Computational Fluid Dynamics (CFD) Modelling of Porous, Ultrafiltration Membranes

Authors

  • Maciej Staszak Institute of Technology and Chemical Engineering, Poznań University of Technology, pl. M. Skłodowskiej-Curie 2, 60-965 Poznań, Poland
  • Katarzyna Staszak Institute of Technology and Chemical Engineering, Poznań University of Technology, pl. M. Skłodowskiej-Curie 2, 60-965 Poznań, Poland

DOI:

https://doi.org/10.6000/1929-6037.2013.02.01.4

Keywords:

Ultrafiltration, computational fluid dynamics, CFD, porous membrane, modelling

Abstract

This paper presents a finite element, three dimensional numerical model of flow in porous ceramic ultrafiltration membrane system together with experimental validation. The modelling is based on the computational fluid dynamics (CFD) technique. Major difficulty that arises during CFD modelling is appropriate and precise description of the porous media in terms of Navier-Stokes equation. Based on pressure-flow experimental measurements we present the approach for calculating the essential components of porous media flow resistance which are necessary for proper description of membrane process. The detailed description of a membrane was applied which accounts for support and membrane layer respectively. Moreover own procedure applied is presented, that is written using C language, for calculation of flow parameters. The model presented is in very good accordance with experimental results.

References

Ghidossi R, Veyret D, Moulin P. Computational fluid dynamics applied to membranes: State of the art and opportunities. Chem Eng Process 2006; 45: 437-54. http://dx.doi.org/10.1016/j.cep.2005.11.002 DOI: https://doi.org/10.1016/j.cep.2005.11.002

Barakat MA, Schmidt E. Polymer-enhanced ultrafiltration process for heavy metals removal from industrial wastewater. Desalination 2010; 256: 90-93. http://dx.doi.org/10.1016/j.desal.2010.02.008 DOI: https://doi.org/10.1016/j.desal.2010.02.008

Staszak K, Konopczyńska B, Prochaska K. Micellar Enhanced Ultrafiltration as a Method of Removal of Chromium(III) Ions from Aqueous Solutions. Sep Sci Technol 2012; 47: 802-10. http://dx.doi.org/10.1080/01496395.2011.644613 DOI: https://doi.org/10.1080/01496395.2011.644613

Chung TJ. Computional Fluid Dynamics. Cambridge: Cambridge University Press 2002. http://dx.doi.org/10.1017/CBO9780511606205 DOI: https://doi.org/10.1017/CBO9780511606205

Cockburn B, Karniadakis G, Shu C. (Eds.). Discontinuous Galerkin Methods: Theory Computation and Applications. Int. J. Comput. Sci. Eng., Springer-Verlag, New York 2000; vol. 11. DOI: https://doi.org/10.1007/978-3-642-59721-3

Barth TJ, Deconinck H. (Eds.). High-Order Methods for Computational Physics. Int. J. Comput. Sci. Eng., Springer-Verlag 1999; vol. 9. DOI: https://doi.org/10.1007/978-3-662-03882-6

Karniadakis GE, Sherwin SJ, Spectral/hp element methods for computational fluid dynamics, 2nd ed. Oxford: Oxford University Press 2005. http://dx.doi.org/10.1093/acprof:oso/9780198528692.001.0001 DOI: https://doi.org/10.1093/acprof:oso/9780198528692.001.0001

Lerch A, Fouling layer formation by flocs in inside-out driven, horizontal aligned capillary ultrafiltration membranes. Desalination 2011; 283: 131-39. http://dx.doi.org/10.1016/j.desal.2011.04.051 DOI: https://doi.org/10.1016/j.desal.2011.04.051

Glucina K, Derekx Q, Langlais C, Lainé JM. Use of advanced CFD tool to characterize hydrodynamic of commercial UF membrane module. Desalination 2009; 9: 253-58. DOI: https://doi.org/10.5004/dwt.2009.814

Darcovich K, Dal-Cin MM, Gros B. Membrane mass transport modeling with the periodic boundary condition. Comput Chem Eng 2009; 33: 213-24. http://dx.doi.org/10.1016/j.compchemeng.2008.08.002 DOI: https://doi.org/10.1016/j.compchemeng.2008.08.002

