Biomedical and Pharmaceutical Application of Fish Collagen and Gelatin: A Review

Authors

  • Elango Jeevithan College of food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
  • Zhao Qingbo College of food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
  • Bin Bao College of food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
  • Wenhui Wu College of food Science and Technology, Shanghai Ocean University, Shanghai 201306, China

DOI:

https://doi.org/10.6000/1929-5634.2013.02.04.6

Keywords:

Collagen, gelatin, tissue engineering, wound healing, coatings

Abstract

In last decade, more research has been conducted in order to find the better way for utilizing the wastes product generated from food processing industries. The increasing demand of industrial by-products is one of the main reasons for the conversion of these wastes into valuable products. Among the different valuable products from the waste, the extraction of collagen and gelatin could be a better way of utilizing the wastes, due to their effective applications in biomedical and pharmaceutical industries. The most abundant source of collagen and gelatin are land-based animals, such as cow and pig. However, the extraction of collagen and gelatin from non-mammalian sources such as fish has been high influences in current society due to some religious and disease transmission issues. Many studies have dealt with the extraction and functional properties of collagen and gelatin from fish wastes. The present work is a compilation of information on biomedical and pharmaceutical application of collagen and gelatin from fish processing wastes.

References

Fonseca MJ, Alsina MA, Reig F. Coating liposomes with collagen increases uptake into liver. Biochim Biophys Acta 1996; 1279: 259-65. http://dx.doi.org/10.1016/0005-2736(95)00265-0 DOI: https://doi.org/10.1016/0005-2736(95)00265-0

Maeda M, Tani S, Sano A, Fujioka K. Microstructure and release characteristics of the minipellet, a collagen based drug delivery system for controlled release of protein drugs J Controlled Rel 1999; 62: 313-24. DOI: https://doi.org/10.1016/S0168-3659(99)00156-X

Gomez-Guillen MC, Giménez B, López-Caballero ME, Montero MP. Functional and bioactive properties of collagen and gelatin from alternative sources: a review Food Hydrocolloid 2011; 25: 1813-27. DOI: https://doi.org/10.1016/j.foodhyd.2011.02.007

Senaratne LS, Park PJ, Kim SK. Isolation and characterization of collagen from brown backed toadfish (Lagocephalus gloveri) skin. Bioresource technology 2006; 97: 191-197. http://dx.doi.org/10.1016/j.biortech.2005.02.024 DOI: https://doi.org/10.1016/j.biortech.2005.02.024

Gennadios A, McHugh TH, Weller CL, Krochta JM. Edible coatings and films based on proteins In: Krochta, J M, Baldwin, EA and Nisperos- Carriedo, M (Eds), Edible Coatings and Films to Improve Food Quality Lancaster, PA: Technomic Publishing Company, Inc, 1994; 201-77.

Trevitt CR, Singh PN. Variant creutzfeldt-jakob disease: Pathology, epidemiology, and public health implications. Amer J Clin Nutri 2003; 78: 651-56. DOI: https://doi.org/10.1093/ajcn/78.3.651S

Pranoto Y, Lee CM, Park HJ. Characterizations of fish gelatin films added with gellan and< i> κ-carrageenan. Food Sci Technol 2007; 40: 766-74. DOI: https://doi.org/10.1016/j.lwt.2006.04.005

Li GY, Fukunaga S, Takenouchi K, Nakamura F. Comparative study of the physiological properties of collagen, gelatin and collagen hydrolysate as cosmetic materials. Int J Cosmetic Sci 2005; 27: 101-06. http://dx.doi.org/10.1111/j.1467-2494.2004.00251.x DOI: https://doi.org/10.1111/j.1467-2494.2004.00251.x

Matsumoto H, Ohara H, Ito K, Nakamura Y, Takahashi S. Clinical effects of fish type I collagen hydrolysate on skin properties ITE Letters on batteries. new technologies and medicine 2006; 7: 386-90.

Jones HW, Whitmore RA. Collagen food coating composition and method. of preparation US Patent 3, 694, 234. 1972 Sep.

