Effects of 4A Zeolite Additions on the Structure and Performance of LDPE Blend Microfiltration Membrane through Thermally Induced Phase Separation Method

Authors

  • Jin Gu The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Materials Engineering, Jiangnan University, Wuxi 214122, China
  • Aonan Lai The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Materials Engineering, Jiangnan University, Wuxi 214122, China
  • Jun Zhang The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Materials Engineering, Jiangnan University, Wuxi 214122, China
  • Yunxiang Bai The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Materials Engineering, Jiangnan University, Wuxi 214122, China
  • Chunfang Zhang The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Materials Engineering, Jiangnan University, Wuxi 214122, China
  • Yuping Sun The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Materials Engineering, Jiangnan University, Wuxi 214122, China

DOI:

https://doi.org/10.6000/jmst.v1i1.328

Keywords:

Low density polyethylene, 4A zeolite, Microporous membrane, Thermally induced phase separation

Abstract

Microfiltration membranes, 4A zeolite/LDPE, were prepared by blending low density polyethylene (LDPE) and 4A zeolite through thermally induced phase separation (TIPS) process with diphenyl ether (DPE) as diluent. The effects of 4A zeolite loading on the pore structure and water permeation performance of the 4A zeolite/LDPE blend membranes were investigated. The incorporation of 4A zeolite particles greatly enhanced the connectivity of membrane pores, the pore size, and thus the water flux of 4A zeolite/LDPE blend membranes due to the gradually stronger DPE-zeolite affinity with the increase of the 4A zeolite loading. The water flux increased from 0 of LDPE control membrane to 87 L/m2h of 4A zeolite/LDPE blend membrane with 4A zeolite loading of 10 wt%. In addition, increasing the DPE content and cooling bath temperature is in favor of the water flux of 4A zeolite/LDPE blend membranes.

References

Yang YF, Wan LS, Xu ZK. Surface Engineering of Microporous Polypropylene Membrane for Antifouling: A Mini-Review. J Adhes Sci Technol 2011; 25: 245. http://dx.doi.org/10.1163/016942410X520835 DOI: https://doi.org/10.1163/016942410X520835

Hussain A, Al-Rawajfeh AE, Alsaraierh H. Membrane bio-reactors (MBR) in waste water treatment: a review of the recent patents. Recent Pat Biotechnol 2010; 4: 65. http://dx.doi.org/10.2174/187220810790069505 DOI: https://doi.org/10.2174/187220810790069505

Jiang JH, Zhu LP, Li XL, Xu YY, Zhu BK. Surface modification of PE porous membranes based on the strong adhesion of polydopamine and covalent immobilization of heparin. J Membr Sci 2010; 364: 194. http://dx.doi.org/10.1016/j.memsci.2010.08.017 DOI: https://doi.org/10.1016/j.memsci.2010.08.017

Ding HY, Tian Y, Wang LH, Liu BQ. Preparation of ultrahigh-molecular-weight polyethylene membranes via a thermally induced phase-separation method. J Appl Polym Sci 2007; 105: 3355. http://dx.doi.org/10.1002/app.26521 DOI: https://doi.org/10.1002/app.26521

Matsuyama H, Hayashi K, Maki T, Teramoto M, Kubota N. Effect of polymer density on polyethylene hollow fiber membrane formation via thermally induced phase separation. J Appl Polym Sci 2004; 93: 471. http://dx.doi.org/10.1002/app.20461 DOI: https://doi.org/10.1002/app.20461

Matsuyama H, Okafuji H, Maki T, Teramoto M, Kubota N. Preparation of polyethylene hollow fiber membrane via thermally induced phase separation. J Membr Sci 2003; 223, 119. http://dx.doi.org/10.1016/S0376-7388(03)00314-4 DOI: https://doi.org/10.1016/S0376-7388(03)00314-4

Matsuyama H, Kimb M, Lloyd DR, Effect of extraction and drying on the structure of microporous polyethylene membranes prepared via thermally induced phase separation. J Membr Sci 2002; 204: 413. http://dx.doi.org/10.1016/S0376-7388(02)00052-2 DOI: https://doi.org/10.1016/S0376-7388(02)00052-2

Zhang M, Zhang CF, Yao ZK, Shi JL, Zhu BK, Xu YY, Preparation of high density polyethylene/polyethylene-block-poly(ethylene glycol) copolymer blend porous membranes via thermally induced phase separation process and their properties. Chin J Polym Sci 2010; 28: 337. http://dx.doi.org/10.1007/s10118-010-9022-0 DOI: https://doi.org/10.1007/s10118-010-9022-0

Zhang J, Wang XL, Luo F, Li HL, Xu ZZ. Formation of low density polyethylene microporous membranes via thermally induced phase separation. (I) LDPE-18D/DPE system. Polym Mater Sci Eng 2004; 20: 174.

Zhang J, Wang XL, Luo F, Xu ZZ, Wen JZ. Formation of low density polyethylene microporous membranes via thermally induced phase separation. (II) The effects of kinetic factors on the structures of microporous membranes. Polym Mater Sci Eng 2005; 21: 137.

Li NN, Xiao CF, Preparation and properties of UHMWPE/SiO2 hybrid hollow fiber membranes via thermally induced phase separation—stretching method. Ira Polym J 2009; 18: 479.

Yan L, Li YS, Effect of nano-sized Al2O3 particle addit ion on PVDF ultrafiltration membrane performance. J Membr Sci 2006; 276: 162. http://dx.doi.org/10.1016/j.memsci.2005.09.044 DOI: https://doi.org/10.1016/j.memsci.2005.09.044

Xu GQ, Li XF, Lv XL. Effect of calcium carbonate on the structure of porous PVDF membrane in TIPS process. Polym Mater Sci Eng 2007; 23: 234.

