Preparation and Characterization of Cellulose Membrane Modified with β-Cyclodextrin for Chiral Separation

Authors

  • Yibing Ji School of Science, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, Jiangsu, China
  • Jian Ke School of Science, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, Jiangsu, China
  • Feifei Duan School of Science, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, Jiangsu, China
  • Jianqiu Chen School of Science, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, Jiangsu, China

DOI:

https://doi.org/10.6000/1929-6037.2016.05.03.1

Keywords:

Cellulose membrane, Enantiomeric separation, Glutaraldehyde, Tryptophan, Multi-stage filtration

Abstract

In this study, it is first time to obtain a complete separation of using β-cyclodextrin (β-CD) modified cellulose microfiltration membrane. Commercially cellulose membrane with the pore diameter of 0.22μm was functionalized with β-cyclodextrin (β-CD) by aldolization at the solid–liquid interface. Filtration experiments were carried out using a dead-end filtration cell holding a flat sheet membrane with effective area of 36 mm2. Aqueous solution of racemic tryptophan (0.05g/L, 150 mL) was forced to permeate through the cellulose membrane immobilized by β-CD at a flow rate of 0.1 ml/min through the membrane microdevice. Chiral ligand exchange chromatography was used to determine the concentration and ratio of D- and L-tryptophan in the filtrate. A complete separation of racemic tryptophan can be obtained by using this novel composite membrane-based separation system. In addition, a multi-stage filtration separation was applied in order to obtain higher permselectivity. The objective of this study is to obtain an easy prepared chiral membrane with good reproducibility and can be applied to a variety of chiral separations.

References

Sueyoshi Y, Fukushima C, Yoshikawa M. Molecularly imprinted nanofiber membranes from cellulose acetate aimed for chiral separation. J Membrane Sci 2010; 357: 90-97. http://dx.doi.org/10.1016/j.memsci.2010.04.005 DOI: https://doi.org/10.1016/j.memsci.2010.04.005

Bozkurt S, Yilmaz M, Sirit A. Chiral calix[4]arenes bearing amino alcohol functionality as membrane carriers for transport of chiral amino acid methylesters and mandelic acid. Chirality 2012; 24: 129-136. http://dx.doi.org/10.1002/chir.21034 DOI: https://doi.org/10.1002/chir.21034

Ha JJ, Choi HJ, Jin JS, Jeong ED, Hyun MH. Liquid chromatographic resolution of proton pump inhibitors including omeprazole on a ligand exchange chiral stationary phase. J Chromatogr A 2010; 1217: 6436-6441. http://dx.doi.org/10.1016/j.chroma.2010.08.041 DOI: https://doi.org/10.1016/j.chroma.2010.08.041

Singh K, Ingole PG, Bajaj HC, Gupta H. Preparation, characterization and application of β-cyclodextrin-glutaraldehyde crosslinked membrane for the enantiomeric separation of amino acids. Desalination 2012; 298: 13-21. http://dx.doi.org/10.1016/j.desal.2012.04.023

Yu XW, Xu Y, Gu H. Enhancement of chiral resolution of dl-menthol at high substrate concentration by in situ resin adsorption. J Biotechnol 2010; 150: S345-S345. http://dx.doi.org/10.1016/j.jbiotec.2010.09.375 DOI: https://doi.org/10.1016/j.jbiotec.2010.09.375

Wang WF, Xiong WW, Zhao M, et al. Chiral separation of trans-stilbene oxide through cellulose acetate butyrate membrane. Tetrahedron-Asymmetr 2009; 20: 1052-1056. http://dx.doi.org/10.1016/j.tetasy.2009.03.032 DOI: https://doi.org/10.1016/j.tetasy.2009.03.032

Wang YJ, Hu Y, Xu H, Luo GS, Dai YY. Immobilization of lipase with a special microstructure in composite hydrophilic CA/hydrophobic PTFE membrane for the chiral separation of racemic ibuprofen. J Membrane Sci 2007; 293: 133-141. http://dx.doi.org/10.1016/j.memsci.2007.02.006 DOI: https://doi.org/10.1016/j.memsci.2007.02.006

Zhang DY, Zhang TZ, Deng JP, Yang WT. Effect of copolymer composition in poly(N-propargylamide) on helical structure and optical activity. React Funct Polym 2010; 70: 376-381. http://dx.doi.org/10.1016/j.reactfunctpolym.2010.03.002 DOI: https://doi.org/10.1016/j.reactfunctpolym.2010.03.002