Olson S, Zoss R. Fried foods of reduced oil absorption and methods of preparation employing spray of film forming agent. United States patent US 451158316. 1985 May.

Gomez-Estaca J, Lopez LA, Lopez-Caballero ME, Gomez-Guillen MC, Montero P. Biodegradable gelatin-chitosan films incorporated with essential oils as antimicrobial agents for fish preservation. Food Microbiol 2010; 27: 889-96. http://dx.doi.org/10.1016/j.fm.2010.05.012 DOI: https://doi.org/10.1016/j.fm.2010.05.012

Rice J. What’s new in edible films. Food Proces 1994; 55: 61-62.

Farouk MM, Price JF, Salih AM. Effect of an edible collagen film overwrap on. exudation and lipid oxidation in beef round steak. J Food Sci 1990; 55: 1510-12. http://dx.doi.org/10.1111/j.1365-2621.1990.tb03556.x DOI: https://doi.org/10.1111/j.1365-2621.1990.tb03556.x

Torres JA. Edible films and coatings from proteins In: Hettiarachchy N S and Ziegler, G R (Eds), Protein Functionality in Food Systems New York: Marcel Dekker Inc 1994; 467-07.

Bae HJ, Park HJ, Hong SI, Byun YJ, Darby DO, Kimmel RM, et al. Effect of clay content, homogenization RPM, pH, and ultrasonication on mechanical and barrier properties of fish gelatin/montmorillonite nanocomposite films. Food Sci Technol 2009; 42: 1179-86. DOI: https://doi.org/10.1016/j.lwt.2008.12.016

Arvanitoyannis I, Psomiadou E, Nakayama A, Aiba S, Yamamoto N. Edible films made from gelatin, soluble starch and polyols. Food Chem 1997; 60: 593-604. http://dx.doi.org/10.1016/S0308-8146(97)00038-1 DOI: https://doi.org/10.1016/S0308-8146(97)00038-1

Jeya Shakila R, Jeevithan E, Varatharajakumar A, Jeyasekaran G, Sukumar D. Comparison of the properties of multi-composite fish gelatin films with that of mammalian gelatin films. Food Chem 2013; 135: 2260-67. http://dx.doi.org/10.1016/j.foodchem.2012.07.069 DOI: https://doi.org/10.1016/j.foodchem.2012.07.069

Auger FA, Rouabhia M, Goulet F, Berthod F, Moulin V, Germain L. Tissue-engineered human skin substitutes developed from collagen populated hydrated gels: clinical and fundamental applications. Med Biol Eng Comput 1998; 36: 801-12. http://dx.doi.org/10.1007/BF02518887 DOI: https://doi.org/10.1007/BF02518887

Hutmacher DW. Scaffold design and fabrication technologies for engineering tissues—state of the art and future perspectives. J Biomater Sci Polym 2001; 12: 107-24. http://dx.doi.org/10.1163/156856201744489 DOI: https://doi.org/10.1163/156856201744489

Lee CH, Singla A, Lee Y. Biomedical applications of collagen. Int J Pharm 2001; 221: 1-22. http://dx.doi.org/10.1016/S0378-5173(01)00691-3 DOI: https://doi.org/10.1016/S0378-5173(01)00691-3

Miyata T, Taira T, Noishiki Y. Collagen engineering for biomaterial use. Clin Mater 1992; 9: 139-148. http://dx.doi.org/10.1016/0267-6605(92)90093-9 DOI: https://doi.org/10.1016/0267-6605(92)90093-9

Wang CL, Miyata T, Weksler B, Rubin AL, Stenzel KH. Collagen-induced platelet aggregation and release. Biochim Biophys Acta 1978; 544: 555-67. http://dx.doi.org/10.1016/0304-4165(78)90330-6 DOI: https://doi.org/10.1016/0304-4165(78)90330-6

Kemp PD. Tissue engineering and cell populated collagen matrices In: Streuli, C, Grant, M (Eds). Methods in Molecular Biology 2000; 139: 287-93. DOI: https://doi.org/10.1385/1-59259-063-2:287

