Preparation and Characterization of Cellulose Membrane Modified with β-Cyclodextrin for Chiral Separation
DOI:
https://doi.org/10.6000/1929-6037.2016.05.03.1Keywords:
Cellulose membrane, Enantiomeric separation, Glutaraldehyde, Tryptophan, Multi-stage filtrationAbstract
In this study, it is first time to obtain a complete separation of using β-cyclodextrin (β-CD) modified cellulose microfiltration membrane. Commercially cellulose membrane with the pore diameter of 0.22μm was functionalized with β-cyclodextrin (β-CD) by aldolization at the solid–liquid interface. Filtration experiments were carried out using a dead-end filtration cell holding a flat sheet membrane with effective area of 36 mm2. Aqueous solution of racemic tryptophan (0.05g/L, 150 mL) was forced to permeate through the cellulose membrane immobilized by β-CD at a flow rate of 0.1 ml/min through the membrane microdevice. Chiral ligand exchange chromatography was used to determine the concentration and ratio of D- and L-tryptophan in the filtrate. A complete separation of racemic tryptophan can be obtained by using this novel composite membrane-based separation system. In addition, a multi-stage filtration separation was applied in order to obtain higher permselectivity. The objective of this study is to obtain an easy prepared chiral membrane with good reproducibility and can be applied to a variety of chiral separations.
References
Sueyoshi Y, Fukushima C, Yoshikawa M. Molecularly imprinted nanofiber membranes from cellulose acetate aimed for chiral separation. J Membrane Sci 2010; 357: 90-97. http://dx.doi.org/10.1016/j.memsci.2010.04.005 DOI: https://doi.org/10.1016/j.memsci.2010.04.005
Bozkurt S, Yilmaz M, Sirit A. Chiral calix[4]arenes bearing amino alcohol functionality as membrane carriers for transport of chiral amino acid methylesters and mandelic acid. Chirality 2012; 24: 129-136. http://dx.doi.org/10.1002/chir.21034 DOI: https://doi.org/10.1002/chir.21034
Ha JJ, Choi HJ, Jin JS, Jeong ED, Hyun MH. Liquid chromatographic resolution of proton pump inhibitors including omeprazole on a ligand exchange chiral stationary phase. J Chromatogr A 2010; 1217: 6436-6441. http://dx.doi.org/10.1016/j.chroma.2010.08.041 DOI: https://doi.org/10.1016/j.chroma.2010.08.041
Singh K, Ingole PG, Bajaj HC, Gupta H. Preparation, characterization and application of β-cyclodextrin-glutaraldehyde crosslinked membrane for the enantiomeric separation of amino acids. Desalination 2012; 298: 13-21. http://dx.doi.org/10.1016/j.desal.2012.04.023
Yu XW, Xu Y, Gu H. Enhancement of chiral resolution of dl-menthol at high substrate concentration by in situ resin adsorption. J Biotechnol 2010; 150: S345-S345. http://dx.doi.org/10.1016/j.jbiotec.2010.09.375 DOI: https://doi.org/10.1016/j.jbiotec.2010.09.375
Wang WF, Xiong WW, Zhao M, et al. Chiral separation of trans-stilbene oxide through cellulose acetate butyrate membrane. Tetrahedron-Asymmetr 2009; 20: 1052-1056. http://dx.doi.org/10.1016/j.tetasy.2009.03.032 DOI: https://doi.org/10.1016/j.tetasy.2009.03.032
Wang YJ, Hu Y, Xu H, Luo GS, Dai YY. Immobilization of lipase with a special microstructure in composite hydrophilic CA/hydrophobic PTFE membrane for the chiral separation of racemic ibuprofen. J Membrane Sci 2007; 293: 133-141. http://dx.doi.org/10.1016/j.memsci.2007.02.006 DOI: https://doi.org/10.1016/j.memsci.2007.02.006
Zhang DY, Zhang TZ, Deng JP, Yang WT. Effect of copolymer composition in poly(N-propargylamide) on helical structure and optical activity. React Funct Polym 2010; 70: 376-381. http://dx.doi.org/10.1016/j.reactfunctpolym.2010.03.002 DOI: https://doi.org/10.1016/j.reactfunctpolym.2010.03.002