Ingole PG, Bajaj HC, Singh K. Membrane separation processes: Optical resolution of lysine and asparagine amino acids. Desalination 2014; 343: 75- 81. http://dx.doi.org/10.1016/j.desal.2013.10.009 DOI: https://doi.org/10.1016/j.desal.2013.10.009

Higuchi A, Tamai M, Ko YA, et al. Polymeric Membranes for Chiral Separation of Pharmaceuticals and Chemicals. Polym Rev 2010; 50: 113-143. http://dx.doi.org/10.1080/15583721003698853 DOI: https://doi.org/10.1080/15583721003698853

Zhang ZH, Zhang ML, Liu YA, et al. Preparation of l-phenylalanine imprinted polymer based on monodisperse hybrid silica microsphere and its application on chiral separation of phenylalanine racemates as HPLC stationary phase. Sep Purif Technol 2012; 87: 142-148. http://dx.doi.org/10.1016/j.seppur.2011.11.037 DOI: https://doi.org/10.1016/j.seppur.2011.11.037

Ma CO, Xu XL, Ai P, et al. Chiral separation of D,L-mandelic acid through cellulose membranes. Chirality 2011; 23: 379-382. http://dx.doi.org/10.1002/chir.20935 DOI: https://doi.org/10.1002/chir.20935

Gumi T, Valiente A, Palet C. Elucidation of SR-propranolol transport rate and enantioselectivity through chiral activated membranes. J Membrane Sci 2005; 256: 150-157. http://dx.doi.org/10.1016/j.memsci.2004.12.052 DOI: https://doi.org/10.1016/j.memsci.2004.12.052

Ingole PG, Bajaj HC, Singh K. Optical resolution of racemic lysine monohydrochloride by novel enantioselective thin film composite membrane. Desalination 2012; 305: 54-63. http://dx.doi.org/10.1016/j.desal.2012.08.015 DOI: https://doi.org/10.1016/j.desal.2012.08.015

Wang HD, Chu LY, Song H, et al. Preparation and enantiomer separation characteristics of chitosan/β-cyclodextrin composite membranes. J Membrane Sci 2007; 297: 262-270. http://dx.doi.org/10.1016/j.memsci.2007.03.055 DOI: https://doi.org/10.1016/j.memsci.2007.03.055

Shiomi K, Yoshikawa M. Multi-stage chiral separation with electrospun chitin nanofiber Membranes. Sep Purif Technol 2013; 118: 300-304. http://dx.doi.org/10.1016/j.seppur.2013.07.004 DOI: https://doi.org/10.1016/j.seppur.2013.07.004

Robl S, Gou L, Gere A, et al. Chiral separation by combining pertraction and preferential Crystallization. Chem Eng Process 2013; 67: 80-88. http://dx.doi.org/10.1016/j.cep.2012.09.002 DOI: https://doi.org/10.1016/j.cep.2012.09.002

Matsuoka Y, Kanda N, Lee YM, Higuchi A. Chiral separation of phenylalanine in ultrafiltration through DNA-immobilized chitosan membranes. J Membrane Sci 2006; 280: 116-123. http://dx.doi.org/10.1016/j.memsci.2006.01.013 DOI: https://doi.org/10.1016/j.memsci.2006.01.013

Meng J, Wei G, Huang XB, et al. A fluorescence sensor based on chiral polymer for highly enantioselective recognition of phenylalaninol. Polymer 2011; 52: 363-367. http://dx.doi.org/10.1016/j.polymer.2010.12.011 DOI: https://doi.org/10.1016/j.polymer.2010.12.011

Xie R, Chu LY, Deng JG. Membranes and membrane processes for chiral resolution. Chem Soc Rev 2008; 37: 1243-1263. http://dx.doi.org/10.1039/B713350B DOI: https://doi.org/10.1039/b713350b

Romero J, Zydney AL. Staging of affinity ultrafiltration processes for chiral separations. J Membrane Sci 2002; 209: 107-119. http://dx.doi.org/10.1016/S0376-7388(02)00283-1 DOI: https://doi.org/10.1016/S0376-7388(02)00283-1

Xiao Y, Lim HM, Chung TS, Rajagopalan R. Acetylation of β-Cyclodextrin Surface-Functionalized Cellulose Dialysis Membranes with Enhanced Chiral Separation. Langmuir 2007; 23: 12990-12996. http://dx.doi.org/10.1021/la7026384 DOI: https://doi.org/10.1021/la7026384

Zhou ZZ, Xiao YC, Hatton TA, Chung TS. Effects of spacer arm length and benzoation on enantioseparation performance of β-cyclodextrin functionalized cellulose membranes. J Membrane Sci 2009; 339: 21-27. http://dx.doi.org/10.1016/j.memsci.2009.04.015 DOI: https://doi.org/10.1016/j.memsci.2009.04.015