Cui AH, Liu Z, Xiao CF, Zhang YF. Effect of micro-sized SiO2-particle on the performance of PVDF blend membranes via TIPS. J Membr Sci 2010; 360: 259. http://dx.doi.org/10.1016/j.memsci.2010.05.023 DOI: https://doi.org/10.1016/j.memsci.2010.05.023

Maximous N, Nakhla G, Wan W, Wong K. Preparation, characterization and performance of Al2O3/PES membrane for wastewater filtration. J Membr Sci 2009; 341: 67. http://dx.doi.org/10.1016/j.memsci.2009.05.040 DOI: https://doi.org/10.1016/j.memsci.2009.05.040

Yang YN, Zhang HX, Wang P, Zheng QZ, Li J, The influence of nano-sized TiO2 fillers on the morphologies and properties of PSF UF membrane. J Membr Sci 2007; 288: 231. http://dx.doi.org/10.1016/j.memsci.2006.11.019 DOI: https://doi.org/10.1016/j.memsci.2006.11.019

Funk CV, Beavers BL, Lloyd DR. Effect of particulate filler on cell size in membranes formed via liquid-liquid thermally induced phase separation. J Membr Sci 2008; 325: 1. http://dx.doi.org/10.1016/j.memsci.2008.07.029 DOI: https://doi.org/10.1016/j.memsci.2008.07.029

Zhang CF, Bai YX, Sun YP, Gu J, Xu YY. Preparation of hydrophilic HDPE porous membranes via thermally induced phase separation by blending of amphiphilic PE-b-PEG copolymer. J Membr Sci 2010; 365: 216. http://dx.doi.org/10.1016/j.memsci.2010.09.007 DOI: https://doi.org/10.1016/j.memsci.2010.09.007

Gao JG, Yu MS, Li ZT. Nonisothermal crystallization kinetics and melting behavior of bimodal medium density polyethylene/low density polyethylene blends. Eur Polym 2004; 44: 1533. http://dx.doi.org/10.1016/j.eurpolymj.2004.02.008 DOI: https://doi.org/10.1016/j.eurpolymj.2004.02.008

Zhang CF, Yang L, Bai YX, Gu J, Sun YP. ZSM-5 filled polyurethaneurea membranes for pervaporation separation isopropyl acetate from aqueous solution. Sep Purif Technol 2012; 85: 8. http://dx.doi.org/10.1016/j.seppur.2011.07.008 DOI: https://doi.org/10.1016/j.seppur.2011.07.008

Tretinnikov ON. Selective accumulation of functional groups at the film surfaces of stereo regular poly (methyl methacrylate). Langmuir 1997; 13: 2988. http://dx.doi.org/10.1021/la9700275 DOI: https://doi.org/10.1021/la9700275

Ji GL, Zhu LP, Zhu BK, Zhang CF, Xu YY. Structure formation and characterization of PVDF hollow fiber membrane prepared via TIPS with diluent mixture. J Membr Sci 2008; 319: 264. http://dx.doi.org/10.1016/j.memsci.2008.03.043 DOI: https://doi.org/10.1016/j.memsci.2008.03.043

Yan L, Li YS, Xiang CB, Preparation of poly(vinylidene fluoride)(pvdf) ultrafiltration membrane modified by nano-sized alumina (Al2O3) and its antifouling research. Polymer 2005; 46: 7701. http://dx.doi.org/10.1016/j.polymer.2005.05.155 DOI: https://doi.org/10.1016/j.polymer.2005.05.155

Yu LY, Xu ZL, Shen HM, Hu Y. Preparation and characterization of PVDF-SiO2 composite hollow fiber UF membrane by sol-gel method. J Membr Sci 2009; 337: 257. http://dx.doi.org/10.1016/j.memsci.2009.03.054 DOI: https://doi.org/10.1016/j.memsci.2009.03.054

Khoonsap S, Amnuaypanich S. Mixed matrix membranes prepared from poly(vinyl alcohol) (PVA) incorporated with zeolite 4A-graft-poly(2-hydroxyethyl methacrylate) (zeolite-g-PHEMA) for the pervaporation dehydration of water–acetone mixtures. J Membr Sci 2011; 367: 182. http://dx.doi.org/10.1016/j.memsci.2010.10.058 DOI: https://doi.org/10.1016/j.memsci.2010.10.058

McGuire KS, Laxminarayan A, Martula DS, Lloyd DR. Kinetics of droplet growth in liquid–liquid phase separation of polymer–diluent systems: model development. J Colloid Interface Sci 1996; 182: 46. http://dx.doi.org/10.1006/jcis.1996.0435 DOI: https://doi.org/10.1006/jcis.1996.0435

McGuire KS, Laxminarayan A, Lloyd DR. Kinetics of droplet growth in liquid–liquid phase separation of polymer–diluent systems: experimental results. Polymer 1995; 36: 4951. http://dx.doi.org/10.1016/0032-3861(96)81620-X DOI: https://doi.org/10.1016/0032-3861(96)81620-X

Downloads

Published

2012-10-05

How to Cite

Gu, J., Lai, A., Zhang, J., Bai, Y., Zhang, C., & Sun, Y. (2012). Effects of 4A Zeolite Additions on the Structure and Performance of LDPE Blend Microfiltration Membrane through Thermally Induced Phase Separation Method. Journal of Membrane and Separation Technology, 1(1), 52–59. https://doi.org/10.6000/jmst.v1i1.328

Issue

Section

Articles