Ingole PG, Bajaj HC, Singh K. Membrane separation processes: Optical resolution of lysine and asparagine amino acids. Desalination 2014; 343: 75- 81. http://dx.doi.org/10.1016/j.desal.2013.10.009 DOI: https://doi.org/10.1016/j.desal.2013.10.009
Higuchi A, Tamai M, Ko YA, et al. Polymeric Membranes for Chiral Separation of Pharmaceuticals and Chemicals. Polym Rev 2010; 50: 113-143. http://dx.doi.org/10.1080/15583721003698853 DOI: https://doi.org/10.1080/15583721003698853
Zhang ZH, Zhang ML, Liu YA, et al. Preparation of l-phenylalanine imprinted polymer based on monodisperse hybrid silica microsphere and its application on chiral separation of phenylalanine racemates as HPLC stationary phase. Sep Purif Technol 2012; 87: 142-148. http://dx.doi.org/10.1016/j.seppur.2011.11.037 DOI: https://doi.org/10.1016/j.seppur.2011.11.037
Ma CO, Xu XL, Ai P, et al. Chiral separation of D,L-mandelic acid through cellulose membranes. Chirality 2011; 23: 379-382. http://dx.doi.org/10.1002/chir.20935 DOI: https://doi.org/10.1002/chir.20935
Gumi T, Valiente A, Palet C. Elucidation of SR-propranolol transport rate and enantioselectivity through chiral activated membranes. J Membrane Sci 2005; 256: 150-157. http://dx.doi.org/10.1016/j.memsci.2004.12.052 DOI: https://doi.org/10.1016/j.memsci.2004.12.052
Ingole PG, Bajaj HC, Singh K. Optical resolution of racemic lysine monohydrochloride by novel enantioselective thin film composite membrane. Desalination 2012; 305: 54-63. http://dx.doi.org/10.1016/j.desal.2012.08.015 DOI: https://doi.org/10.1016/j.desal.2012.08.015
Wang HD, Chu LY, Song H, et al. Preparation and enantiomer separation characteristics of chitosan/β-cyclodextrin composite membranes. J Membrane Sci 2007; 297: 262-270. http://dx.doi.org/10.1016/j.memsci.2007.03.055 DOI: https://doi.org/10.1016/j.memsci.2007.03.055
Shiomi K, Yoshikawa M. Multi-stage chiral separation with electrospun chitin nanofiber Membranes. Sep Purif Technol 2013; 118: 300-304. http://dx.doi.org/10.1016/j.seppur.2013.07.004 DOI: https://doi.org/10.1016/j.seppur.2013.07.004
Robl S, Gou L, Gere A, et al. Chiral separation by combining pertraction and preferential Crystallization. Chem Eng Process 2013; 67: 80-88. http://dx.doi.org/10.1016/j.cep.2012.09.002 DOI: https://doi.org/10.1016/j.cep.2012.09.002
Matsuoka Y, Kanda N, Lee YM, Higuchi A. Chiral separation of phenylalanine in ultrafiltration through DNA-immobilized chitosan membranes. J Membrane Sci 2006; 280: 116-123. http://dx.doi.org/10.1016/j.memsci.2006.01.013 DOI: https://doi.org/10.1016/j.memsci.2006.01.013
Meng J, Wei G, Huang XB, et al. A fluorescence sensor based on chiral polymer for highly enantioselective recognition of phenylalaninol. Polymer 2011; 52: 363-367. http://dx.doi.org/10.1016/j.polymer.2010.12.011 DOI: https://doi.org/10.1016/j.polymer.2010.12.011
Xie R, Chu LY, Deng JG. Membranes and membrane processes for chiral resolution. Chem Soc Rev 2008; 37: 1243-1263. http://dx.doi.org/10.1039/B713350B DOI: https://doi.org/10.1039/b713350b
Romero J, Zydney AL. Staging of affinity ultrafiltration processes for chiral separations. J Membrane Sci 2002; 209: 107-119. http://dx.doi.org/10.1016/S0376-7388(02)00283-1 DOI: https://doi.org/10.1016/S0376-7388(02)00283-1
Xiao Y, Lim HM, Chung TS, Rajagopalan R. Acetylation of β-Cyclodextrin Surface-Functionalized Cellulose Dialysis Membranes with Enhanced Chiral Separation. Langmuir 2007; 23: 12990-12996. http://dx.doi.org/10.1021/la7026384 DOI: https://doi.org/10.1021/la7026384
