Pervaporation Dehydration of Ethanol with Malic Acid Crosslinked Graphene/Poly(Vinyl Alcohol) Nanocomposite Membranes
DOI:
https://doi.org/10.6000/1929-6037.2016.05.03.4Keywords:
Graphene, PVA, malic acid, pervaporation, dehydration, ethanolAbstract
Graphene (GE) based poly(vinyl alcohol) (PVA) nanocomposite membranes were prepared by solution blending method. The influence of GE on morphological, structural, and thermal properties of GE/PVA membranes was studied. Then, malic acid (MA) was used as a crosslinker of the nanocomposite membranes. The effect of MA content on the degree of crosslinking, thermal, mechanical properties, and pervaporation (PV) performance of nanocomposite membranes was investigated. The characterizations of GE/PVA and MA crosslinked GE/PVA nanocomposite membranes were performed by X-ray diffraction spectrum, transmission electron microscope, Fourier-transform infrared spectroscopy, and differential scanning calorimetry, and tensile testing. The characterization results indicated that the good compatibility between GE and PVA was obtained with 0.5wt% filler content. Thermal stability and mechanical properties of MA crosslinked GE/PVA membranes were enhanced by adding 20wt% MA with respect to PVA. The best PV performance for dehydration of 50wt% ethanol solution was obtained by using the 20wt% MA crosslinked GE/PVA membrane. This membrane showed that the total permeation flux and selectivity are 0.690kg/m2h and 23.89, respectively.
References
Nguyen MT, Dang TTN. Pervaporation as a potential method for fuel ethanol production in VietNam. Proceedings of South East Asian Technical Universities Consortium (SEATUC)-3rd SEATUC Symposium, Johor Bahru – Malaysia, 2009.
Wang N, Ji S, Li J, Zhang R, Zhang G. Poly(vinyl alcohol)-graphene oxit nanohybrid pore-filling, membrane for pervaporation of toluene/n-heptane mixtures. J Membr Sci 2013; 455: 113-120. http://dx.doi.org/10.1016/j.memsci.2013.12.023 DOI: https://doi.org/10.1016/j.memsci.2013.12.023
Novoselov KS, Fal’ko VI, Colombo L, GEllert PR, Schwab MG, Kim K. A roadmap for graphene. Nature 2012; 490: 192-200. http://dx.doi.org/10.1038/nature11458 DOI: https://doi.org/10.1038/nature11458
Wang J, Wang X, Xu C, Zhanga M, Shang X. Preparation of graphene/poly(vinyl alcohol) nanocomposites with enhanced mechanical properties and water resistance. Polym Int 2011; 60: 816-822. http://dx.doi.org/10.1002/pi.3025 DOI: https://doi.org/10.1002/pi.3025
Chapman PD, Oliveira T, Livingston AG, Li K. Membranes for the dehydration of solvents by pervaporation. J Membr Sci 2008; 318: 5-37. http://dx.doi.org/10.1016/j.memsci.2008.02.061 DOI: https://doi.org/10.1016/j.memsci.2008.02.061
Isiklan N, Sanli O. Separation characteristics of acetic acid–water mixtures by pervaporation using poly(vinyl alcohol) membranes modified with malic acid. Chem Eng Proc 2005; 44: 1019-1027. http://dx.doi.org/10.1016/j.cep.2005.01.005 DOI: https://doi.org/10.1016/j.cep.2005.01.005
Hieu NH, Long NHBS. Fabrication and Characterzation of Nanocomposite Nafion-Graphene oxide membranes. J Anal Sci 2013; 18: 47-56.
Wijmans JG, Baker RW. The solution-diffusion model: a review. J Membr Sci 1995; 107: 1-21. http://dx.doi.org/10.1016/0376-7388(95)00102-I DOI: https://doi.org/10.1016/0376-7388(95)00102-I
Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH. Recent advances in graphene based polymer composites. Progr Polym Sci 2010; 35: 1350-1375. http://dx.doi.org/10.1016/j.progpolymsci.2010.07.005 DOI: https://doi.org/10.1016/j.progpolymsci.2010.07.005
Chen J, Huang J, Li J, Zhan X, Chen C. Mass transport study of PVA membranes for the pervaporation separation of water/ethanol mixtures. Desalination 2010; 256: 148-153. http://dx.doi.org/10.1016/j.desal.2010.01.024 DOI: https://doi.org/10.1016/j.desal.2010.01.024
Yang X, Li L, Shang S, Tao X-M. Synthesis and characterization of layer-aligned poly(vinyalcohol)/graphenen anocomposites. Polymer 2010; 51: 3431-3435. http://dx.doi.org/10.1016/j.polymer.2010.05.034 DOI: https://doi.org/10.1016/j.polymer.2010.05.034
Baker RW. Membrane technology and applications. John Wiley & Sons Ltd.
Dhand V, Rhee KY, Kim HJ, Jung DH. A Comprehensive Review of graphene Nanocomposite: Research Status and Trends. J Nanomater 2013. http://dx.doi.org/10.1155/2013/763953 DOI: https://doi.org/10.1155/2013/763953
Bao C, Guo Y, Song L and Hu Y. Poly(vinyl alcohol) nanocomposite based on graphene and graphite oxide: a comparative investigation of property and mechanism. J Mater Chem 2013.
Li C, Vongsvivut J, She X, Li Y, She F, Kong L. New insight into non-isothermal crystallization of PVA–graphene composites. Phys Chem Chem Phys 2014; 16: 22145-22158. http://dx.doi.org/10.1039/C4CP03613A DOI: https://doi.org/10.1039/C4CP03613A
Guan H-M, Chung T-S, Huang Z, Chng ML, Kulprathipanja S. Poly(vinyl alcohol) multilayer mixed matrix membranes for the dehydration of ethanol–water mixture. J Membr Sci 2006; 268: 113-122. http://dx.doi.org/10.1016/j.memsci.2005.05.032 DOI: https://doi.org/10.1016/j.memsci.2005.05.032
Peng F, Jiang Z, Hoek EMV. Tuning the molecular structure, separation performance and interfacial properties of poly(vinyl alcohol)–polysulfone interfacial composite membranes. J Membr Sci 2011; 368: 26-33. http://dx.doi.org/10.1016/j.memsci.2010.10.056 DOI: https://doi.org/10.1016/j.memsci.2010.10.056
Nielsen LE. Cross-Linking Effect on Physical Properties of Polymers. J Macromol Sci Part C: Polymer Rev 1969; 3: 69-103. http://dx.doi.org/10.1080/15583726908545897 DOI: https://doi.org/10.1080/15583726908545897
Gohil JM, Bhattacharya A, Ray P. Studies on the Cross-linking of Poly(vinyl alcohol). J Polymer Res 2013; 13: 161-169. http://dx.doi.org/10.1007/s10965-005-9023-9 DOI: https://doi.org/10.1007/s10965-005-9023-9
Downloads
Published
How to Cite
Issue
Section
License
Policy for Journals/Articles with Open Access
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work
Policy for Journals / Manuscript with Paid Access
Authors who publish with this journal agree to the following terms:
- Publisher retain copyright .
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work .