Huynh T, Abraham G, Murray J, Brockbank K, Hagen PO, Sullivan S. Remodeling of an acellular collagengraft into a physiologically responsive neovessel. Nat Biotechnol 1999; 17: 1083-86. http://dx.doi.org/10.1038/15062 DOI: https://doi.org/10.1038/15062

Harriger MD, Supp AP, Warden GD, Boyce ST. Glutaraldehyde crosslinking of collagen substrates inhibitsdegradation in skin substitutes grafted to athymic mice. J Biomed Mater Res 1997; 35: 137-45. http://dx.doi.org/10.1002/(SICI)1097-4636(199705)35:2<137::AID-JBM1>3.0.CO;2-O DOI: https://doi.org/10.1002/(SICI)1097-4636(199705)35:2<137::AID-JBM1>3.0.CO;2-O

Boyce ST. Skin substitutes from cultured cells and collagen-GAG polymers. Med Biol Eng Comput 1998; 36: 791-800. http://dx.doi.org/10.1007/BF02518886 DOI: https://doi.org/10.1007/BF02518886

Rao KP. Recent Developments of Collagen-based materials for medical applications and drug delivery systems. J Biomater Sci 1995; 7: 623-45. DOI: https://doi.org/10.1163/156856295X00526

Yamada N, Uchinuma E, Kuroyanagi Y. Clinical evaluation of an allogeneic cultured dermal substitute composed of fibroblasts within a spongy collagen matrix. Scand J Plast Reconstr Surg Hand Surg 1999; 33: 147-54. http://dx.doi.org/10.1080/02844319950159398 DOI: https://doi.org/10.1080/02844319950159398

Orwin EJ, Hubel A. In vitro culture characteristics of corneal epithelial, endothelial, and keratocyte cells in a native collagen matrix. Tissue Eng 2000; 6: 307-19. http://dx.doi.org/10.1089/107632700418038 DOI: https://doi.org/10.1089/107632700418038

Koide M, Osaki K, Konishi J, Oyamada K, Katakura T, Takahashi A, et al. A new type of biomaterial for artificial skin: dehydrothermally crosslinked composites of fibrillar and denatured collagens. J Biomed Mater Res 1993; 27: 79-87. http://dx.doi.org/10.1002/jbm.820270111 DOI: https://doi.org/10.1002/jbm.820270111

Supp AP, Wickett RR, Swope VB, Harriger MD, Hoath SB, Boyce ST. Incubation of cultured skin substitutes in reduced humidity promotes cornification in vitro and stable engraftment in athymic mice. Wound Repair Rege 1999; 7: 226-237. http://dx.doi.org/10.1046/j.1524-475X.1999.00226.x DOI: https://doi.org/10.1046/j.1524-475X.1999.00226.x

Sobolewski K, Wolanska M, Bankowski E, Gacko M, Glowinski S. Collagen, elastin and glycosaminoglycans in aortic aneurysms. Acta Biochimica Polonica 1995; 42: 301-308. DOI: https://doi.org/10.18388/abp.1995_4588

Reddi AH. Morphogenesis and tissue engineering of bone and cartilage: inductive signals, stem cells, and biomimetic biomaterials. Tissue Eng 2000; 6: 351-59. http://dx.doi.org/10.1089/107632700418074 DOI: https://doi.org/10.1089/107632700418074

Murata M, Maki F, Sato D, Shibata T, Arisue M. Bone augmentation by onlay implant using recombinant human BMP-2 and collagen on adult rat skull without periosteum. Clin Oral Implants Res 2000; 11: 289-95. http://dx.doi.org/10.1034/j.1600-0501.2000.011004289.x DOI: https://doi.org/10.1034/j.1600-0501.2000.011004289.x

Kobayashi Y, Ochi M, Tokue A. Clinical usefulness of crosslinked N-telopeptide of type I collagen as a bone metastatic marker in patients with prostate cancer: comparison with serum PICP, PINP and ICTP Hinyokika 2000; 46: 869-872.

