Nutrition and Intestinal Microflora

Authors

  • Guadalupe García-Elorriaga Hospital de Infectología, Centro Médico Nacional La Raza (CMNR), Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
  • Guillermo del Rey-Pineda Banco Central de Sangre, CMNR, IMSS, and Departamento de Infectología, Hospital Infantil de México Federico Gómez, Secretaría de Salud (SSA), Mexico City, Mexico

DOI:

https://doi.org/10.6000/1929-5634.2013.02.02.6

Keywords:

Intestinal microflora, Bacteroides, Bifidobacterium, probiotic, prebiotic

Abstract

The intestinal microflora is a complex ecosystem composed of numerous genera, species and strains of bacteria. This enormous cell mass performs a variety of unique activities that affect both the colonic and systemic physiology. The gut is colonized by a small number of bacterial species; Lactobacillus and Bifidobacteria spp. are seldom, if ever, identified. The predominant species are Enterococcus faecalis, E. coli, Enterobacter cloacae, Klebsiella pneumoniae, Staphylococcus epidermidis and Staphylococcus haemolyticus. Hygienic conditions and antimicrobial procedures strongly influence the intestinal colonization pattern. But, when large numbers of bacteria colonize the small intestine, a syndrome known as small intestinal bacterial overgrowth (SIBO) occurs. Nutrient malabsorption is a hallmark of the disorder and can result in a multitude of problems for the host. New links between SIBO and disease entities such as irritable bowel syndrome (IBS), provide intriguing new insights into the pathophysiology of the syndrome. On the other hand, in addition to its role in digestion of food in the gastrointestinal tract, intestinal microflora are also capable of biotransforming numerous drugs. Likewise, intestinal microflora may significantly modulate xenobiotic-induced toxicity by either metabolically activating or inactivating xenobiotics. We herewith present a review of the research on the importance of intestinal microflora and nutrition. Probiotics can introduce missing microbial components with known beneficial functions to the human host. Prebiotics can enhance the proliferation of beneficial microorganisms or probiotics, to maximize sustainable changes in the human microbiome. In addition, among the numerous purported health benefits attributed to probiotic bacteria, their capacity to interact with the host’s immune system is now supported by an increasing number of experiments. In addition to these, a few trials aimed at preventing chronic immune dysregulation have been reported. The identification of major immunomodulatory compounds in probiotics, and their interaction with immunocompetent cells as well as the role of secretory IgA in gut homeostasis are also evoked.

References

Human Microbiome Project Consortium, Structure, function and diversity of the healthy human microbiome. Nature 2012; 486: 207-14. http://dx.doi.org/10.1038/nature11234 DOI: https://doi.org/10.1038/nature11234

Liu Y, Zhang C, Zhao L, Nardini C. Adapting functional genomic tools to metagenomic analyses: investigating the role of gut bacteria in relation to obesity. Brief Funct Genomics 2010; 9(5): 355-61. DOI: https://doi.org/10.1093/bfgp/elq011

Tannock GW. A fresh look at the intestinal microflora. In: Tannock GW, Ed. Probiotics. a critical review. Wymondham, (UK): Horizon Scientific Press 1999.

Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 2006; 124: 837-48. http://dx.doi.org/10.1016/j.cell.2006.02.017 DOI: https://doi.org/10.1016/j.cell.2006.02.017

Lee JH, O’Sullivan DJ. Genomic Insights into Bifidobacteria. Microbiol Mol Biol Rev 2010; 74(3): 378-16. http://dx.doi.org/10.1128/MMBR.00004-10 DOI: https://doi.org/10.1128/MMBR.00004-10

Jones BV, Sun F, Marchesi JR. Comparative metagenomic analysis of plasmid encoded functions in the human gut microbiome. BMC Genomics 2010; 11: 46. http://dx.doi.org/10.1186/1471-2164-11-46 DOI: https://doi.org/10.1186/1471-2164-11-46

Fanaro S, Chierici R, Guerrini P, Vigi V. Intestinal microflora in early infancy: composition and development. Acta Paediatr 2003; 441(Suppl): 48S-55. DOI: https://doi.org/10.1111/j.1651-2227.2003.tb00646.x

Mackie RI, Sghir A, Gaskins HR. Developmental microbial ecology of the neonatal gastrointestinal tract. Am J Clin Nutr 1999; 69(Suppl): 1035S-45. DOI: https://doi.org/10.1093/ajcn/69.5.1035s

