Development of Ag/GO Incorporated onto PES Membrane with Improved Anti-Fouling Property

Authors

  • Banele Vatsha Advanced Materials Division, DST/Mintek Nanotechnology Innovation Centre, Mintek, South Africa
  • Jane C. Ngila Department of Applied Chemistry, University of Johannesburg, Doornfonteion Campus, Johannesburg, South Africa
  • Richard Moutloali 1Advanced Materials Division, DST/Mintek Nanotechnology Innovation Centre, Mintek, South Africa

DOI:

https://doi.org/10.6000/1929-6037.2015.04.03.1

Keywords:

Graphene derivativies, Polyethersulfone, silver particles, antibacterial effect

Abstract

Graphene and its derivatives have got increasingly application interests emanating from its unique properties. This work reports silver-graphene oxide sheets (Ag-GO) composite synthesis and then incorporated into Polyethersulfone (PES) casting solution. The composite casting mixtures were cast via phase inversion method. Graphene and its derivatives were characterised by ATR/FTIR, Raman, XRD and TEM. The morphology and performance of the neat PES and composite PES membranes were characterised by SEM, AFM, CA, permeation flux, protein (BSA) rejection, antifouling and antibacterial tests. The composite membranes exhibited a slightly higher permeation flux and then gradual decreased compared to neat PES membranes. However, the antifouling tests revealed that the composite membranes with Ag particles showed a preferable antifouling performance. The antibacterial tests confirmed that the composite membranes exhibited a effective antibacterial performance against both gram-positive (E. coli) and gram-negative (S. Aureus) strains.

References

Taurozzi JS, Arul H, Bosak, V. Z, Burban AF, Voice TC, Bruening ML, Tarabara VV. Effect of filler incorporation route on the properties of polysulfone–silver nanocomposite membranes of different porosities. J Mem Sci 2008; 325: 58-8. http://dx.doi.org/10.1016/j.memsci.2008.07.010 DOI: https://doi.org/10.1016/j.memsci.2008.07.010

Zhang X, Cheng C, Zhao J, Ma L, Sun S, Zhao C. Polyethersulfone enwrapped graphene oxide porous particles for water treatment. Chem Eng J 2013; 215-216: 72-81. http://dx.doi.org/10.1016/j.cej.2012.11.009

Yu L, Zhang Y, Zhang B, Liu J, Zhang H, Song C. Preparation and characterization of HPEI-GO/PES ultrafiltration membrane with antifouling and antibacterial properties. J Mem Sci 2013; 447: 452-462. http://dx.doi.org/10.1016/j.memsci.2013.07.042 DOI: https://doi.org/10.1016/j.memsci.2013.07.042

Zhang J, Xu Z, Shan M, Zhou B, Li Y, Li B, Niu J, Qian X. Synergetic effects of oxidized carbon nanotubes and graphene oxide on fouling control and anti-fouling mechanism of polyvinylidene fluoride ultrafiltration membranes. J Mem Sci 2013; 448: 81-92. http://dx.doi.org/10.1016/j.memsci.2013.07.064 DOI: https://doi.org/10.1016/j.memsci.2013.07.064

Zhang Y, Liu F, Lu Y, Zhao L, Song L. Investigation of phosphorylated TiO2–SiO2 particles/polysulfone composite membrane for wastewater treatment. Des 2013; 324: 118-126. http://dx.doi.org/10.1016/j.desal.2013.06.007 DOI: https://doi.org/10.1016/j.desal.2013.06.007

Jin F, Lv W, Zhang C, Li Z, Su R, Qi W, Yang QH, He Z. High-performance ultrafiltration membranes based on polyethersulfone-graphene oxide composites. RSC Adv 2013; 3(44): 21394-21397. http://dx.doi.org/10.1039/c3ra42908c DOI: https://doi.org/10.1039/c3ra42908c

Zinadini S, Zinatizadeh AA, Rahimi M, Vatanpour V, Zangeneh H. Preparation of a novel antifouling mixed matrix PES membrane by embedding graphene oxide nanoplates. J Mem Sci 2014; 453(0): 292-301. http://dx.doi.org/10.1016/j.memsci.2013.10.070 DOI: https://doi.org/10.1016/j.memsci.2013.10.070

Wang X, Huang P, Feng L, He M, Guo S, Shen G, Cui D. Green controllable synthesis of silver nanomaterials on graphene oxide sheets via spontaneous reduction. RSC Adv 2012; 2(9): 3816-3822. http://dx.doi.org/10.1039/c2ra00008c DOI: https://doi.org/10.1039/c2ra00008c

Wang Y, Zhang D, Bao Q, Wu J, Wan Y. Controlled drug release characteristics and enhanced antibacterial effect of graphene oxide-drug intercalated layered double hydroxide hybrid films. J Mat Chem 2012; 22(43): 23106-23113. http://dx.doi.org/10.1039/c2jm35144g DOI: https://doi.org/10.1039/c2jm35144g

