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Abstract: The intestinal microbiota and gut immune system must constantly communicate to maintain a balance 

between tolerance and activation: on one hand, our immune system should protect us from pathogenic microbes and on 
the other hand, most of the millions of microbes in and on our body are innocuous symbionts and some can even be 
beneficial. Since there is such a close interaction between the immune system and the intestinal microbiota, it is not 

surprising that some lymphomas such as mucosal-associated lymphoid tissue (MALT) lymphoma have been shown to 
be caused by the presence of certain bacteria. Animal models played an important role in establishing causation and 
mechanism of bacteria-induced MALT lymphoma. In this review we discuss different ways that animal models have been 

applied to establish a link between the gut microbiota and lymphoma and how animal models have helped to elucidate 
mechanisms of microbiota-induced lymphoma. While there are not a plethora of studies demonstrating a connection 
between microbiota and lymphoma development, we believe that animal models are a system which can be exploited in 

the future to enhance our understanding of causation and improve prognosis and treatment of lymphoma. 
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INTRODUCTION 

Lymphocytes play a key role in responding to 

microbial colonization by initiating an immune response 

leading to tolerance or activation. The majority of 

immunologically active cells belong to the mucosal-

associated immune system and are constantly 

receiving signals from dendritic cells or other APCs 

which are sampling the intestines. Dysregulation can 

lead to inflammation-related diseases such as colitis 

and cancer, as reviewed in this issue. Tissues closely 

associated with bacterial exposure have been most 

easily identified as being affected by microbes such as 

colon cancer and gastric cancers ([1] and in current 

issue) however intestinal health can alter extra-

gastrointestinal tissues, having a systemic effect [2,3]. 

Animal models have played an essential role in 

understanding the importance of the gut microbiome in 

immune development and composition [4]. Animal 

models have also played a key role in solidifying the 

relationship between the microbiome and health and 

disease [5]. Techniques to manipulate animal gut 

composition have been studied and refined for over 50 

years and continue to play an important role in 

clarifying this symbiotic and sometimes pathogenic 

relationship [6].  

MICROBIOTA AND LYMPHOMA IN ANIMAL 
MODELS 

There are two major ways that animal models have 

an advantage in studying the relationship between gut  
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microbes and cancer. First, the mouse gut microbiome 

can be altered to be germ free, contain specific species 

of bacteria (gnotobiotic), or to have what is commonly 

called conventional microbiota, which is considered 

“normal” and generally unmonitored in genetically 

similar animals. Changing the microbiome allows us to 

study cause and effect relationship between the 

bacteria and body. Germfree animals have 

demonstrated the role of microbiota in inflammation, 

metabolism, and obesity [5,7,8]. Gnotobiotic models 

have helped to determine both causative species and 

mechanisms of colorectal cancer [9,10]. Second, 

animal models have been used to determine how 

genes may affect or be affected by different bacteria. 

These models can help us determine genetic 

susceptibility or resistance to different diseases 

depending on microbial exposure. For example 

polymorphisms in Dectin1 can influence susceptibility 

to colitis [11]. Alternatively, genetic models can help us 

determine which genes or pathways may be important 

in disease development or protection [12]. For 

example, Rag2
-/-

 mice can develop H. hepaticus-

induced cancer, however immune competent mice are 

protected due to a regulatory response leading to 

decreased inflammation [13]. Combining both a defined 

gut microbiota and genetic models can also give us 

important insights into mechanisms of gut-microbe 

interactions.  

Historical Data Indicating that Gut Microbes may 
Affect Mouse Phenotypes such as Cancer and 
Lifespan 

While inbred mouse strains have helped to 

decrease variability among and within experiments, 
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over time even these carefully maintained strains may 

acquire differences. Changes in phenotypes of 

research animals have been noted as early as 1966 in 

various fields from radiation to toxicology [14-18]. 

Internal factors such as genetic drift or spontaneous 

mutations can play a role in varying phenotypes of 

research animals [19,20]. Many environmental factors 

have also been postulated to contribute to changes in 

rodents including housing conditions, diet, and sterility 

[15,17,21]. 