Morelli L. Postnatal Development of Intestinal Microflora as Influenced by Infant Nutrition. J Nutr 2008; 138(Suppl): 1791S-95. DOI: https://doi.org/10.1093/jn/138.9.1791S

Sanz Y, Collado MC, Haros M, Dalmau J. Funciones metaboliconutritivas de la microbiota intestinal y su modulación a través de la dieta: probióticos y prebióticos. Acta Pediatr Esp 2004; 62: 520-26.

de Vrese M, Schrezenmeir J. Probiotics, prebiotics, and synbiotics. Adv Biochem Eng Biotechnol 2008; 111: 1-66. http://dx.doi.org/10.1007/10_2008_097 DOI: https://doi.org/10.1007/10_2008_097

Brower V. Nutraceuticals: poised for a healthy slice of the healthcare market? Nat Biotechnol 1998; 16: 728-31. http://dx.doi.org/10.1038/nbt0898-728 DOI: https://doi.org/10.1038/nbt0898-728

Cencic A, Chingwaru W. The role of functional foods, nutraceuticals, and food supplements in intestinal health. Nutrients 2010; 2: 611-25. http://dx.doi.org/10.3390/nu2060611 DOI: https://doi.org/10.3390/nu2060611

Sakata H, Yoshioka H, Fujita K. Development of the intestinal flora in very low birth weight infants compared to normal full-term newborns. Eur J Pediatr 1985; 144: 186-90. http://dx.doi.org/10.1007/BF00451911 DOI: https://doi.org/10.1007/BF00451911

George M, Nord CE, Ronquist G, Hedenstierna G, Wiklund L. Faecal microflora and urease activity during the first six months of infancy. Uppsala J Med Sci 1996; 101: 233-50. http://dx.doi.org/10.3109/03009739609178923 DOI: https://doi.org/10.3109/03009739609178923

Orrhage K, Nord CE. Factors controlling the bacterial colonization of the intestine in breastfed infants. Acta Paediatr Suppl 1999; 430: 47-57. DOI: https://doi.org/10.1111/j.1651-2227.1999.tb01300.x

Yoshioka H, Iseki K, Fujita K. Development and difference of intestinal flora in the neonatal period in breast-fed and bottle-fed infants. Pediatrics 1983; 72: 317-21. DOI: https://doi.org/10.1542/peds.72.3.317

Guérin-Danan C, Andrieux C, Popot F, Charpilienne A, Vaissa de P, Gaudichon C, et al. Pattern of metabolism and composition of the fecal microflora in infants 10 to 18 months old from day care centers. J Pediatr Gastroenterol Nutr 1997; 25: 281-9. http://dx.doi.org/10.1097/00005176-199709000-00007 DOI: https://doi.org/10.1002/j.1536-4801.1997.tb01749.x

Harmsen HJ, Wildboer-Veloo ACM, Raangs GC, Wagendorp AA, Klijn N, Bindels JG, et al. Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods. J Pediatr Gastroenterol Nutr 2000; 30: 61-67. http://dx.doi.org/10.1097/00005176-200001000-00019 DOI: https://doi.org/10.1002/j.1536-4801.2000.tb02655.x

Flickinger EA, Hatch TF, Wofford RC, Grieshop CM, Murray SM, Fahey GC, Jr. In vitro fermentation properties of Selected fructooligosaccharide-containing vegetables and in vivo colonic microbial populations are affected by the diets of healthy human infants. J Nutr 2002; 132: 2188-94. DOI: https://doi.org/10.1093/jn/132.8.2188

What we gained from a century of investigations of symbiontic intestinal microflora. Ter Arkh 2012; 84(2): 5-10.

