Molecularly Imprinted Chitin Nanofiber Membranes: Multi-Stage Cascade Membrane Separation within the Membrane
DOI:
https://doi.org/10.6000/1929-6037.2016.05.03.3Keywords:
Cascade separation, Chitin, Chiral separation, Molecularly imprinted membrane, Molecular imprinting, Multi-stage cascade membrane separation, Nanofiber, Optical resolutionAbstract
Molecularly imprinted nanofiber membranes were fabricated from chitin and print molecule of phenylalanine derivative by simultaneously applying an alternative molecular imprinting and an electrospinning. The D-enantiomer imprinted nanofiber membrane preferentially incorporated the D-enantiomer and selectively transported D-enantiomer and vice versa. The permselectivity was exponentially increased with the increase in the membrane thickness, implying that multi-stage cascade membrane separation was carried out within the nanofiber membrane. The present study led to the conclusion that a molecularly imprinted nanofiber membrane is one of suitable membrane forms for the separation membrane with relatively high flux and permselectivity.
References
Chu B, Hsiao BS. The role of polymers in breakthrough technologies for water purification. J Polym Sci: Part B: Polym Phys 2009; 47: 2431-5. http://dx.doi.org/10.1002/polb.21854 DOI: https://doi.org/10.1002/polb.21854
Gibson P, Schreuder-Gibson H, Rivin D. Transport properties of porous membranes based on electrospun nanofibers. Colloids Surf A 2001; 187-188: 469-81. http://dx.doi.org/10.1016/S0927-7757(01)00616-1 DOI: https://doi.org/10.1016/S0927-7757(01)00616-1
In the case of nanofiber membrane, its morphology is porous. From this, incorporation of substrate into the membrane is called “partition” rather than “solution” in the present study.
Polyakov MV. Adsorption properties of silica gel and its structure. Zhur Fiz Khim 1931; 2: 799-805.
Dickey FH. The preparation of specific adsorbents. Proc Natl Acd Sci USA 1949; 35: 227-9. http://dx.doi.org/10.1073/pnas.35.5.227 DOI: https://doi.org/10.1073/pnas.35.5.227
Dickey FH. Specific adsorption. J Phys Chem 1955; 59: 695-707. http://dx.doi.org/10.1021/j150530a006 DOI: https://doi.org/10.1021/j150530a006
Wulff G, Sarhan A. The use of polymers with enzyme-analogous structures for the resolution of racemates. Angew Chem Int Ed 1972; 11: 341. DOI: 10.1002/anie.197203341 DOI: https://doi.org/10.1002/anie.197203341
[Über die anwendung von enzyme gebauten polymeren zur racemettrennung. Angew Chem 1972; 84: 364]. DOI: 10.1002/ange.19720840838 DOI: https://doi.org/10.1002/ange.19720840838
Bartsch RA, Maeda M, Eds. Molecular and ionic recognition with imprinted polymers (ACS Symposium Series 703). Washington DC: ACS 1998. DOI: https://doi.org/10.1021/bk-1998-0703
Haupt K, Mosbach K. Molecularly imprinted polymers and their use in biomimetic sensors. Chem Rev 2000; 100: 2495-504. http://dx.doi.org/10.1021/cr990099w DOI: https://doi.org/10.1021/cr990099w
Sellergren B Ed. Molecularly imprinted polymers. Man-made mimics of antibodies and their applications in analytical chemistry. Amsterdam: Elsevier 2000.