Murphy S, Huang L, Kamat PV. Reduced Graphene Oxide–Silver Nanoparticle Composite as an Active SERS Material. J Phys Chem C 2013; 117(9): 4740-4747. http://dx.doi.org/10.1021/jp3108528 DOI: https://doi.org/10.1021/jp3108528

Tang J, Chen Q, Xu L, Zhang S, Feng L, Cheng L, Xu H, Liu Z, Peng R. Graphene Oxide–Silver Nanocomposite As a Highly Effective Antibacterial Agent with Species-Specific Mechanisms. ACS App Mat Int 2013; 5(9): 3867-3874. http://dx.doi.org/10.1021/am4005495 DOI: https://doi.org/10.1021/am4005495

Shen L, Bian X, Lu X, Shi L, Liu Z, Chen L, Hou Z, Fan K. Preparation and characterization of ZnO/polyethersulfone (PES) hybrid membranes. Des 2012; 293: 21-29. http://dx.doi.org/10.1016/j.desal.2012.02.019 DOI: https://doi.org/10.1016/j.desal.2012.02.019

He Y, Cui H. Synthesis of highly chemiluminescent graphene oxide/silver nanoparticle nano-composites and their analytical applications. J Mat Chem 2012; 22(18): 9086-9091. http://dx.doi.org/10.1039/c2jm16028e DOI: https://doi.org/10.1039/c2jm16028e

Xu WP, Zhang LC, Li JP, Lu Y, Li HH, Ma YN, Wang WD, Yu SH. Facile synthesis of silver@graphene oxide nanocomposites and their enhanced antibacterial properties. J Mat Chem 2011; 21(12): 4593-4597. http://dx.doi.org/10.1039/c0jm03376f DOI: https://doi.org/10.1039/c0jm03376f

Akhavan O, Ghaderi E. Escherichia coli bacteria reduce graphene oxide to bactericidal graphene in a self-limiting manner. Car 2012; 50(5): 1853-1860. http://dx.doi.org/10.1016/j.carbon.2011.12.035 DOI: https://doi.org/10.1016/j.carbon.2011.12.035

Hu M, Mi B. Enabling Graphene Oxide Nanosheets as Water Separation Membranes. Env Sci Tech 2013; 47(8): 3715-3723. http://dx.doi.org/10.1021/es400571g DOI: https://doi.org/10.1021/es400571g

Pham VH, Cuong TV, Hur SH, Oh E, Kim EJ, Shin EW, Chung JS. Chemical functionalization of graphene sheets by solvothermal reduction of a graphene oxide suspension in N-methyl-2-pyrrolidone. J Mat Chem 2011; 21(10): 3371-3377. http://dx.doi.org/10.1039/C0JM02790A DOI: https://doi.org/10.1039/C0JM02790A

Wang Z, Yu H, Xia J, Zhang F, Li F, Xia Y, Li Y. Novel GO-blended PVDF ultrafiltration membranes. Des 2012; 299(0): 50-54. http://dx.doi.org/10.1016/j.desal.2012.05.015 DOI: https://doi.org/10.1016/j.desal.2012.05.015

Zhang X, Cheng C, Zhao J, Ma L, Sun S, Zhao C. Polyethersulfone enwrapped graphene oxide porous particles for water treatment. Chem Eng J 2013; 215: 72-81. http://dx.doi.org/10.1016/j.cej.2012.11.009 DOI: https://doi.org/10.1016/j.cej.2012.11.009

Ganesh BM, Isloor AM, Ismail AF. Enhanced hydrophilicity and salt rejection study of graphene oxide-polysulfone mixed matrix membrane. Des 2013; 313(0): 199-207. http://dx.doi.org/10.1016/j.desal.2012.11.037 DOI: https://doi.org/10.1016/j.desal.2012.11.037

Sotto A, Boromand A, Balta S, Kim J, Van der Bruggen, B. Doping of polyethersulfone nanofiltration membranes: antifouling effect observed at ultralow concentrations of TiO2 nanoparticles. J Mat Chem 2011; 21(28): 10311-10320. http://dx.doi.org/10.1039/c1jm11040c DOI: https://doi.org/10.1039/c1jm11040c

Zhang J, Xu Z, Mai W, Min C, Zhou B, Shan M, Li Y, Yang C, Wang Z, Qian X. Improved hydrophilicity, permeability, antifouling and mechanical performance of PVDF composite ultrafiltration membranes tailored by oxidized low-dimensional carbon nanomaterials. J Mat Chem A 2013; 1(9): 3101-3111. http://dx.doi.org/10.1039/c2ta01415g DOI: https://doi.org/10.1039/c2ta01415g

Downloads

Published

2015-09-14

How to Cite

Vatsha, B., Ngila, J. C., & Moutloali, R. (2015). Development of Ag/GO Incorporated onto PES Membrane with Improved Anti-Fouling Property. Journal of Membrane and Separation Technology, 4(3), 98–109. https://doi.org/10.6000/1929-6037.2015.04.03.1

Issue

Section

Articles