De Filippo C, Cavalieria D, Di Paola M, Ramazzottic M, Poulletd JB, Massart S, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. PNAS 2010; 107(33): 14691-96. http://dx.doi.org/10.1073/pnas.1005963107 DOI: https://doi.org/10.1073/pnas.1005963107

Sousa T, Paterson R, Moore V, Carlsson A, et al. The gastrointestinal microbiota as a site for the biotransformation of drugs. Int J Pharm 2008; 363: 1-25. http://dx.doi.org/10.1016/j.ijpharm.2008.07.009 DOI: https://doi.org/10.1016/j.ijpharm.2008.07.009

Matsumoto M, Sakamoto M, Benno Y. Dynamics of fecal microbiota in hospitalized elderly fed probiotic LKM512 yogurt. Microbiol Immunol 2009; 53: 421-32. http://dx.doi.org/10.1111/j.1348-0421.2009.00140.x DOI: https://doi.org/10.1111/j.1348-0421.2009.00140.x

Ishibashi N, Yaeshima T, Hayasawa H. Bifidobacteria: their significance in human intestinal health. Mal J Nutr 1997; 3: 149-59.

Hooper LV, Midtvedt T, Gordon JI. How host-microbial interactions shape the nutrient environment of the mammalian intestine. Annu Rev Nutr 2002; 22: 283-307. http://dx.doi.org/10.1146/annurev.nutr.22.011602.092259 DOI: https://doi.org/10.1146/annurev.nutr.22.011602.092259

Sela DA, Chapman J, Adeuya A, Kim JH, Chen F, Whitehead TR, et al. The genome sequence of Bifidobacterium longum subsp. infantis reveals adaptations for milk utilization within the infant microbiome. Proc Natl Acad Sci USA 2008; 105: 18964-69. http://dx.doi.org/10.1073/pnas.0809584105 DOI: https://doi.org/10.1073/pnas.0809584105

German JB, Freeman SL, Lebrilla CB, Mills DA. Nestle Nutr Workshop Ser Pediatr Program 2008; 62: 205-22. http://dx.doi.org/10.1159/000146322 DOI: https://doi.org/10.1159/000146322

Benno Y, Sawada K, Mitsuoka T. The intestinal microflora of infants: composition of fecal flora in breast-fed and bottle-fed infants. Microbiol Immunol 1984; 28: 975-86. DOI: https://doi.org/10.1111/j.1348-0421.1984.tb00754.x

Khanal T, Kim HG, Choi JH, Park BH, et al. Protective role of intestinal bacterial metabolism against baicalin-induced toxicity in HepG2 cell cultures. J Toxicol Sci 2012; 37: 363-71. http://dx.doi.org/10.2131/jts.37.363 DOI: https://doi.org/10.2131/jts.37.363

Jeong HG, Kang MJ, Kim HG, Oh DG, Kim JS, Sang Kyu Lee SK, et al. Role of intestinal microflora in xenobiotic-induced toxicity. Mol Nutr Food Res 2013; 57: 84-99. http://dx.doi.org/10.1002/mnfr.201200461 DOI: https://doi.org/10.1002/mnfr.201200461

Mackowiak PA. The normal microbial flora. N Engl J Med 1982; 307: 83-93. http://dx.doi.org/10.1056/NEJM198207083070203 DOI: https://doi.org/10.1056/NEJM198207083070203

Serban DE. The gut microbiota in the metagenomics era: sometimes a friend, sometimes a foe. Roum Arch Microbiol Immunol 2011; 70(3): 134-40.

Zaidel O, Henry CL. Uninvited Guests: The impact of small intestinal bacterial overgrowth on nutritional status. Prac Gastroenterol 2003; 7: 27-34.

Bienenstock J, Befus AD. Review Mucosal Immunology. Immunol 1980; 41: 249-70.

Gallin JI, Fauci AS. Advances in Host Defenses Mechanism. Vol 4. In: Cellular differentiation, migration and function in the mucosal immune system: Chapter I. Ed: Warner Strober and David Jacob, Raven Press 1985; 1: 1-29.

Brandtzaeg P. The human secretory immune system: General Review. Mucosal Immunity. Internaational Symposium Series, Revillard JP, Ed. 1985; 11: 11-43.

Carver JD. Dietary mucleotides: effects on the immune and gastrointestinal systems. Acta Paediatr Suppl 1999; 83-88. http://dx.doi.org/10.1111/j.1651-2227.1999.tb01306.x DOI: https://doi.org/10.1111/j.1651-2227.1999.tb01306.x

Kelly D, Conway S. Bacterial modulation of mucosal innate immunity. Mol Immunol 2005; 42(8): 895-901. http://dx.doi.org/10.1016/j.molimm.2004.12.003

Brook I. Anaerobic infections: Diagnosis and management. 1a ed. EUA: Informa Healthcare Inc 2008; p. 417.