Alexander C, Andersson LI, Ansell RJ, Kirsch N, Nicholls IA, O’Mahony J, Whitcombe MJ. Molecular imprinting science and technology: a survey of the literature for the years up to and including 2003. J Mol Recognit 2006; 19: 106-80. http://dx.doi.org/10.1002/jmr.760 DOI: https://doi.org/10.1002/jmr.760
Whitcombe MJ, Kirsch N, Nicholls IA. Molecular imprinting science and technology: a survey of the literature for the years 2004-2011. J Mol Recognit 2014; 27: 297-401. http://dx.doi.org/10.1002/jmr.2347 DOI: https://doi.org/10.1002/jmr.2347
Michales AS, Baddour RF, Bixler HJ, Choo CY. Conditioned polyethylene as a permselective membrane Separation of isomeric xylenes. Ind Eng Chem Process Des Dev 1962; 1: 14-25. http://dx.doi.org/10.1021/i260001a003 DOI: https://doi.org/10.1021/i260001a003
Yoshikawa M. Molecularly imprinted polymeric membranes for optical resolution. in Bartsch RA, Maeda M, Eds. Molecular and ionic recognition with imprinted polymers (ACS Symposium Series 703). Washington DC: ACS 1998, pp. 170-187. DOI: https://doi.org/10.1021/bk-1998-0703.ch012
Yoshikawa M. Molecularly imprinted polymeric membranes. Bioseparation 2002; 10: 277-86. http://dx.doi.org/10.1023/A:1021537602663 DOI: https://doi.org/10.1023/A:1021537602663
Chronakis IS, Jakob A, Hagström B, Ye L. Encapsulation and selective recognition of molecularly imprinted theophylline and 17-estradiol nanoparticles within electrospun polymer nanofibers. Langmuir 2006; 22: 8960-5. http://dx.doi.org/10.1021/la0613880 DOI: https://doi.org/10.1021/la0613880
Yoshimatsu K, Ye L, Lindberg J, Chronakis IS. Selective moleculer adsorption using electrospun nanofiber affinity membranes. Biosens Bioelectron 2008; 23: 1208-15. http://dx.doi.org/10.1016/j.bios.2007.12.002 DOI: https://doi.org/10.1016/j.bios.2007.12.002
Chronakis IS, Milosevic B, Frenot A, Ye L. Generation of molecular recognition sites in electrospun polymer nanofibers via moleculer imprinting. Macromolecules 2006; 39: 357-61. http://dx.doi.org/10.1021/ma052091w DOI: https://doi.org/10.1021/ma052091w
Yoshikawa M, Tanioka A, Matsumoto H. Molecularly imprinted nanofiber membranes. Curr Opin Chem Eng 2011; 1: 18-26. http://dx.doi.org/10.1016/j.coche.2011.07.003 DOI: https://doi.org/10.1016/j.coche.2011.07.003
Yoshikawa M, Higuchi A. Enantioselective membranes in Hoek EMV, Tarabara VV, Eds. Encyclopedia of membranes and technology. New York: Wiley 2013. DOI: 10.1002/9781118522318.emst131 DOI: https://doi.org/10.1002/9781118522318.emst131
Yoshikawa M, Nakai K, Matsumoto H, Tanioka A, Guiver MD, Robertson GP. Molecularly imprinted nanofiber membranes from carboxylated polysulfone by electrospray deposition. Macromol Rapid Commun 2007; 28: 2100-5. http://dx.doi.org/10.1002/marc.200700359 DOI: https://doi.org/10.1002/marc.200700359
Sueyoshi Y, Fukushima C, Yoshikawa M. Molecularly imprinted nanofiber membranes from cellulose acetate aimed for chiral separation. J Membr Sci 2010; 357: 90-7. http://dx.doi.org/10.1016/j.memsci.2010.04.005 DOI: https://doi.org/10.1016/j.memsci.2010.04.005
Shiomi K, Yoshikawa M. Multi-stage chiral separation with electrospun chitin nanofiber membranes. Sep Purif Technol 2013; 118: 300-4. http://dx.doi.org/10.1016/j.seppur.2013.07.004 DOI: https://doi.org/10.1016/j.seppur.2013.07.004
Kawasaki T, Yoshikawa M. Nanofiber membranes from cellulose triacetate for chiral separation. Desal Water Treat 2013; 51: 5080-8. http://dx.doi.org/10.1080/19443994.2013.768832 DOI: https://doi.org/10.1080/19443994.2013.768832
Mizushima H, Yoshikawa M, Li N, Robertson GP, Guiver MD. Electrospun nanofiber membranes from polysulfones with chiral selector aimed for optical resolution. Eur Polym J 2012; 48: 1717-25. http://dx.doi.org/10.1016/j.eurpolymj.2012.07.003 DOI: https://doi.org/10.1016/j.eurpolymj.2012.07.003
Ramakrishna S, Fujihara K, Teo W-E, Lim T-C, Ma Z. An introduction to electrospinning and nanofibers. Singapore: World Scientific 2005. DOI: https://doi.org/10.1142/9789812567611
Greiner A, Wendorff JH. Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew Chem Int Ed 2007; 46: 5670-703. http://dx.doi.org/10.1002/anie.200604646 DOI: https://doi.org/10.1002/anie.200604646
