Concentration of Astragalus Polysaccharide by Polysulfone-Activated Carbon Modified with Nitric Acid Blend Ultrafiltration Membranes

Authors

  • Hao Dan-Dan Department of Analytical Chemistry & Department of Environmental Science, China Pharmaceutical University, Nanjing 210009, China
  • Chen Jian-Qiu Department of Analytical Chemistry & Department of Environmental Science, China Pharmaceutical University, Nanjing 210009, China
  • Liao Xin-Qiao Department of Analytical Chemistry & Department of Environmental Science, China Pharmaceutical University, Nanjing 210009, China
  • Zheng Yan Department of Analytical Chemistry & Department of Environmental Science, China Pharmaceutical University, Nanjing 210009, China
  • Ji Yi-Bing Department of Analytical Chemistry & Department of Environmental Science, China Pharmaceutical University, Nanjing 210009, China

DOI:

https://doi.org/10.6000/1929-6037.2013.02.01.3

Keywords:

Polysulfone, modified activated carbon, Immersion precipitation phase inversion method, ultrafiltration, Astraglus polysaccharide

Abstract

In this study, Astragalus polysaccharides were concentrated by ultrafiltation membranes prepared by blending polysulfone (PSF) with activated carbon modified with nitric acid(HAC) by immersion precipitation phase inversion method. Water flux and retention to bovine serum albumin of the membranes were investigated. The morphology of membranes were also observed by scanning electron microscopy (SEM). In order to obtain best concentration performance, effects of operating pressure, feeding temperature, operating time, feeding concentration and pH value on concentration and extraction of astragalus polysaccharide were studied. The best conditions for concentration were as follows: operating pressure is 0.4 MPa, feeding temperature is 25 °C, feeding concentration is 1 g·L-1, pH value is neutral. Under these conditions, the ultrafiltration membrane flux was 62.6 L·m-2·h-1, the retention to astragalus polysaccharide was 91.2%, and the attenuation rate of water flux was 12.5% in one hour.

References

Yan H, Xie Y, Sun S, et al. Chemical analysis of Astragalus mongholicus polysaccharides and antioxidant activity of the polysaccharides[J]. Carbohydr Polym 2010; 82: 636-40. Available from: http://www.sciencedirect.com/science/article/ pii/S0144861710004248 http://dx.doi.org/10.1016/j.carbpol.2010.05.026 DOI: https://doi.org/10.1016/j.carbpol.2010.05.026

Qiu H, Cheng G, Xu J, et al. Effects of Astragalus Polysaccharides on Associated Immune Cells and Cytokines in Immunosuppressive Dogs[J]. Proc Vaccinol 2010; 2: 26-33. Available from: http://www.sciencedirect.com/science/ article/pii/S1877282X1000007X http://dx.doi.org/10.1016/j.provac.2010.03.006 DOI: https://doi.org/10.1016/j.provac.2010.03.006

Kong X, Hu Y, Rui R, Wang D, Li X. Effects of Chinese herbal medicinal ingredients on peripheral lymphocyte proliferation and serum antibody titer after vaccination in chicken[J]. Int Immunopharmacol 2004; 4: 975-82. Available from: http://www.sciencedirect.com/science/article/pii/ S1567576904001031 http://dx.doi.org/10.1016/j.intimp.2004.03.008 DOI: https://doi.org/10.1016/j.intimp.2004.03.008

Yin J, Jiang Z, Yu H, et al. A new application of an aqueous diphase solvent system in one-step preparation of polysaccharide from the crude water extract of Radix Astragali by high-speed counter-current chromatography[J]. J Chromatogr A 2012; 1262: 92-97. Available from: http://www.sciencedirect.com/science/article/pii/S0021967312013507 http://dx.doi.org/10.1016/j.chroma.2012.08.099 DOI: https://doi.org/10.1016/j.chroma.2012.08.099

Peinador RI, Calvo JI, Pradanos P, Palacio L, Hernandez A. Characterisation of polymeric UF membranes by liquid–liquid displacement porosimetry[J]. J Membr Sci 2010; 348: 238-44. Available from: http://www.sciencedirect.com/science/ article/pii/S0376738809008072 http://dx.doi.org/10.1016/j.memsci.2009.11.008 DOI: https://doi.org/10.1016/j.memsci.2009.11.008

Mbareck C, Nguyen QT, Alaoui OT, Barillier D. Elaboration, characterization and application of polysulfone and polyacrylic acid blends as ultrafiltration membranes for removal of some heavy metals from water[J]. J Hazardous Mater 2009; 171: 93-101. Available from: http://www. sciencedirect.com/science/article/pii/S0304389409008796 http://dx.doi.org/10.1016/j.jhazmat.2009.05.123 DOI: https://doi.org/10.1016/j.jhazmat.2009.05.123

Xiao HB, Krucker M, Putzbach K, Albert K. Capillary liquid chromatography–microcoil 1H nuclear magnetic resonance spectroscopy and liquid chromatography–ion trap mass spectrometry for on-line structure elucidation of isoflavones in

Radix astragali[J]. J Chromatogr A 2005; 1067: 135-43. Available from: http://www.sciencedirect.com/science/article/ pii/S0021967305000622 http://dx.doi.org/10.1016/j.chroma.2005.01.015 DOI: https://doi.org/10.1016/j.chroma.2005.01.015

Ma Y, Shi F, Zhao W, et al. Preparation and characterization of PSF/clay nanocomposite membranes with LiCl as a pore forming additive[J]. J Desalinat 2012; 303: 39-47. Available from: http://www.sciencedirect.com/science/article/pii/ S0011916412003876 http://dx.doi.org/10.1016/j.desal.2012.07.016 DOI: https://doi.org/10.1016/j.desal.2012.07.016

