Modeling Diffusivity Through Alginate-Based Microfibers: A Comparison of Numerical and Analytical Models Based on Empirical Spectrophotometric Data
DOI:
https://doi.org/10.6000/1929-6037.2013.02.01.8Keywords:
Alginate, diffusivity, modeling, hollow fiber, cylindricalAbstract
The study of mass transport across hollow and solid 3D microfibers to study metabolic profiles is a key aspect of tissue engineering approach. A new modified numerical mathematical model based on Fickian equations in cylindrical coordinates has been proposed for determining the membrane diffusivity of 2% (w/v) alginate-based stents cross-linked with 10% CaCl2. Based on the economical and direct spectrophotometric measurements, using this model, inward diffusivities ranging from 5.2x10-14 m2/s 2.93x10-12m2/s were computed for solutes with Stokes radii ranging between 0.36 to 3.5 nm, diffusing through bare alginate and alginate-chitosan-alginate microfibers. In parallel an analytical solution to the cylindrical Fickian equation was derived to validate the numerical solution using experimental diffusion data from a solid stent. Excellent agreement was found between the numerical and analytical models with a maximum calculated residual value of 4%. Using these models, a flexible computational platform is proposed to conduct custom diffusion and MW cut-off characterization across micro-porous microfibers not limited to alginate in composition.
References
Park JH, Shin US, Kim HW. Alginate-microfibers produced by self-assembly in cell culture medium. Bull Korean Chem Soc 2011; 32 (2): 431-3. http://dx.doi.org/10.5012/bkcs.2011.32.2.431 DOI: https://doi.org/10.5012/bkcs.2011.32.2.431
Zhu X, Pack DW, Braatz RD. Modelling intravascular delivery from drug-elutingstents with biodurable coating: investigation of anisotropic vascular drug diffusivity and arterial drug distribution. Comput Method Biomechs 2012; 1-12. DOI: https://doi.org/10.1080/10255842.2012.672815
Moroni L, Wijn JR, van Blitterswijk CA. Polymer hollow fiber three-dimensional matrices with controllable cavity and shell thickness. Biomaterials 2006; 27(5): 5918-26. http://dx.doi.org/10.1016/j.biomaterials.2006.08.015 DOI: https://doi.org/10.1016/j.biomaterials.2006.08.015
Tamayol A, Akbari M, Annabi N, Paul A, Khadamhosseini A, Juncker D. Fiber-based tissue engineering: progress, challenges, and opportunities. Biotechnology Advances 2012 [serial on the internet]. Available from:doi 10.1016/j.biotechadv.2012.11.007 DOI: https://doi.org/10.1016/j.biotechadv.2012.11.007
Zhang S, Liu T, Chen L, Ren M, Zhang B, Wang Z, et al. Bifunctionalpolyethersulfone hollow fiber with a porous,
single-layer skin for use as a bioartificial liver bioreactor. J Mater Sci Mater Med 2012; 23: 2001-11. http://dx.doi.org/10.1007/s10856-012-4673-8 DOI: https://doi.org/10.1007/s10856-012-4673-8
Asthana A, Lee KH, Shun SJ, Perumal J, Butker L, Lee SH, et al. Bromo-oxidation reaction in enzyme-entrapped alginate hollow microfibers. Biomicrofluidics 2011 [serial on the internet]. http://dx.doi.org/10.10631/1.3605512 DOI: https://doi.org/10.1063/1.3605512
Wan J. Microfluidic-based synthesis of hydrogel particles for cell microencapsulation and cell-based drug delivery. Polymers 2012; 4(2): 1084-108. http://dx.doi.org/10.3390/polym4021084 DOI: https://doi.org/10.3390/polym4021084
Luo Y, Lode A, Gelinsky M. Direct Plotting of Three-Dimensional Hollow Fiber Scaffolds Based on Concentrated Alginate Pastes for Tissue Engineering. AdvHealthc Mater 2012 [serial on the internet]. Available from: doi:10.1002/adhm.201200303 http://dx.doi.org/10.1002/adhm.201200303 DOI: https://doi.org/10.1002/adhm.201200303
Amin S, Rajabnezhad S, Kohli K. Hydrogels as potential drug delivery systems. Sci Res Essays 2009; 3(11): 175-83.