Wiley DE, Fletcher DF. Techniques for computational fluid dynamics modelling of flow in membrane channels. J Membr Sci 2003; 211: 127-37. http://dx.doi.org/10.1016/S0376-7388(02)00412-X DOI: https://doi.org/10.1016/S0376-7388(02)00412-X

Wiley DE, Fletcher DF. Computational fluid dynamics modelling of flow and permeation for pressure-driven membrane processes. Desalination 2002; 145: 183-86. http://dx.doi.org/10.1016/S0011-9164(02)00406-X DOI: https://doi.org/10.1016/S0011-9164(02)00406-X

Cao Z, Wiley DE, Fane AG. CFD simulations of net-type turbulence promoters in a narrow channel. J Membrane Sci 2001; 185: 157-76. http://dx.doi.org/10.1016/S0376-7388(00)00643-8 DOI: https://doi.org/10.1016/S0376-7388(00)00643-8

Pellerin E, Michelitsch E, Darcovich K, Lin S, Tam CM. Turbulent transport in membrane modules by CFD simulation in two dimensions. J Membrane Sci 1995; 100: 139-53. http://dx.doi.org/10.1016/0376-7388(94)00250-3 DOI: https://doi.org/10.1016/0376-7388(94)00250-3

Zhou N, Nnanna AG. Investigation of hybrid spring-membrane system for fouling control. Desalination 2011; 276: 117-27. http://dx.doi.org/10.1016/j.desal.2011.03.034 DOI: https://doi.org/10.1016/j.desal.2011.03.034

Rajabzadeh AR, Moresoli C, Marcos B. Fouling behavior of electroacidified soy protein extracts during cross-flow ultrafiltration using dynamic reversible–irreversible fouling resistances and CFD modeling. J Membrane Sci 2010; 361: 191-205. http://dx.doi.org/10.1016/j.memsci.2010.05.057 DOI: https://doi.org/10.1016/j.memsci.2010.05.057

Ghidossi R, Daurelle JV, Veyret D, Moulin P. Simplified CFD approach of a hollow fiber ultrafiltration system. Chem Eng J 2006; 123: 117-25. http://dx.doi.org/10.1016/j.cej.2006.07.007 DOI: https://doi.org/10.1016/j.cej.2006.07.007

Schausberger P, Norazman N, Li H, Chen V, Friedl A. Simulation of protein ultrafiltration using CFD: Comparison of concentration polarisation and fouling effects with filtration and protein adsorption experiments. J Membrane Sci 2009; 337: 1-8. http://dx.doi.org/10.1016/j.memsci.2009.03.022 DOI: https://doi.org/10.1016/j.memsci.2009.03.022

Marcos B, Moresoli C, Skorepova J, Vaughan B. CFD modeling of a transient hollow fiber ultrafiltration system for protein concentration. J Membrane Sci 2009; 337: 136-44. http://dx.doi.org/10.1016/j.memsci.2009.03.036 DOI: https://doi.org/10.1016/j.memsci.2009.03.036

Delaunay D, Rabiller-Baudry M, Gozalvez-Zafrilla JM, Balannec B, Frappart M, Paugama L. Mapping of protein fouling by FTIR-ATR as experimental tool to study membrane fouling and fluid velocity profile in various geometries and validation by CFD simulation. Chem Eng Process 2008; 47: 1106-7. http://dx.doi.org/10.1016/j.cep.2007.12.008 DOI: https://doi.org/10.1016/j.cep.2007.12.008

Bielska M. Separacja małocząsteczkowych związków organicznych techniką ultrafiltracji micelarnej (Separation of low molecular weight organic compounds by micellar ultrafiltration technique), Dissertation, Poznan: Poznan University of Technology (in Polish) 2007.

Butt HJ, Graf K, Kappl M. Physics and Chemistry of Interfaces, Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA 2003. DOI: https://doi.org/10.1002/3527602313

Downloads

Published

2013-02-27

How to Cite

Staszak, M., & Staszak, K. (2013). Computational Fluid Dynamics (CFD) Modelling of Porous, Ultrafiltration Membranes. Journal of Membrane and Separation Technology, 2(1), 36–46. https://doi.org/10.6000/1929-6037.2013.02.01.4

Issue

Section

Articles