Ulrich U, Rhiem K, Schmolling J, Flaskamp C, Paffenholz I, Salzer H, et al. Cross linked type I collagen C- and N-telopeptides in women with bone metastases from breast cancer. Arch Gynecol Obstet 2001; 264: 186-190. http://dx.doi.org/10.1007/s004040000105 DOI: https://doi.org/10.1007/s004040000105

Uitterlinden AG, Weel AE, Burger H, Fang Y, Van Duijn CM, Hofman A, et al. Interaction between the vitamin D receptor gene and collagen type Ialpha 1 gene in susceptibility for fracture. J Bone Miner Res 2001; 15: 379-385. http://dx.doi.org/10.1359/jbmr.2001.16.2.379 DOI: https://doi.org/10.1359/jbmr.2001.16.2.379

Nakagawa T, Tagawa T. Ultrastructural study of direct bone formation induced by BMPs-collagen complex implanted into an ectopic site. Oral Dis 2000; 6: 172-179. http://dx.doi.org/10.1111/j.1601-0825.2000.tb00329.x DOI: https://doi.org/10.1111/j.1601-0825.2000.tb00329.x

Takaoka K, Nakahara H, Yoshikawa H, Masuhara K, Tsuda T, Ono K. Ectopic bone induction on and in porous hydroxyapatite combined with collagen and bone morphogenetic protein. Clin Orthop 1988; 234: 250-254. DOI: https://doi.org/10.1097/00003086-198809000-00044

Sela J, Kauffman D, Shoshan S, Shani J. Retinoic acid enhances the effect of collagen on bone union, following induced non-union defect in guinea pig ulna. Inflamm Res 2000; 49: 679-683. http://dx.doi.org/10.1007/s000110050646 DOI: https://doi.org/10.1007/s000110050646

Pulkkinen HJ, Tiitu V, Valonen P, Hamalainen ER, Lammi MJ, Kiviranta I. Recombinant human type II collagen as a material for cartilage tissue engineering. Int J Artif Organs 2008; 31: 960-9. DOI: https://doi.org/10.1177/039139880803101106

Chen G, Sato T, Ushida T, Hirochika R, Yoshio S, Naoyuki O, et al. The use of a novel PLGA fiber/collagen composite web as a scaffold for engineering of articular cartilage tissue with adjustable thickness. J Biomed Mater Res Part A 2003; 67: 1170-80. http://dx.doi.org/10.1002/jbm.a.10164 DOI: https://doi.org/10.1002/jbm.a.10164

Ponticiello MS, Schinagl RM, Kadiyala S, Barry FP. Gelatin-based resorbable sponge as a carrier matrix for human mesenchymal stem cells in cartilage regeneration therapy. J Biomed Mater Res 2000; 52: 246-55. http://dx.doi.org/10.1002/1097-4636(200011)52:2<246::AID-JBM2>3.0.CO;2-W DOI: https://doi.org/10.1002/1097-4636(200011)52:2<246::AID-JBM2>3.0.CO;2-W

Wallace DG, Rosenblatt J. Collagen gel systems for sustained delivery and tissue engineering. Adv Drug Delivery Rev 2003; 55: 1631-49. http://dx.doi.org/10.1016/j.addr.2003.08.004 DOI: https://doi.org/10.1016/j.addr.2003.08.004

Freiberg S, Zhu XX. Polymer microspheres for controlled drug release. Int J Pharm 2004; 282: 1-18. http://dx.doi.org/10.1016/j.ijpharm.2004.04.013 DOI: https://doi.org/10.1016/j.ijpharm.2004.04.013

Chapman JA, Hulmes DJS. Ultrastructure of the connective tissue matrix. Martinus Nijhoff Publishers, Boston, 1984; 1-33. DOI: https://doi.org/10.1007/978-1-4613-2831-5_1

Roskos KV, Maskiewicz R. Protein delivery: physical systems, plenum press, New York, 1997; 2.