Takka S, Gürel A. Evaluation of Chitosan/Alginate Beads Using Experimental Design: Formulation and In vitro Characterization. AAPS PharmSciTech 2010; 11(1): 460-6. http://dx.doi.org/10.1208/s12249-010-9406-z DOI: https://doi.org/10.1208/s12249-010-9406-z
Barralet JE, Wang L, Lawson M, Triffitt JT, Cooper PR, Shekton RM. Comparison of bone marrow cell growth on 2D and 3D alginate hydrogels. J Mater Sci Mater Med 2005; 16: 515-19. http://dx.doi.org/10.1007/s10856-005-0526-z DOI: https://doi.org/10.1007/s10856-005-0526-z
Mobed-Miremadi M, Asthi A, Nagendra R, Varma R. Alginate-Chitosan-Alginate Microcapsules for Oral Administration: 2009. Proceedings of the American Institute of Chemical Engineering Conference; Nashville, Tenessee, USA. Available from: www3.aiche.org/Proceedings/Extended Abstract.aspc?PaperID=170186
Kwok WY, Kiparissides C, Yuet P, Harrris JT, Goosen MFA. Mathematical modelling of protein diffusion in microcapsules: A comparison with results. Can J Chem Eng 1991; 69(1): 361-70. http://dx.doi.org/10.1002/cjce.5450690144 DOI: https://doi.org/10.1002/cjce.5450690144
Goosen MFA. Fundamentals of Animal Cell Encapsulation and Immobilization. 1st ed. Boca Raton: CRC Press 1992.
Westrin B, Axelsson A, Zacchi G. Diffusion measurement in gels - A review. J Controlled Release 1994; 30: 189. http://dx.doi.org/10.1016/0168-3659(94)90025-6 DOI: https://doi.org/10.1016/0168-3659(94)90025-6
Wang N, Adams G, Buttery L, Falcone FH, Stolnik S. Alginate encapsulation technology supports embryonic stem cells differentiation into insulin-producing cells. J Biotechnol 2009; 144(4): 304-12. http://dx.doi.org/10.1016/j.jbiotec.2009.08.008 DOI: https://doi.org/10.1016/j.jbiotec.2009.08.008
Yu G, Fan Y. Preparation of poly(D,L-lactic acid) scaffolds using alginate particles. J Biomater Sci - Polym Ed 2008; 19(1): 87-98. http://dx.doi.org/10.1163/156856208783227703 DOI: https://doi.org/10.1163/156856208783227703
Hsiong SX, Cooke PH, Kong H, Fishman ML, Ericsson M, Mooney DJ. AFM Imaging of RGD Presenting Synthetic Extracellular Matrix Using Gold Nanoparticles. Macromol Biosci 2008; 8(6): 469-77. http://dx.doi.org/10.1002/mabi.200700313 DOI: https://doi.org/10.1002/mabi.200700313
McGinty S, McKee S. Modelling drug-eluting stents. Math Med Biol 2011; 28: 1-29. http://dx.doi.org/10.1093/imammb/dqq003 DOI: https://doi.org/10.1093/imammb/dqq003
Li RH, Altreuter DH, Gentile FT. Transport characterization of hydrogel matrices for cell encapsulation. Biotech Bioeng 1995; 50: 365-73. http://dx.doi.org/10.1002/(SICI)1097-0290(19960520)50:4<365::AID-BIT3>3.0.CO;2-J DOI: https://doi.org/10.1002/(SICI)1097-0290(19960520)50:4<365::AID-BIT3>3.0.CO;2-J
Russo R, Malinconico M, Santagata G. Effect of Cross-Linking with Calcium Ions on the Physical Properties of Alginate Flms. Biomacromolecules 2007; 8(10): 3193. http://dx.doi.org/10.1021/bm700565h DOI: https://doi.org/10.1021/bm700565h
Flynn G, Yalkowsky S, Roseman T. Mass transport phenomena and models: theoretical concepts. J Pharm Sci 1974; 63(4): 479-10. http://dx.doi.org/10.1002/jps.2600630403 DOI: https://doi.org/10.1002/jps.2600630403
Tanaka H, Matsumara M, Veliky IA. Diffusion characteristics of substrates in Ca-alginate gel beads. Biotech Bioeng 1984; 26(1): 53-8. http://dx.doi.org/10.1002/bit.260260111 DOI: https://doi.org/10.1002/bit.260260111
Carslaw H, Jaeger J. Conduction of Heat in Solids. 2nd ed. Oxford: Oxford University Press 1959.
