Clay Nanoparticles Composite Membranes Prepared with Three Different Polymers: Performance Evaluation
DOI:
https://doi.org/10.6000/1929-6037.2018.07.01Keywords:
Clay nanoparticles, polysulfone, polyethersulfone, PVDF, composite membranes.Abstract
This paper presents the results obtained from the evaluation of clay nanoparticles as an additive for improving the characteristics and performance of composite membranes cast with polysulfone (PS), polyethersulfone (PES), and polyvinylidene fluoride (PVDF). Different concentrations of clay nanoparticles, ranging from 1 to 10% based on the polymer mass, were used to prepare all dope solutions. The addition of clay nanoparticles changed the internal pore morphology of membranes, which resulted in significant changes on their performance, regarding its water permeability, and fouling potential. The optimum nanoclay concentration for permeability enhancement was different for each polymer, 1.5%, 2.0%, and 6.0% for PS, PES, and PVDF, respectively. This difference can be attributed to the differences of polymer’s hydrophobicity, based on the contact angle of a sessile water drop, which is higher for PVDF (PVDF is more hydrophobic than PS and PES). The flow improvement changed based on the main polymer. Significant changes in internal pore structure were observed for all membranes. The proportion of macrovoids was decreased and pores had a better connectivity across the cross section for PES and PS membranes. For PVDF membranes, the addition of nanoclay had a different effect on their microstructure. In this case, internal pores were 20% wider, factor that increased the average membrane porosity. The simultaneous evaluation of the clay nanoparticles used as an additive have clearly demonstrated its potential application for composite membrane production. It is also worth to note that the best way for identifying and evaluating the potential for an additive for membrane casting is considering its effects for different polymers, under the same casting conditions.
References
Porter MC. Handbook of Industrial Membrane Technology, Noyes Publications 1990.
Gao W, Liang H, Ma J, Han M, Chen Z, Han Z, et al. Membrane fouling control in ultrafiltration technology for drinking water production: A review. Desalination 2011; 272: 1-8. https://doi.org/10.1016/j.desal.2011.01.051 DOI: https://doi.org/10.1016/j.desal.2011.01.051
Guo W, Ngo H-H, Li J. A mini-review on membrane fouling. Bioresour Technol 2012; 122: 27-34. https://doi.org/10.1016/j.biortech.2012.04.089 DOI: https://doi.org/10.1016/j.biortech.2012.04.089
Shi X, Tal G, Hankins NP, Gitis V. Fouling and cleaning of ultrafiltration membranes: A review. J Water Process Eng 2014; 1: 121-138. https://doi.org/10.1016/j.jwpe.2014.04.003 DOI: https://doi.org/10.1016/j.jwpe.2014.04.003
Xu Z, Ye S, Zhang G, Li W, Gao C, Shen C, et al. Antimicrobial polysulfone blended ultrafiltration membranes prepared with Ag/Cu 2 O hybrid nanowires. J Memb Sci 2016; 509: 83-93. https://doi.org/10.1016/j.memsci.2016.02.035 DOI: https://doi.org/10.1016/j.memsci.2016.02.035
Li S, Cui Z, Zhang L, He B, Li J. The effect of sulfonated polysulfone on the compatibility and structure of polyethersulfone-based blend membranes. J Memb Sci 2016; 513: 1-11. https://doi.org/10.1016/j.memsci.2016.04.035 DOI: https://doi.org/10.1016/j.memsci.2016.04.035