Matsumoto H, Tanioka A. Functionality in electrospun nanofibrous membranes based on fiber’s size, surface area, and molecular orientation. Membranes 2011; 1: 249-64. http://dx.doi.org/10.3390/membranes1030249 DOI: https://doi.org/10.3390/membranes1030249
Yoshikawa M, Izumi J. Chiral recognition sites converted from tetrapeptide derivatives adopting racemates as print molecules. Macormol Biosci 2003; 3: 487-98. http://dx.doi.org/10.1002/mabi.200350016 DOI: https://doi.org/10.1002/mabi.200350016
Yoshikawa M, Ooi T, Izumi J. Alternative molecularly imprinted membranes from a derivative of natural polymer, cellulose acetate. J Appl Polym Sci 1999; 72: 493-9. http://dx.doi.org/10.1002/(SICI)1097-4628(19990425)72:4<493::AID-APP5>3.0.CO;2-U DOI: https://doi.org/10.1002/(SICI)1097-4628(19990425)72:4<493::AID-APP5>3.0.CO;2-U
Yoshikawa M, Koso K, Yonetani K, Kitamura S, Kimura S. Optical resolution of amino acid derivatives with molecularly imprinted membranes bearing oligopeptide tweezers. J Polym Sci: Part A: Polym Chem 2005; 43: 385-96. http://dx.doi.org/10.1002/pola.20504 DOI: https://doi.org/10.1002/pola.20504
Hatanaka M, Nishioka Y, Yoshikawa M. Polyurea with L-lysinyl residues as components: Application to membrane separateon of enantiomers. Macromol Chem Phys 2011; 212: 1351-9. http://dx.doi.org/10.1002/macp.201100054 DOI: https://doi.org/10.1002/macp.201100054
Hatanaka M, Nishioka Y, Yoshikawa M. Polyurea bearing L-lysinyl residue as a chiral building block and its application to optical resolution. J Mater Sci Res 2012; 1(No. 4): 114-22. http://dx.doi.org/10.5539/jmsr.v1n4p114 DOI: https://doi.org/10.5539/jmsr.v1n4p114
Hatanaka M, Nishioka Y, Yoshikawa M. Chiral polyurea with L-lysinyl residue aimed for optical resolution. J Membr Sci Technol 2013; 2: 109-19. http://dx.doi.org/10.6000/1929-6037.2013.02.02.1 DOI: https://doi.org/10.6000/1929-6037.2013.02.02.1
Hatanaka M, Nishioka Y, Yoshikawa M. Chiral separation with polyurea membrane consisting of L-lysinyl residue; Proposal of facile method for prediction of permselectivity. J Appl Polym Sci 2013; 128: 123-31. http://dx.doi.org/10.1002/app.38141 DOI: https://doi.org/10.1002/app.38141
Yoshikawa M, Izumi J, Ooi T, Kitao T, Guiver MD, Robertson GP. Carboxylated polysulfone membranes having a chiral recognition site induced by an alternative molecular imprinting technique. Polym Bull 1998; 40: 517-24. http://dx.doi.org/10.1007/s002890050285 DOI: https://doi.org/10.1007/s002890050285
Kondo Y, Yoshikawa M, Okushita H. Molecularly imprinted polyamidee membranes for chiral recognition. Polym Bull 2000; 44: 517-24. http://dx.doi.org/10.1007/s002890070073 DOI: https://doi.org/10.1007/s002890070073
Taniwaki K, Hyakutake A, Aoki T, Yoshikawa M, Guiver MD, Robertson GP. Evaluation of the recognition ability of molecularly imprinted materials by surface plasmon resonance (SPR) spectroscopy. Anal Chim Acta 2003; 489: 191-8. http://dx.doi.org/10.1016/S0003-2670(03)00760-8 DOI: https://doi.org/10.1016/S0003-2670(03)00760-8
Sun Y, Li L-Y, Dong X-Y. Multistage affinity ross-flow filtration: process optimization. Bioprocess Eng 1997; 16: 229-35. http://dx.doi.org/10.1007/s004490050313 DOI: https://doi.org/10.1007/s004490050313
Romero J, Zydney AL, Staging of affinity ultrafiltration processes for chiral separation. J Membr Sci 2002; 209: 107-19. http://dx.doi.org/10.1016/S0376-7388(02)00283-1 DOI: https://doi.org/10.1016/S0376-7388(02)00283-1
Higuchi A, Higuchi Y, Furuta K, Yoon BO, Hara M, Maniwa S, Saitoh M, Sanui K. Chiral separateon of phenyl by ultrafiltration through immobilized DNA membranes. J Membr Sci 2003; 221: 207-18. http://dx.doi.org/10.1016/S0376-7388(03)00263-1 DOI: https://doi.org/10.1016/S0376-7388(03)00263-1
Downloads
Published
How to Cite
Issue
Section
License
Policy for Journals/Articles with Open Access
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work
Policy for Journals / Manuscript with Paid Access
Authors who publish with this journal agree to the following terms:
- Publisher retain copyright .
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work .