Melamine-Ceramic Membrane for Oily Wastewater Treatment

Authors

  • M.E. Ossman City for Scientific Research and Technological Applications SRTA City, Borg Elarab, Alexandria, Egypt
  • W. Wagdy Construction Engineering and Management, Faculty of Engineering, Pharos University, Alexandria, Egypt
  • K.Y. Nabat Petrochemical Engineering Department, Faculty of Engineering, Pharos University, Alexandria, Egypt
  • A. Bramoo Petrochemical Engineering Department, Faculty of Engineering, Pharos University, Alexandria, Egypt
  • Y. Mohamed Petrochemical Engineering Department, Faculty of Engineering, Pharos University, Alexandria, Egypt
  • M. Gamal Petrochemical Engineering Department, Faculty of Engineering, Pharos University, Alexandria, Egypt

DOI:

https://doi.org/10.6000/1929-6037.2019.08.02

Keywords:

Oily water, emulsion, ceramic membrane, melamine.

Abstract

Four distinctive Ceramic membranes have been synthesized using bentonite and Egyptian clay with the expansion of melamine. The addition of melamine (~ 1% by wt.) enhanced the porosity, density, the thermal stability and water permeability of the membranes made from bentonite or Egyptian clay while decreasing the chemical stability of either bentonite or Egyptian clay membranes. The most noteworthy level of decrease in COD (94.7%) is acquired for the concentration of 200ppm with saturating flux of 4.63 E-05 (m3/m2.s) utilizing (B+M) membrane. The cost of the four manufactured clay membranes was assessed based on raw materials used in the present investigation.

References

Painmanakul P, Sastaravet P, Lersjintanakarn S, Khaodhiar S. Effect of bubble hydrodynamic and chemical dosage on treatment of oily wastewater by Induced Air Flotation (IAF) process. Chem Eng Res Design 2010; 88(5-6): 693-702. https://doi.org/10.1016/j.cherd.2009.10.009 DOI: https://doi.org/10.1016/j.cherd.2009.10.009

Zhang MS, Zhu YH, Xiao Y, Wang ZY, Jia WL, Meng FW. Research Advance in Treatment of Oily Wastewater. China Resources Comprehensive Utilization 2007; 25(8): 22-24.

Mueller J, Cen Y, Davis RH. Crossflow microfiltration of oily water. J Membr Sci 1997; 129: 221-235. https://doi.org/10.1016/S0376-7388(96)00344-4 DOI: https://doi.org/10.1016/S0376-7388(96)00344-4

Madaeni SS, Monfared HA, Vatanpour V, Shamsabadi AA, Salehi E, Daraei P, Laki S, Khatami SM. Coke removal from petrochemical oily wastewater using gamma-Al2O3 based ceramic microfiltration membrane. Desalination 2012; 293: 87-93. https://doi.org/10.1016/j.desal.2012.02.028 DOI: https://doi.org/10.1016/j.desal.2012.02.028

Li X, Liu J, Wang Y, Yijun H, Cao Y, Deng X. Separation of Oil from Wastewater by Coal Adsorption-Column Flotation. Separation Science and Technology 2015; 50(4): 583-591. https://doi.org/10.1080/01496395.2014.956759 DOI: https://doi.org/10.1080/01496395.2014.956759

Fadali OA, Ebrahiem EE, Farrag TE, Mahmoud MS, El-Gamil A. Treatment of Oily Wastewater Produced from Refinery Processes Using Adsorption Technique. Minia Journal of Engineering and Technology (MJET) 2013; 32(1): 88-101.

