Acta 2004; 49: 1731-1742. http://dx.doi.org/10.1016/j.electacta.2003.12.004 DOI: https://doi.org/10.1016/j.electacta.2003.12.004
Majsztrik, PW, Bocarsly AB, Benziger JB. Viscoelastic response of Nafion. Effect of temperature and hydration on tensile creep. Macromolecules 2008; 41: 9849-9862. http://dx.doi.org/10.1021/ma801811m DOI: https://doi.org/10.1021/ma801811m
Barragán VM, Pastuschuk E. Viscoelastic deformation of sulfonated polymeric cation-exchange membranes exposed to a pressure gradient. Mater Chem Phys 2014; 146: 65-72. http://dx.doi.org/10.1016/j.matchemphys.2014.02.043 DOI: https://doi.org/10.1016/j.matchemphys.2014.02.043
Adachi M, Navessin T, Xie Z, Li FH, Tanaka S, Holdcroft S. Thickness dependence of water permeation through proton exchange membranes. J Membrane Sci 2010; 364: 183-193. http://dx.doi.org/10.1016/j.memsci.2010.08.011 DOI: https://doi.org/10.1016/j.memsci.2010.08.011
Downloads
Published
How to Cite
Issue
Section
License
Policy for Journals/Articles with Open Access
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work
Policy for Journals / Manuscript with Paid Access
Authors who publish with this journal agree to the following terms:
- Publisher retain copyright .
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work .