Fick A. Ṹber diffusion. Ann Physik Leipzig 1855; 170: 59-86. http://dx.doi.org/10.1002/andp.18551700105 DOI: https://doi.org/10.1002/andp.18551700105
Carnahan B, Luther HA, Wilkes JO. Applied Numerical Methods. New York: Wiley&Son 1969.
Crank J. The Mathematics of Diffusion, 2nd ed. Oxford: Clarendon Press 1975.
Lakshminarayanakh N. Transport Phenomena in Membranes. New York: Academic Press 1969.
Wang Q, Zhang N, Hu X, Yang J, Du Y. Alginate/polyethylene glycol blend fibers and their properties for drug controlled release. J Biomed Mater Res A 2007; 82A(1): 122-28. http://dx.doi.org/10.1002/jbm.a.31075 DOI: https://doi.org/10.1002/jbm.a.31075
Lin YS, Huang KS, Yang CH, Wang CY, Yang YS, Hsu HS, et al. Microfluidic Synthesis of Microfibers for Magnetic-Responsive Controlled Drug Release and Cell Culture. PLoS One 2012 [serial on the internet]. Available from: doi: 10.1371/journal.pone.0033184. http://dx.doi.org/10.1371/journal.pone.0033184 DOI: https://doi.org/10.1371/journal.pone.0033184
Meyer U, Meyer T, Handschel J, W HP. Fundamentals of Tissue Engineering and Regenerative Medicine. 1st ed. New York: Springer Verlag 2009. http://dx.doi.org/10.1007/978-3-540-77755-7 DOI: https://doi.org/10.1007/978-3-540-77755-7
Mobed-Miremadi M, Asi B, Parasseril J, Wong E, Tat M, Shan Y. Comparative diffusivity measurments for alginate-based atomized and inkjet-bioprinted artificial cells using fluorescence microscopy. Artif Cells Nanomed Biotech 2012. [serial on the internet]. Available from: doi 10.3109/10731199.2012.716064. http://dx.doi.org/10.3109/10731199.2012.716064 DOI: https://doi.org/10.3109/10731199.2012.716064
Andersen T, Strand BL, Formo K, Alsberg E, Christensen BE. Alginates as biomaterials in tissue engineering. Carbohydrate Chem: Chem Biol Approach 2012; 37: 227-58. http://dx.doi.org/10.1039/9781849732765-00227 DOI: https://doi.org/10.1039/9781849732765-00227
Zheng SJ, Wu H. Generation of alginate microfibers with a roller-assisted microfluidic system. Lab Chip 2009; 9(7): 996-1001. http://dx.doi.org/10.1039/b813518e DOI: https://doi.org/10.1039/B813518E
Takei T, Sakai S, Yokonuma T, Ijima H, Kawakami K. Fabrication of artificial endothelialized tubes with predetermined three-dimensional configuration from flexible cell-enclosing alginate fibers. Biotech Prog 2007; 23(1): 182-6. http://dx.doi.org/10.1021/bp060152j DOI: https://doi.org/10.1021/bp060152j
Lee KH, Shin SJ, Park Y, Leee SH. Synthesis of cell-laden alginate hollow fibers using microfluidic chips and microvascularized tissue-engineering applications. Small Volume 2009; 5: 1264-68. http://dx.doi.org/10.1002/smll.200801667 DOI: https://doi.org/10.1002/smll.200801667
Riggio C, Ciofani G, Raffa V, Bossi S, Micera S, Cushieri A. Polymeric Thin Film Technology for Neural Interfaces: review and Perspectives. In: Hashim AA editor. Polymeric Thin
Films. Intech 2010. Available for free access at: http/www.intechopen.com/books/polymeric-thin-films/polymeric-thin-film-technology-for-neural interfaces-review-and-perspectives.
Pontrelli G, de Monte F. A multi-layer porous wall model for coronary drug-eluting stents. Int J Heat Mass Transfer 2010; 53(19-20): 3629-37. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2010.03.031 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2010.03.031
Wehry EL. Molecular Fluorescence and Phosphorescence Spectrometry. In: Settle FA. Handbook of Instrumental Techniques for Analytical Chemistry. 1st ed. National Science Foundation, Arlington, Virginia: Prentice Hall PTR (ECS Professional) 1997; pp. 507-536.
Downloads
Published
How to Cite
Issue
Section
License
Policy for Journals/Articles with Open Access
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work
Policy for Journals / Manuscript with Paid Access
Authors who publish with this journal agree to the following terms:
- Publisher retain copyright .
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work .