Significant changes in lifespan or tumor incidence 

may have important consequences on experimental 

results. For example, over an 11 year period, percent 

survival of male F344 rats at 106 weeks decreased 

from 85.3% in experiments starting in 1971 to 62.5% in 

experiments starting in 1980-1981 [16]. In addition, 

leukaemia incidence increased from 9.4% to 20.1% in 

male rats in experiments starting in 1972-1973 and 

1980-1981, respectively [16]. Experiments using 3 Gy 

x-rays to induce myeloid leukemia show that 32.3% of 

mice developed the disease in 1956 while only 12.8% 

developed myeloid leukemia in 1964 [17]. While 

different environmental factors have been attributed to 

these changes, it is well known that animal husbandry 

protocols have also become more stringent, affecting 

animal microbial composition and health [22]. More 

recently, our lab has shown that in different vivariums, 

with different SPF conditions, isogenic mice have 

altered lifespans and lymphoma latency periods 

[18,23]. This correlates to distinct microbiome profiles 

as determined by 16S rRNA lengths. Therefore it is 

likely that the microbiome has at least a partial 

influence on animal health, including carcinogenesis. 

Animal Models of MALT Lymphoma 

Mucosal-associated lymphoid tissue (MALT) 

lymphomas are thought to originate in the marginal 

zone and are strongly associated with the presence of 

Helicobacter [24, 25]. Approximately 90% of MALT 

lymphomas are associated with Helicobacter infection 

[26]. Elimination of Helicobacter leads to complete 

remission in approximately 80% of all cases [27]. While 

the association of H. pylori and MALT lymphoma was 

discovered in humans, the causative effect of 

Helicobacter in MALT lymphoma development, 

according to the Koch’s Postulate, was demonstrated 

in animal models. A model of bacteria-induced MALT 

was first shown in mice by infection with H. felis, a 

close relative to H. pylori. 22 weeks post-infection, 25% 

of infected mice had lymphoepithelial lesions while 

none of the non-infected animals did [28]. An H. pylori 

infection was first established in gerbils and showed an 

increase in gastritis and intestinal metaplasia [29]. 

Since then, H. pylori infections have been established 

in mouse models and have been used to examine 

mechanism by assessing transcription profiling [30] and 

disease progression and regression [31].  

H. helmanii, found in both human and mice, also 

lead to MALT lymphoma which is preceded by 

inflammation and high endothelial venule-like vesicles, 

which are associated with lymphocyte recruitment and 

present in other chronic inflammatory conditions such 

as rheumatoid arthritis, and colitis [32]. The animal 

models of H helmanii-induced lymphoma, however, 

seem to have varying results and may also involve host 

and bacterial factors [33]. The use of better defined 

bacteria, however, may improve consistency and 

development of MALT lymphoma for future studies 

[34]. 

Other bacteria such as Campylobacter jejuni, 

Borrelia bergdorferi, and Chlamidia psitacci may also 

play a role in lymphoma development, however these 

associations have only been shown in humans thus far 

[35]. Streptococcus bovis has been associated with 

hematopoietic malignancy in humans [36]. Therefore, 

animal models may provide valuable insight into 

microbe-associated lymphoma etiology, progression, 

and treatment. 

Animal Models of Lymphoma and Effects of the 
Microbiome 

Animal models of cancer can also be useful in 

demonstrating a link between the microbiome and 

carcinogenesis. Cancer is a disease that is generally 

thought to occur in a multi-step process beginning with 

initiation, promotion, and finally progression. As the 

disease progresses, cells acquire “hallmarks of cancer” 

which include sustained proliferation, resistance to cell 

death, and metastasis [37]. Using animal cancer 

models such as p53-deficient mice, allows researchers 

to bypass some steps required for overt cancer saving 

time and animal numbers. Apc
Min/+

 mice, which 

spontaneously develop intestinal polyps, have been 

used to demonstrate that infection with Citrobacter 

rodentium or enterotoxin producing Bacterioides fragilis 

can promote colon cancer [38,39]. A chemically 

induced model of liver cancer also showed that H. 

hepaticus infection promotes liver tumorigenesis [40]. 