Narayani R, Rao KP. Controlled release of anticancer drug methotrexate from biodegradable gelatin microspheres. J Microencapsul 1994; 11: 69-77. http://dx.doi.org/10.3109/02652049409040439 DOI: https://doi.org/10.3109/02652049409040439

Ugwoke MI, Verbeke N, Kinget R. Microencapsulationof apomorphine hydrochloride with gelatin. Int J Pharm 1997; 148: 23-32. http://dx.doi.org/10.1016/S0378-5173(96)04819-3 DOI: https://doi.org/10.1016/S0378-5173(96)04819-3

Chowdhury DK, Mitra AK. Kinetics of in vitro release of a model nucleoside deoxyuridine from crosslinked insoluble collagen and collagen-gelatin microspheres Int J Pharm 1999; 193: 113-122. http://dx.doi.org/10.1016/S0378-5173(99)00328-2 DOI: https://doi.org/10.1016/S0378-5173(99)00328-2

Singh MP, Lumpkin JA, Rosenblatt J. Effect of electrostatic interactions on polylysine release rates from collagen matrices and comparison with model predictions. J Control Release 1995; 35: 165-79. http://dx.doi.org/10.1016/0168-3659(95)00033-5 DOI: https://doi.org/10.1016/0168-3659(95)00033-5

Weiner AL, Green CSS, Soehngen EC, Lenti RP, Propescue MC. Liposome-collagen gel matrix: a novel sustained release drug delivery system. J Pharm Sci 1985; 74: 922-25. http://dx.doi.org/10.1002/jps.2600740903 DOI: https://doi.org/10.1002/jps.2600740903

Pajen M, Huc A, Herbage D. Stabilization of liposomes with collagen. Int J Pharm 1991; 77: 31-40. http://dx.doi.org/10.1016/0378-5173(91)90298-3 DOI: https://doi.org/10.1016/0378-5173(91)90298-3

Chan OCM, So KF, Chan BP. Fabrication of nano-fibrous collagen microspheres for protein delivery and effects of photochemical crosslinking on release kinetics. J Control Release 2008; 129: 135-43. http://dx.doi.org/10.1016/j.jconrel.2008.04.011 DOI: https://doi.org/10.1016/j.jconrel.2008.04.011

Yamahira Y, Fujioka K, Sato S, Yoshido N. Sustained release injections. European Patent EUR 84112313. 1991 June.

Matsuoka J, Sakagami K, Shiozaki S, Uchida S, Fujiwara T, Gohchi A, et al. Development of an interleukin-2 slow delivery system. Trans Am Soc Artif Intern Organs 1988; 34: 729-31.

Fujioka K, Maeda M, Hojo T, Sano A. Protein release from collagen matrices. Adv Drug Del Rev 1998; 31: 247-66. http://dx.doi.org/10.1016/S0169-409X(97)00119-1 DOI: https://doi.org/10.1016/S0169-409X(97)00119-1

Lucas PA, syftestad GT, Goldberg VM, Caplan AI. Ectopic induction of cartilage and bone by water soluble proteins from bovine bone using a collagenous delivery vehicle. J Biomed Mater Res 1989; 23: 23-39. http://dx.doi.org/10.1002/jbm.820231306 DOI: https://doi.org/10.1002/jbm.820231306

Ochiya T, Takahama Y, Naghara S, Sumita Y, Hisada A, Itoh H, et al. New Delivery system for plasmid DNA in vivo using atelocollagen as a carrier material: the Minipellet. Nat Med 1999; 5: 707-10. http://dx.doi.org/10.1038/9560 DOI: https://doi.org/10.1038/9560

Kohmura E, Yuguchi T, Yoshimine T, Fujinaka T, Koseki N, Sano A, et al. BNDF atelocollagen mini-pellet accelerates facial nerve regeneration. Brain Res 1999; 849: 235-238. http://dx.doi.org/10.1016/S0006-8993(99)02163-0 DOI: https://doi.org/10.1016/S0006-8993(99)02163-0

Marty JJ, Openheim RC, Speiser P. Nanoparticlesa new colloidal drug delivery system. Pharm Acta Helv 1978; 53: 17-23.