Rastegarpanah A, Mortaheb HR. Surface treatment of polyethersulfone membranes for applying in desalination by direct contact membrane distillation. Desalination 2016; 377: 99-107. https://doi.org/10.1016/j.desal.2015.09.008 DOI: https://doi.org/10.1016/j.desal.2015.09.008
Zheng L, Wu Z, Wei Y, Zhang Y, Yuan Y, Wang J. Preparation of PVDF-CTFE hydrophobic membranes for MD application: Effect of LiCl-based mixed additives. J Memb Sci 2016; 506: 71-85. https://doi.org/10.1016/j.memsci.2016.01.044 DOI: https://doi.org/10.1016/j.memsci.2016.01.044
Woo YC, Kim Y, Shim W-G, Tijing LD, Yao M, Nghiem LD, et al. Graphene/PVDF flat-sheet membrane for the treatment of RO brine from coal seam gas produced water by air gap membrane distillation. J Memb Sci 2016; 513: 74-84. https://doi.org/10.1016/j.memsci.2016.04.014 DOI: https://doi.org/10.1016/j.memsci.2016.04.014
Yan L, Li YS, Xiang CB. Preparation of poly(vinylidene fluoride)(pvdf) ultrafiltration membrane modified by nano-sized alumina (Al2O3) and its antifouling research. Polymer (Guildf) 2005; 46: 7701-7706. https://doi.org/10.1016/j.polymer.2005.05.155 DOI: https://doi.org/10.1016/j.polymer.2005.05.155
Bae T-H, Tak T-M. Effect of TiO2 nanoparticles on fouling mitigation of ultrafiltration membranes for activated sludge filtration. J Memb Sci 2005; 249: 1-8. https://doi.org/10.1016/j.memsci.2004.09.008 DOI: https://doi.org/10.1016/j.memsci.2004.09.008
Yang Y, Zhang H, Wang P, Zheng Q, Li J. The influence of nano-sized TiO2 fillers on the morphologies and properties of PSF UF membrane. J Memb Sci 2007; 288: 231-238. https://doi.org/10.1016/j.memsci.2006.11.019 DOI: https://doi.org/10.1016/j.memsci.2006.11.019
Taurozzi JS, Arul H, Bosak VZ, Burban AF, Voice TC, Bruening ML, et al. Effect of filler incorporation route on the properties of polysulfone-silver nanocomposite membranes of different porosities. J Memb Sci 2008; 325: 58-68. https://doi.org/10.1016/j.memsci.2008.07.010 DOI: https://doi.org/10.1016/j.memsci.2008.07.010
Zhu X, Bai R, Wee K-H, Liu C, Tang S-L. Membrane surfaces immobilized with ionic or reduced silver and their anti-biofouling performances. J Memb Sci 2010; 363: 278-286. https://doi.org/10.1016/j.memsci.2010.07.041 DOI: https://doi.org/10.1016/j.memsci.2010.07.041
Liang S, Xiao K, Mo Y, Huang X. A novel ZnO nanoparticle blended polyvinylidene fluoride membrane for anti-irreversible fouling. J Memb Sci 2012; 394-395: 184-192. https://doi.org/10.1016/j.memsci.2011.12.040 DOI: https://doi.org/10.1016/j.memsci.2011.12.040
Das R, Ali ME, Hamid SBA, Ramakrishna S, Chowdhury ZZ. Carbon nanotube membranes for water purification: A bright future in water desalination. Desalination 2014; 336: 97-109. https://doi.org/10.1016/j.desal.2013.12.026 DOI: https://doi.org/10.1016/j.desal.2013.12.026
Ganesh BM, Isloor AM, Ismail AF. Enhanced hydrophilicity and salt rejection study of graphene oxide-polysulfone mixed matrix membrane. DES 2013; 313: 199-207. https://doi.org/10.1016/j.desal.2012.11.037 DOI: https://doi.org/10.1016/j.desal.2012.11.037
Monticelli O, Bottino A, Scandale I, Capannelli G, Russo S. Preparation and Properties of Polysulfone - Clay Composite Membranes 2006. DOI: https://doi.org/10.1002/app.25511
Anadão P, Sato LF, Wiebeck H, Valenzuela-Díaz FR. Montmorillonite as a component of polysulfone nanocomposite membranes. Appl Clay Sci 2010; 48: 127-132. https://doi.org/10.1016/j.clay.2009.12.011
Hwang H-Y, Kim D-J, Kim H-J, Hong Y-T, Nam S-Y. Effect of nanoclay on properties of porous PVdF membranes. Trans Nonferrous Met Soc China 2011; 21: s141-s147. DOI: https://doi.org/10.1016/S1003-6326(11)61078-9