Li XB, Liu JT, Wang YT, Wang CY, Zhou XH. Separation of Oil from Wastewater by Column Flotation J China Univ Mining & Technol 2007; 17(4): 0546-0551. https://doi.org/10.1016/S1006-1266(07)60143-6 DOI: https://doi.org/10.1016/S1006-1266(07)60143-6

Melo MV, Sant'anna GL Jr., Massarani G. Flotation techniques for oily water treatment. Environ Technol 2003; 24(7): 867-76. https://doi.org/10.1080/09593330309385623 DOI: https://doi.org/10.1080/09593330309385623

Kulik N, Trapido M, Veressinina Y, Munter R. Treatment of surfactant stabilized oil-in-water emulsions by means of chemical oxidation and coagulation. Environ Technol 2007; 28(12): 1345-1355. https://doi.org/10.1080/09593332808618896 DOI: https://doi.org/10.1080/09593332808618896

Madaeni SS, Gheshlaghi A, Rekabdar F. Membrane treatment of oily wastewater from refinery processes. Asia-Pac J Chem Eng 2013; 8: 45-53. https://doi.org/10.1002/apj.1619 DOI: https://doi.org/10.1002/apj.1619

Naidoo S, Olaniran AO. Treated Wastewater Effluent as a Source of Microbial Pollution of Surface Water Resources. Int J Environ Res Public Health 2013; 11(1): 249-270. https://doi.org/10.3390/ijerph110100249 DOI: https://doi.org/10.3390/ijerph110100249

Cheryan M, Rajagopalan N. Membrane processing of oily streams. Wastewater treatment and waste reduction. J Membr Sci 1998; 151: 13-28. https://doi.org/10.1016/S0376-7388(98)00190-2 DOI: https://doi.org/10.1016/S0376-7388(98)00190-2

Xiaoyuan D, Zhao W, Man X. Progress in Treatment of Oily Wastewater by Inorganic Porous Ceramic Membrane. MATEC Web of Conferences 2017; 114: 1-5. https://doi.org/10.1051/matecconf/201711402016 DOI: https://doi.org/10.1051/matecconf/201711402016

Anderson MA, Gieselmann MJ, Xu Q. Titania and alumina ceramic membranes. J of Memb Sci 1988; 39(3): 243-258. https://doi.org/10.1016/S0376-7388(00)80932-1 DOI: https://doi.org/10.1016/S0376-7388(00)80932-1

Bouzerara F, Harabi A, Ghouil B, Medjemem N, Boudaira B, Condom S. Elaboration and Properties of Zirconia Microfiltration Membranes. Procedia Engineering 2012; 33: 278-284. https://doi.org/10.1016/j.proeng.2012.01.1205 DOI: https://doi.org/10.1016/j.proeng.2012.01.1205

Kujawa J, Cerneaux S, Koter S, Kujawski W. Highly Efficient Hydrophobic Titania Ceramic Membranes for Water Desalination. ACS Appl Mater Interfaces 2014; 6(16): 14223-14230. https://doi.org/10.1021/am5035297 DOI: https://doi.org/10.1021/am5035297

Zhou Y, Fukushima M, Miyazaki H, Yoshizawa Y, Hirao K, Lwamoto Y, Sato K. Preparation and characterization of tubular porous silicon carbide membrane supports. Journal of Membrane Science 2011; 369(1-2): 112-118. https://doi.org/10.1016/j.memsci.2010.11.055 DOI: https://doi.org/10.1016/j.memsci.2010.11.055

Hsieh HP. Materials and preparation of inorganic membranes. In: Membrane Science and Technology; Elsevier: Amsterdam, The Netherlands, 1996; Chapter 3: pp. 23-92. https://doi.org/10.1016/S0927-5193(96)80022-2 DOI: https://doi.org/10.1016/S0927-5193(96)80022-2

Akbarnezhad S, Mousavi SM, Sarhaddi R. Sol-gel synthesis of alumina-titania ceramic membrane: Preparation and characterization. Indian Journal of Science and Technology 2010; 3(10): 1048-1051. https://doi.org/10.1115/1.4004311 DOI: https://doi.org/10.17485/ijst/2010/v3i10.4

Jedidi I, Saïdi S, Khemakhem S, Larbot A, Elloumi-Ammar N, Fourati A, Charfi A, BenSalah A, BenAmar R. Elaboration of new ceramic microfiltration membranes from mineral coal fly ash applied to waste water treatment. Journal of Hazardous Materials 2009; 172 (1): 152-158. https://doi.org/10.1016/j.jhazmat.2009.06.151 DOI: https://doi.org/10.1016/j.jhazmat.2009.06.151