Wexler HM. Bacteroides: the good, the bad and the nitty-gritty. Clin Microbiol Rev 2007; 20: 593-21. http://dx.doi.org/10.1128/CMR.00008-07 DOI: https://doi.org/10.1128/CMR.00008-07

Ferreira EO, Falcao LS, Vallim DC, Santos FJ, Andrade JRC, Andrade AFB, et al. Bacteroides fragilis adherence to CACO-2 cells. Anaerobe 2002; 8: 307-14. http://dx.doi.org/10.1016/S1075-9964(03)00008-8 DOI: https://doi.org/10.1016/S1075-9964(03)00008-8

Bevins C. Events at the Host-Microbial Interface of the Gastrointestinal Tract V. Paneth cell α-defensins in intestinal host defense. Am J Physiol Grastrointest Liver Physiol 2005; 289: 173-6. http://dx.doi.org/10.1152/ajpgi.00079.2005 DOI: https://doi.org/10.1152/ajpgi.00079.2005

Cash HL, Whitham CV, Berhrendt CL, Hooper LV. Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science 2006; 313: 1126-30. http://dx.doi.org/10.1126/science.1127119 DOI: https://doi.org/10.1126/science.1127119

Quesada-Gómez C. Inffecciones en humanos por bacterias anaerobias del género Bacteroides: actualización en aspectos taxonómicos, bioquímicos, inmunológicos, patogénicos y clínicos. Rev Biomed 2010; 21: 89-96.

Janeway CA Jr. The immune system evolved to discriminate infectious nonself from noninfectious self. Immunol Today 1992; 13(1): 11-16. http://dx.doi.org/10.1016/0167-5699(92)90198-G DOI: https://doi.org/10.1016/0167-5699(92)90198-G

Kelly D, Conway S. Bacterial modulation of mucosal innate immunity. Mol Immunol 2005; 42(8): 895-901. http://dx.doi.org/10.1016/j.molimm.2004.12.003 DOI: https://doi.org/10.1016/j.molimm.2004.12.003

Hooper LV. Bacterial ontributions to mammalian gut development. Trends Microbiol 2004; 12(3): 129-34. http://dx.doi.org/10.1016/j.tim.2004.01.001 DOI: https://doi.org/10.1016/j.tim.2004.01.001

Elliott DE, Setiawan T, Metwali A, Blum A, Urban JF Jr, Weinstock JV. Heligmosomoides polygyrus inhibits established colitis in IL-10-deficient mice. Eur J Immunol 2004; 34(10): 2690-98. http://dx.doi.org/10.1002/eji.200324833 DOI: https://doi.org/10.1002/eji.200324833

Guarner F, Bourde-Sicard R, Brandtzaeg P, et al. Mechanisms of disease: the hygiene hypothesis revisited. Nat Clin Practice Gastroenterol Hepatol 2006; 3(5): 275-84. http://dx.doi.org/10.1038/ncpgasthep0471 DOI: https://doi.org/10.1038/ncpgasthep0471

Kotlarz D, Beier R, Murugan D, Diestelhorst J, Jensen O, Boztug K, et al. Loss of interleukin-10 signaling and infantile inflammatory bowel disease: implications for diagnosis and therapy. Gastroenterology 2012; 143: 347-55. http://dx.doi.org/10.1053/j.gastro.2012.04.045 DOI: https://doi.org/10.1053/j.gastro.2012.04.045

Strober W, Fuss IJ, Blumberg RS. The immunology of mucosal models of inflammation. Ann Rev Immunol 2002; 20: 495-49. http://dx.doi.org/10.1146/annurev.immunol.20.100301.064816 DOI: https://doi.org/10.1146/annurev.immunol.20.100301.064816

Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R. Recognition of commensal microflora by Toll-like receptors is required for intestinal homeostasis. Cell 2004; 118(2): 229-41. http://dx.doi.org/10.1016/j.cell.2004.07.002 DOI: https://doi.org/10.1016/j.cell.2004.07.002

Downloads

Published

2013-06-30

How to Cite

García-Elorriaga, G., & Rey-Pineda, G. del. (2013). Nutrition and Intestinal Microflora. Journal of Nutritional Therapeutics, 2(2), 112–121. https://doi.org/10.6000/1929-5634.2013.02.02.6

Issue

Section

Articles