Rajabi H, Ghaemi N, Madaeni SS, Daraei P, Khadivi MA, Falsafi M. Nanoclay embedded mixed matrix PVDF nanocomposite membrane: Preparation, characterization and biofouling resistance. Appl Surf Sci 2014; 313: 207-214. https://doi.org/10.1016/j.apsusc.2014.05.185 DOI: https://doi.org/10.1016/j.apsusc.2014.05.185
Ghaemi N, Madaeni SS, Alizadeh A, Rajabi H, Daraei P. Preparation, characterization and performance of polyethersulfone/organically modified montmorillonite nanocomposite membranes in removal of pesticides. J Memb Sci 2011; 382: 135-147. https://doi.org/10.1016/j.memsci.2011.08.004 DOI: https://doi.org/10.1016/j.memsci.2011.08.004
Villaluenga JPG, Khayet M, López-Manchado MA, Valentin JL, Seoane B, Mengual JI. Gas transport properties of polypropylene/clay composite membranes. Eur Polym J 2007; 43: 1132-1143. https://doi.org/10.1016/j.eurpolymj.2007.01.018 DOI: https://doi.org/10.1016/j.eurpolymj.2007.01.018
Defontaine G, Barichard A, Letaief S, Feng C, Matsuura T, Detellier C. Nanoporous polymer--clay hybrid membranes for gas separation. J Colloid Interface Sci 2010; 343: 622-7. https://doi.org/10.1016/j.jcis.2009.11.048 DOI: https://doi.org/10.1016/j.jcis.2009.11.048
Leszczyńska A, Njuguna J, Pielichowski K, Banerjee JR. Polymer/montmorillonite nanocomposites with improved thermal properties. Thermochim Acta 2007; 454: 1-22. https://doi.org/10.1016/j.tca.2006.11.003 DOI: https://doi.org/10.1016/j.tca.2006.11.003
Ahmad AL, Abdulkarim AA, Ooi BS, Ismail S. Recent development in additives modifications of polyethersulfone membrane for flux enhancement. Chem Eng J 2013; 223: 246-267. https://doi.org/10.1016/j.cej.2013.02.130 DOI: https://doi.org/10.1016/j.cej.2013.02.130
Lai CY, Groth A, Gray S, Duke M. Preparation and characterization of poly(vinylidene fluoride)/nanoclay nanocomposite flat sheet membranes for abrasion resistance. Water Res 2014; 57: 56-66. https://doi.org/10.1016/j.watres.2014.03.005 DOI: https://doi.org/10.1016/j.watres.2014.03.005
Anadão P, Sato LF, Wiebeck H, Valenzuela-Díaz FR. Montmorillonite as a component of polysulfone nanocomposite membranes. Appl Clay Sci 2010; 48: 127-132. https://doi.org/10.1016/j.clay.2009.12.011 DOI: https://doi.org/10.1016/j.clay.2009.12.011
Ma Y, Shi F, Wang Z, Wu M, Ma J, Gao C. Preparation and characterization of PSf/clay nanocomposite membranes with PEG 400 as a pore forming additive. Desalination 2012; 286: 131-137. https://doi.org/10.1016/j.desal.2011.10.040 DOI: https://doi.org/10.1016/j.desal.2011.10.040
Morihama ACD, Mierzwa JC. Clay nanoparticles effects on performance and morphology of poly(vinylidene fluoride) membranes. Brazilian J Chem Eng 2014; 31: 79-93. https://doi.org/10.1590/S0104-66322014000100009 DOI: https://doi.org/10.1590/S0104-66322014000100009
Mierzwa JC, Arieta V, Verlage M, Carvalho J, Vecitis CD. Effect of clay nanoparticles on the structure and performance of polyethersulfone ultrafiltration membranes. Desalination 2013; 314: 147-158. https://doi.org/10.1016/j.desal.2013.01.011 DOI: https://doi.org/10.1016/j.desal.2013.01.011
Mierzwa JC, Vecitis CD, Carvalho J, Arieta V, Verlage M. Anion dopant effects on the structure and performance of polyethersulfone membranes. J Memb Sci 2012; 421-422: 91-102. https://doi.org/10.1016/j.memsci.2012.06.039 DOI: https://doi.org/10.1016/j.memsci.2012.06.039
International Standard, Plastics-Film and sheeting—Measurement of water-contact angle of corona-treated films first ed (ISO-15989), 2004; 1-12 2004, (n.d.).