Our lab has shown that mice deficient in the Ataxia 

telangiectasia mutated gene (Atm
-/-

 mice), which 
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display genetic instability and spontaneously develop a 

high incidence of thymic lymphoma [41,42], are 

sensitive to changes in microbial content [23]. We 

found that as Atm
-/-

 mice moved to more sterile 

conditions, they began to live longer and have a 

decreased lymphoma penetrance [18,23]. Conversely, 

when they were moved to standard SPF conditions, 

their lifespan and lymphoma latency decreased. To test 

the effects of the gut microbiota more directly, we 

rederived mice into a restricted microbiota facility [43] 

and “conventionalized” mice by inoculating them with 

fecal samples from conventional SPF mice. Again, the 

“conventionalized” mice had shorter lifespans than the 

mice with a restricted microbiota [23]. These results 

indicated that microbes in the restricted, sterile facility 

had a protective effect in Atm
-/-

 mice and/or the 

conventional microbiota had a more pathogenic effect. 

One microbe that was highly enriched in the restricted 

microbiome was Lactobacillus johnsonii. Inoculation 

with L. johnsonii in Atm
-/-

 mice decreased measures of 

DNA damage, oxidative stress, and inflammation [23]. 

These results indicate that the gut microbiota can 

impact lymphomagenesis in Atm
-/-

 mice. Other 

lymphoma or cancer models may also contribute to the 

growing body of evidence linking the microbiome to 

carcinogenesis. 

MECHANISM OF MICROBIOTA-INDUCED 
LYMPHOMAGENESIS AS EVIDENCED IN ANIMAL 
MODELS 

While there is not a plethora of animal models 

linking the microbiome to lymphoma development, 

there is a large amount of data indicating plausible 

mechanisms of microbiota-induced lymphomagenesis 

in animal models (for references see below). Since the 

intestinal microbiota has been shown to influence the 

immune system directly and indirectly ([44,45] and in 

the current issue), there are several ways that the 

intestinal microbiota may affect lymphomagenesis in 

mice. Many of these mechanisms have been identified 

and shown in animal models (for references see 

below). 

Microbiota can Directly Initiate Lymphomagenesis 

Species of gut bacteria may directly cause the 

promotion or neutralization of mutagens and oxidative 

stress [46-54] leading to DNA damage and subsequent 

cancer or protection [55]. Faecal water samples from 

mice treated with pre- and probiotics showed different 

degrees of genotoxicity which correlated with 

tumorigenesis [56]. Bacteria can also directly interact 

with immune cells causing oxidative bursts [57] or 

necrosis [57], and with epithelial cells causing 

increased production of reactive oxygen species and 

inhibition of NF- B [58]. Oxidative stress can then lead 

to DNA damage and carcinogenesis [59-61]. H. Pylori 

and C. Jejuni have both been shown to increase 

oxidative stress [53,54]. Finally, bacteria can act as an 

antigen and stimulate chronic proliferation of immune 

cells. H. pylori is thought to cause lymphoma because 

of constant stimulation of antigen presentation leading 

to B cell expansion [31,62]. In humans, this is evident 

in the overrepresentation of certain V genes [35,63]. 

While the lymphocytes and microbes are generally 

separated by the epithelial barrier, bacteria, antigens, 

or metabolites cross the mucosal barrier through 

dendritic cells or M cells which are constantly sampling 

the lumen [64]. 

In addition to causing damage, bacteria can also 

help to neutralize mutagens and oxidative stress ([65], 

reviewed in [66]). The mutagens MNNG and DMH have 

been shown to be neutralized in rat colons by lactic 

acid bacteria. 

Microbiota can Alter Immune Parameters to Affect 
Lymphomagenesis 

Species, or populations of gut bacteria may cause a 

change in immune response or immune parameters 

and affect lymphocytes. Intestinal immune cells are 

constantly sampling luminal content and deciding 

whether to elicit or suppress an immune response [44]. 

Animal studies have shown that both single species of 

bacteria as well as different bacterial compositions can 

have large impacts on immune parameters. For 

example, studies using germ-free mice established that 

intestinal microbiota are essential for normal immune 

system development [67-69]. Since lymphoma itself is 

a shift in immune cell types, it is not surprising that 

microbes may influence lymphomagenesis. 

Several animal studies have shown that either a 

mixture of bacteria or single species may significantly 

affect immune cell population and activity [43,70-74]. 