Singh K, Ingole PG, Bajaj HC, Gupta H. Preparation, characterization and application of β-cyclodextrin-glutaraldehyde crosslinked membrane for the enantiomeric separation of amino acids. Desalination 2012; 298: 13-21. http://dx.doi.org/10.1016/j.desal.2012.04.023 DOI: https://doi.org/10.1016/j.desal.2012.04.023

Yang M, Chu LY, Wang HD, et al. A Thermoresponsive Membrane for Chiral Resolution. Adv Funct Mater 2008; 18: 652-663. http://dx.doi.org/10.1002/adfm.200700534 DOI: https://doi.org/10.1002/adfm.200700534

Wang J, Fu CJ, Lin T, Yu LX, Zhu SL. Preparation of chiral selective membranes for electrodialysis separation of racemic mixture. J Membrane Sci 2006; 276: 193-198. http://dx.doi.org/10.1016/j.memsci.2005.09.049 DOI: https://doi.org/10.1016/j.memsci.2005.09.049

Glukhovskiy P, Landers TA, Vigh G. Preparative-scale isoelectric focusing separation of enantiomers using a multicompartment electrolyzer with isoelectric membranes. Electrophoresis 2000; 21: 762-766. http://dx.doi.org/10.1002/(SICI)1522-2683(20000301)21:4<762::AID-ELPS762>3.0.CO;2-Y DOI: https://doi.org/10.1002/(SICI)1522-2683(20000301)21:4<762::AID-ELPS762>3.3.CO;2-P

Kano K, Takashima H, Taniuchi Y. Preparation of poly(vinyl chloride)/amphiphilic cyclodextrin composite films and their Chiral recognition ability. Kobunshi Ronbunshu 1996; 53: 542-547. DOI: https://doi.org/10.1295/koron.53.542

Zhao S, Wang Z, Wang JX, Yang SB, Wang SC. PSf/PANI nanocomposite membrane prepared by in situ blending of PSf and PANI/NMP. J Membrane Sci 2011; 376: 83-95. http://dx.doi.org/10.1016/j.memsci.2011.04.008 DOI: https://doi.org/10.1016/j.memsci.2011.04.008

Wang HD, Xie R, Niu CH, et al. Chitosan chiral ligand exchange membranes for sorption resolution of amino acids. Chem Eng Sci 2009; 64: 1462-1473. http://dx.doi.org/10.1016/j.ces.2008.12.007 DOI: https://doi.org/10.1016/j.ces.2008.12.007

Fan LL, Zhang Y, Luo CN, et al. Synthesis and characterization of magnetic β-cyclodextrin–chitosan nanoparticles as nano-adsorbents for removal of methyl blue. Int J Biol Macromol 2012; 50: 444-450. http://dx.doi.org/10.1016/j.ijbiomac.2011.12.016 DOI: https://doi.org/10.1016/j.ijbiomac.2011.12.016

Xu CX, Chen RY, Zheng X, Chen X, Chen Z. Preparation of PVA-GA-CS/PVA-Fe-SA bipolar membrane and its application in electro-generation of 2,2-dimethyl-3-hydroxypropionic acid. J Membrane Sci 2008; 307: 218-224. http://dx.doi.org/10.1016/j.memsci.2007.09.034 DOI: https://doi.org/10.1016/j.memsci.2007.09.034

Wei XL, Xi XG, Wu MX, Wang YF. A novel method for quantitative determination of tea polysaccharide by resonance light scattering. Spectrochim Acta A 2011; 79: 928-933. http://dx.doi.org/10.1016/j.saa.2011.03.053 DOI: https://doi.org/10.1016/j.saa.2011.03.053

Song LX, Teng CF, Yang Y. Preparation and Characterization of the Solid Inclusion Compounds of α-, β-Cyclodextrin with Phenylalanine (D-, L- and DL-Phe) and Tryptophan (D-, L- and DL-Trp). J Incl Phenom Macro 2006; 54: 221-232. http://dx.doi.org/10.1007/s10847-005-7970-8 DOI: https://doi.org/10.1007/s10847-005-7970-8

Downloads

Published

2016-10-25

How to Cite

Ji, Y., Ke, J., Duan, F., & Chen, J. (2016). Preparation and Characterization of Cellulose Membrane Modified with β-Cyclodextrin for Chiral Separation. Journal of Membrane and Separation Technology, 5(3), 88–94. https://doi.org/10.6000/1929-6037.2016.05.03.1

Issue

Section

Articles