Khulbe KC, Feng C, Matsuura T, Kapantaidakis GC, Wessling M, Koops GH. Characterization of polyethersulfone-polyimide hollow fiber membranes by atomic force microscopy and contact angle goniometery 2003; 226: 63-73. DOI: https://doi.org/10.1016/j.memsci.2003.08.011
Yin J, Deng B. Polymer-matrix nanocomposite membranes for water treatment. J Memb Sci 2015; 479: 256-275. https://doi.org/10.1016/j.memsci.2014.11.019 DOI: https://doi.org/10.1016/j.memsci.2014.11.019
Koh MJ, Hwang HY, Kim DJ, Kim HJ, Hong YT, Nam SY. Preparation and Characterization of Porous PVdF-HFP/clay Nanocomposite Membranes. J Mater Sci Technol 2010; 26: 633-638. https://doi.org/10.1016/S1005-0302(10)60098-9 DOI: https://doi.org/10.1016/S1005-0302(10)60098-9
Smolders CA, Reuvers AJ, Boom RM, Wienk IM. Microstructures in phase-inversion membranes. Part 1. Formation of macrovoids. J Memb Sci 1992; 73: 259-275. https://doi.org/10.1016/0376-7388(92)80134-6 DOI: https://doi.org/10.1016/0376-7388(92)80134-6
Boom RM, Wienk IM, van den Boomgaard T, Smolders CA. Microstructures in phase inversion membranes. Part 2. The role of a polymeric additive. J Memb Sci 1992; 73: 277-292. https://doi.org/10.1016/0376-7388(92)80135-7 DOI: https://doi.org/10.1016/0376-7388(92)80135-7
Young T-H, Chen L-W. Pore formation mechanism of membranes from phase inversion process. Desalination 1995; 103: 233-247. https://doi.org/10.1016/0011-9164(95)00076-3 DOI: https://doi.org/10.1016/0011-9164(95)00076-3
Machado PS, Habert A, Borges C. Membrane formation mechanism based on precipitation kinetics and membrane morphology: flat and hollow fiber polysulfone membranes. J Memb Sci 1999; 155: 171-183. https://doi.org/10.1016/S0376-7388(98)00266-X DOI: https://doi.org/10.1016/S0376-7388(98)00266-X
Garcia-Ivars J, Alcaina-Miranda M-I, Iborra-Clar M-I, Mendoza-Roca J-A, Pastor-Alcañiz L. Enhancement in hydrophilicity of different polymer phase-inversion ultrafiltration membranes by introducing PEG/Al2O3 nanoparticles. Sep Purif Technol 2014; 128: 45-57. https://doi.org/10.1016/j.seppur.2014.03.012 DOI: https://doi.org/10.1016/j.seppur.2014.03.012
Barth C, Gonçalves MC, Pires ATN, Roeder J, Wolf BA. Asymmetric polysulfone and polyethersulfone membranes: effects of thermodynamic conditions during formation on their performance. J Memb Sci 2000; 169: 287-299. https://doi.org/10.1016/S0376-7388(99)00344-0 DOI: https://doi.org/10.1016/S0376-7388(99)00344-0
Zeng G, He Y, Yu Z, Zhan Y, Ma L, Zhang L. Preparation and characterization of a novel PVDF ultrafiltration membrane by blending with TiO2-HNTs nanocomposites Appl Surf Sci 2016; 371: 624-632. https://doi.org/10.1016/j.apsusc.2016.02.211 DOI: https://doi.org/10.1016/j.apsusc.2016.02.211
Downloads
Published
How to Cite
Issue
Section
License
Policy for Journals/Articles with Open Access
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work
Policy for Journals / Manuscript with Paid Access
Authors who publish with this journal agree to the following terms:
- Publisher retain copyright .
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work .