For example, inoculation with segmented filamentous 

bacteria caused a change in T cell activity eliciting a 

range of responses including increases in IL-10, IL-17, 

and IFN-  [73]. In addition, inoculation of 

Sphingomonas yanoikuyae caused a systemic change 

in immune cell populations [43]. Bacterioides fragilis 

can induce a Th17 response in mice which was then 

shown to be required for tumorigenesis [39]. Bacteria 

can also directly alter inflammation-related pathways. 
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Inoculation with common human commensal bacterium 

B. thetaiotaomicron, B. longum, or both resulted in an 

increase in Tnf - and Ifn -associated pathways [75]. 

These studies indicate that gut microbes can affect the 

immune system which may impact lymphoma 

development. 

Alternatively, distinct compositions of intestinal 

microbiota can differentially alter immune parameters 

[43,70,71] which may protect mice against cancerous 

cells. Mice with a restricted microbiota have increased 

cytotoxic T cells which leads to decreased levels of 

marginal zone B cells [70], invariant NKT (iNKT) cells 

[71], and plasmacytic dendritic cells compared to mice 

with conventional microbiota [43]. Moreover, Wei et al. 

suggest that the activity of adoptively transferred 

cytotoxic CD8
+
 T cells can be increased if recipient 

mice are inoculated with donor microbial antigens [70]. 

It has also been shown that germ-free colorectal 

cancer rat models mount different responses to cancer 

induction compared to conventional mice including 

increased B cells, NK cells and cytotoxic T 

lymphocytes [76].  

Conversely, some bacteria and bacterial products 

may have a beneficial effect. For example, lactic acid 

bacteria and specific recognition of Lactobacilli may 

protect against carcinogenesis [77,78]. Lactobacillus 

johnsonii in rat intestines has been shown to have a 

positive effect on oxidative stress and inflammation and 

prolongs the development of diabetes [79,80]. Lactic 

acid bacteria can also modify the immune system to 

prevent cancer in mouse tumor models [81-83] 

(reviewed in [66,84]). In addition, butyrate, a short-

chain fatty acid produced by bacterial fermentation of 

fiber on Treg cell specification and expansion [85,86]. 

Whether microbes influence immune cells directly, 

indirectly, or a combination of both, increased 

lymphocyte proliferation can lead to a higher chance of 

aberrant DNA replication [87,88], particularly in some B 

lymphocytes which are innately vulnerable to genetic 

instability [89,90] and activation [91]. Oxidative stress 

caused by intestinal microbiota either directly [92] or 

indirectly through the immune system [93], can also 

affect carcinogenesis. Therefore, the microbiota can 

affect several pathways associated with 

lymphomagenesis [94,95]. 

 

Figure 1: Possible model for lymphoma induction by intestinal inflammation. Tissue atrophy from persistent inflammation results 
in genotoxicity to surface epithelial cells as well as to infiltrating leukocytes. Damaged resident leukocytes may then migrate into 
the peripheral circulation through the lymph nodes, or circulating activated effector cells may cause genotoxicity to proximal 
circulating leukocytes through oxidative burst. These damaged cells can develop into lymphomas. 
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CONCLUSION 

While there is evidence that the microbiome affects 

lymphomagenesis, particularly MALT lymphomas, 

there is a wide gap of knowledge to which animal 

models could provide valuable answers. Namely, which 

bacteria or bacterial products can cause, protect 

against, or increase risk of lymphoma development? 

With the exception of breast cancer, liver cancer, and 

lymphoma, systemic effects of intestinal bacteria on 

cancer have not been studied. Lymphomas are of 

particular interest because they circulate through the 

gastro-intestinal system as well as the rest of the body. 

The fact that more lymphomas are becoming 

associated with bacterial infections [96-98] and that 

antibiotic therapy can be effective [96,98] underscores 

the need for more studies involving microbes and 

lymphoma. 

There is overwhelming evidence that some 

intestinal bacteria are health beneficial like the 

Lactobacilli whereas some others are health 

detrimental like some of the Helicobacteraceae. It will 

be very important to determine the roles as health 

beneficial and detrimental of most intestinal bacteria 

and whether there are synergisms or antagonisms 

between them. Then one can design certain probiotics 

containing the health beneficial and certain antibiotics 

against the health detrimental bacteria. 
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