Zhou ZZ, Xiao YC, Hatton TA, Chung TS. Effects of spacer arm length and benzoation on enantioseparation performance of β-cyclodextrin functionalized cellulose membranes. J Membrane Sci 2009; 339: 21-27. http://dx.doi.org/10.1016/j.memsci.2009.04.015 DOI: https://doi.org/10.1016/j.memsci.2009.04.015
Singh K, Ingole PG, Bajaj HC, Gupta H. Preparation, characterization and application of β-cyclodextrin-glutaraldehyde crosslinked membrane for the enantiomeric separation of amino acids. Desalination 2012; 298: 13-21. http://dx.doi.org/10.1016/j.desal.2012.04.023 DOI: https://doi.org/10.1016/j.desal.2012.04.023
Yang M, Chu LY, Wang HD, et al. A Thermoresponsive Membrane for Chiral Resolution. Adv Funct Mater 2008; 18: 652-663. http://dx.doi.org/10.1002/adfm.200700534 DOI: https://doi.org/10.1002/adfm.200700534
Wang J, Fu CJ, Lin T, Yu LX, Zhu SL. Preparation of chiral selective membranes for electrodialysis separation of racemic mixture. J Membrane Sci 2006; 276: 193-198. http://dx.doi.org/10.1016/j.memsci.2005.09.049 DOI: https://doi.org/10.1016/j.memsci.2005.09.049
Glukhovskiy P, Landers TA, Vigh G. Preparative-scale isoelectric focusing separation of enantiomers using a multicompartment electrolyzer with isoelectric membranes. Electrophoresis 2000; 21: 762-766. http://dx.doi.org/10.1002/(SICI)1522-2683(20000301)21:4<762::AID-ELPS762>3.0.CO;2-Y DOI: https://doi.org/10.1002/(SICI)1522-2683(20000301)21:4<762::AID-ELPS762>3.3.CO;2-P
Kano K, Takashima H, Taniuchi Y. Preparation of poly(vinyl chloride)/amphiphilic cyclodextrin composite films and their Chiral recognition ability. Kobunshi Ronbunshu 1996; 53: 542-547. DOI: https://doi.org/10.1295/koron.53.542
Zhao S, Wang Z, Wang JX, Yang SB, Wang SC. PSf/PANI nanocomposite membrane prepared by in situ blending of PSf and PANI/NMP. J Membrane Sci 2011; 376: 83-95. http://dx.doi.org/10.1016/j.memsci.2011.04.008 DOI: https://doi.org/10.1016/j.memsci.2011.04.008
Wang HD, Xie R, Niu CH, et al. Chitosan chiral ligand exchange membranes for sorption resolution of amino acids. Chem Eng Sci 2009; 64: 1462-1473. http://dx.doi.org/10.1016/j.ces.2008.12.007 DOI: https://doi.org/10.1016/j.ces.2008.12.007
Fan LL, Zhang Y, Luo CN, et al. Synthesis and characterization of magnetic β-cyclodextrin–chitosan nanoparticles as nano-adsorbents for removal of methyl blue. Int J Biol Macromol 2012; 50: 444-450. http://dx.doi.org/10.1016/j.ijbiomac.2011.12.016 DOI: https://doi.org/10.1016/j.ijbiomac.2011.12.016
Xu CX, Chen RY, Zheng X, Chen X, Chen Z. Preparation of PVA-GA-CS/PVA-Fe-SA bipolar membrane and its application in electro-generation of 2,2-dimethyl-3-hydroxypropionic acid. J Membrane Sci 2008; 307: 218-224. http://dx.doi.org/10.1016/j.memsci.2007.09.034 DOI: https://doi.org/10.1016/j.memsci.2007.09.034
Wei XL, Xi XG, Wu MX, Wang YF. A novel method for quantitative determination of tea polysaccharide by resonance light scattering. Spectrochim Acta A 2011; 79: 928-933. http://dx.doi.org/10.1016/j.saa.2011.03.053 DOI: https://doi.org/10.1016/j.saa.2011.03.053
Song LX, Teng CF, Yang Y. Preparation and Characterization of the Solid Inclusion Compounds of α-, β-Cyclodextrin with Phenylalanine (D-, L- and DL-Phe) and Tryptophan (D-, L- and DL-Trp). J Incl Phenom Macro 2006; 54: 221-232. http://dx.doi.org/10.1007/s10847-005-7970-8 DOI: https://doi.org/10.1007/s10847-005-7970-8
Downloads
Published
How to Cite
Issue
Section
License
Policy for Journals/Articles with Open Access
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work
Policy for Journals / Manuscript with Paid Access
Authors who publish with this journal agree to the following terms:
- Publisher retain copyright .
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work .