Bouzerara F, Harabi A, Achour S. Porous ceramic supports for membranes prepared from kaolin and doloma mixtures. Journal of the European Ceramic Society 2006; 26(9): 1663-1671. https://doi.org/10.1016/j.jeurceramsoc.2005.03.244 DOI: https://doi.org/10.1016/j.jeurceramsoc.2005.03.244

Abbasi M, Mirfendereski M, Nikbakht M, Golshenas M, Mohammadi T. Performance study of mullite and mullite–alumina ceramic MF membranes for oily wastewaters treatment. Desalination 2010; 259(1-3): 169-178. https://doi.org/10.1016/j.desal.2010.04.013 DOI: https://doi.org/10.1016/j.desal.2010.04.013

Runlin H, Zhang S, Hu L, Guan S, Jian X. Preparation and characterization of thermally stable poly(piperazine amide)/PPBES composite nanofiltration membrane. J Membr Sci 2011; 370: 91-96. https://doi.org/10.1016/j.memsci.2010.12.048 DOI: https://doi.org/10.1016/j.memsci.2010.12.048

Runlin H. Formation and characterization of (melamine–TMC) based thin film composite NF membranes for improved thermal and chlorine resistances. Journal of Membrane Science 2013; 425-426: 176-181. https://doi.org/10.1016/j.memsci.2012.08.017 DOI: https://doi.org/10.1016/j.memsci.2012.08.017

Rangarajan R, Desai NV, Daga SL, Joshi SV, Prakash Rao A, Shah VJ, Trivedi JJ, Devmurari CV, Singh K, Bapat PS, Raval HD, Jewrajka SK, Saha NK, Bhattacharya A, Singh PS, Ray P, Trivedi GS, Pathak N, Reddy AVR. Thin film composite reverse osmosis membrane development and scale-up at CSMCRI, Bhavnagar. Desalination 2011; 282: 68-77. https://doi.org/10.1016/j.desal.2011.09.003 DOI: https://doi.org/10.1016/j.desal.2011.09.003

Mendioroz S, Pajares JA, Benito I, Pesquera C, Gonzalez F, Blanco C. Texture evolution of montmorillonite under progressive acid treatment: change from H3 to H2 type of hysteresis. Langmuir 1987; 3(5): 676-681. https://doi.org/10.1021/la00077a017 DOI: https://doi.org/10.1021/la00077a017

Srasra E, Bergaya F, Fripiat JJ. Infrared Spectroscopy Study of Tetrahedral and Octahedral Substitutions in an Interstratified Illite-Smectite Clay. Clays and Clay Minerals 1994; 42(3): 237-241. https://doi.org/10.1346/CCMN.1994.0420301 DOI: https://doi.org/10.1346/CCMN.1994.0420301

Suresh K, Srinu T, Ghoshal AK, Pugazhenth G. Preparation and characterization of TiO2 and γ-Al2O3 composite membranes for the separation of oil-in-water emulsions. RSC Adv 2016; 6: 4877-4888. https://doi.org/10.1039/C5RA23523E DOI: https://doi.org/10.1039/C5RA23523E

Lee S, Aurelle Y, Roques H. Concentration polarization, membrane fouling and cleaning in ultrafiltration of soluble oil. Journal of Membrane Science 1984; 19: 23-38. https://doi.org/10.1016/S0376-7388(00)80168-4 DOI: https://doi.org/10.1016/S0376-7388(00)80168-4

Mugnier N, Howell JA, Ruf M. Optimisation of a back-flush sequence for zeolite microfiltration. Journal of Membrane Science 2000; 175: 149-161. https://doi.org/10.1016/S0376-7388(00)00412-9 DOI: https://doi.org/10.1016/S0376-7388(00)00412-9

Downloads

Published

2019-11-26

How to Cite

Ossman, M., Wagdy, W., Nabat, K., Bramoo, A., Mohamed, Y., & Gamal, M. (2019). Melamine-Ceramic Membrane for Oily Wastewater Treatment. Journal of Membrane and Separation Technology, 8, 12–23. https://doi.org/10.6000/1929-6037.2019.08.02

Issue

Section

Articles