Masuko T, Minami A, Iwasaki N, Majima T, Nishimura S-I, Lee YC. Carbohydrate analysis by a phenol-sulfuric acid method in microplate format[J]. Analyt Biochem 2005; 339: 69-72. Available from: http://www.sciencedirect.com/science/ article/pii/S0003269704009522 http://dx.doi.org/10.1016/j.ab.2004.12.001 DOI: https://doi.org/10.1016/j.ab.2004.12.001

Lim JW, Lee J-M, Yun S-M, Park B-J, Lee Y-S. Hydrophilic modification of polyacrylonitrile membranes by oxyfluorination[J]. J Indust Eng Chem 2009; 15: 876-82. Available from: http://www.sciencedirect.com/science/ article/pii/S1226086X09001956 http://dx.doi.org/10.1016/j.jiec.2009.09.016 DOI: https://doi.org/10.1016/j.jiec.2009.09.016

Sukitpaneenit P, Chung T-S. Molecular design of the morphology and pore size of PVDF hollow fiber membranes for ethanol-water separation employing the modified pore-flow concept[J]. J Membr Sc 2011; 374: 67-82. Available from: http://www.sciencedirect.com/science/article/pii/ S0376738811001839 http://dx.doi.org/10.1016/j.memsci.2011.03.016 DOI: https://doi.org/10.1016/j.memsci.2011.03.016

Saljoughi E, Amirilargani M, Mohammadi T. Effect of PEG additive and coagulation bath temperature on the morphology, permeability and thermal/chemical stability of asymmetric CA membranes[J]. Desalination 2010; 262: 72-78. Available from: http://www.sciencedirect.com/science/ article/pii/S0011916410003619 http://dx.doi.org/10.1016/j.desal.2010.05.046 DOI: https://doi.org/10.1016/j.desal.2010.05.046

Patsioura A, Galanakis CM, Gekas V. Ultrafiltration optimization for the recovery of β-glucan from oat mill waste[J]. J Membr Sci 2011; 373: 53-63. Available from: http://www.sciencedirect.com/science/article/pii/S0376738811001529 http://dx.doi.org/10.1016/j.memsci.2011.02.032 DOI: https://doi.org/10.1016/j.memsci.2011.02.032

Conesa A, Gumi T, Palet C. Membrane thickness and preparation temperature as key parameters for controlling the macrovoid structure of chiral activated membranes (CAM) [J]. J Membr Sci 2007; 287: 29-40. Available from: http://www.sciencedirect.com/science/article/pii/S0376738806006582 http://dx.doi.org/10.1016/j.memsci.2006.10.006 DOI: https://doi.org/10.1016/j.memsci.2006.10.006

Sun H, Qi D, Xu J, Zhe C. Fractionation of polysaccharides from rapeseed by ultrafiltration: Effect of molecular pore size and operation conditions on the membrane performance[J]. Separat Purificat Technol 2011; 80: 670-76. Available from: http://www.sciencedirect.com/science/article/pii/S1383586611003881 http://dx.doi.org/10.1016/j.seppur.2011.06.038 DOI: https://doi.org/10.1016/j.seppur.2011.06.038

Prádầnos P, De Abajo J, de la Campa JG, Hernández A. A comparative analysis of flux limit models for ultrafiltration membranes[J]. J Membr Sci 1995; 108: 129-42. Available from: http://www.sciencedirect.com/science/article/pii/ 0376738895001475 http://dx.doi.org/10.1016/0376-7388(95)00147-5 DOI: https://doi.org/10.1016/0376-7388(95)00147-5

Chew PG, Casey AJ, Johnsson SK. Protein quality and physico-functionality of Australian sweet lupin (Lupinus angustifolius cv. Gungurru) protein concentrates prepared by isoelectric precipitation or ultrafiltration[J]. Food Chem 2003; 83: 575-83. Available from: http://www.sciencedirect.com/ science/article/pii/S0308814603001560 http://dx.doi.org/10.1016/S0308-8146(03)00156-0 DOI: https://doi.org/10.1016/S0308-8146(03)00156-0

Zulkali MMD, Ahmad AL, Derek CJC. Membrane application in proteomic studies: Preliminary studies on the effect of pH, ionic strength and pressure on protein fractionation[J]. Desalination 2005; 179: 381-90. Available from: http://www.sciencedirect.com/science/article/pii/S0011916405003036 http://dx.doi.org/10.1016/j.desal.2004.11.084 DOI: https://doi.org/10.1016/j.desal.2004.11.084

Kanani DM, Ghosh R. A constant flux based mathematical model for predicting permeate flux decline in constant pressure protein ultrafiltration[J]. J Membr Sci 2007; 290: 207-15. Available from: http://www.sciencedirect.com/ science/article/pii/S0376738806008593 http://dx.doi.org/10.1016/j.memsci.2006.12.030 DOI: https://doi.org/10.1016/j.memsci.2006.12.030

Downloads

Published

2013-02-27

How to Cite

Dan-Dan, H., Jian-Qiu, C., Xin-Qiao, L., Yan, Z., & Yi-Bing, J. (2013). Concentration of Astragalus Polysaccharide by Polysulfone-Activated Carbon Modified with Nitric Acid Blend Ultrafiltration Membranes. Journal of Membrane and Separation Technology, 2(1), 27–35. https://doi.org/10.6000/1929-6037.2013.02.01.3

Issue

Section

Articles