Coester CJ, Langer K, Van Briesen H, Kreuter J. Gelatin nanoparticles by two step desolvation, a new preparation method, surface modifications and cell uptake. J Microencapsul 2000; 17: 187-93. http://dx.doi.org/10.1080/026520400288427 DOI: https://doi.org/10.1080/026520400288427

Farrugia CA, Groves MJ. Gelatin behavior in dilute aqueous solution: designing a nanoparticulate formulation. J Pharm Pharmacol 1999; 51: 643-649. http://dx.doi.org/10.1211/0022357991772925 DOI: https://doi.org/10.1211/0022357991772925

Muniruzzaman T, Tabata Y, Ikada Y. Complexation of basic fibroblast growth factor with gelatin. J Biomater Sci Polym Ed 1998; 9: 459-73. http://dx.doi.org/10.1163/156856298X00569 DOI: https://doi.org/10.1163/156856298X00569

Rossler B, Kreuter J, Scherer D. Collagen microparticles: preparation and properties. J Microencapsul 1995; 12: 49-57. http://dx.doi.org/10.3109/02652049509051126 DOI: https://doi.org/10.3109/02652049509051126

Marty JJ, Openheim RC, Speiser P. Nanoparticles a new colloidal drug delivery system. Pharm Acta Helv 1978; 53: 17-23.

Bender A, Von Briesen H, Kreuter J, Duncan IB, Rubsamen WH. Efficiency of nanoparticles as a carrier system for antiviral agents in human monocytes/ macrophages in vitro Antimicrob Agents. Chemother 1996; 40: 1467-71. DOI: https://doi.org/10.1128/AAC.40.6.1467

Yang SC, Lu LF, Cai Y, Zhu JB, Liang BW, Yang CZ. Body distribution in mice of intravenously injected camptothecin solid lipid nanoparticles and targeting effect on brain. J Control Release 1999; 59: 299-07. http://dx.doi.org/10.1016/S0168-3659(99)00007-3 DOI: https://doi.org/10.1016/S0168-3659(99)00007-3

Berthold A, Cremer K, Kreuter J. Collagen microparticles: carriers for glucocorticosteroids. Eur J Pharm Biopharm 1998; 45: 23-29. http://dx.doi.org/10.1016/S0939-6411(97)00119-7 DOI: https://doi.org/10.1016/S0939-6411(97)00119-7

El-Samaligy MS, Rohdewald P. Reconstituted collagen nanoparticles, a novel drug carrier delivery system. J Pharm Pharmacol 1983; 35: 537-39. http://dx.doi.org/10.1111/j.2042-7158.1983.tb04831.x DOI: https://doi.org/10.1111/j.2042-7158.1983.tb04831.x

Boontheekul T, Mooney DJ. Protein-based signaling systems in tissue engineering. Curr Opin Biotechnol 2003; 14: 559-65. http://dx.doi.org/10.1016/j.copbio.2003.08.004 DOI: https://doi.org/10.1016/j.copbio.2003.08.004

Chen RR, Mooney DJ. Polymeric growth factor delivery strategies for tissue engineering. Pharm Res 2003; 20: 1103-12. http://dx.doi.org/10.1023/A:1025034925152 DOI: https://doi.org/10.1023/A:1025034925152

Jeevithan E, Jeya Shakila R, Varatharajakumar A, Jeyasekaran G, Sukumar D. Physico-functional and mechanical properties of chitosan and calcium salts incorporated fish gelatin scaffolds. Int J Biol Macromol 2013; 60: 262-67. http://dx.doi.org/10.1016/j.ijbiomac.2013.06.012 DOI: https://doi.org/10.1016/j.ijbiomac.2013.06.012

Velnar T, Bailey T, Smrkolj V. The wound healing process: an overview of the. cellular and molecular mechanisms. J Int Med Res 2009; 37: 1528-42. http://dx.doi.org/10.1177/147323000903700531 DOI: https://doi.org/10.1177/147323000903700531

Ruszczak ZB. Modern aspects of wound healing: an update. Dermatol Surg 2000; 26: 219- 29. http://dx.doi.org/10.1046/j.1524-4725.2000.09215.x DOI: https://doi.org/10.1046/j.1524-4725.2000.09215.x

Vin F, Teot L, Measume S, The healing properties of Promogran in venous leg ulcers. J Wound Care 2002; 11: 335-37. DOI: https://doi.org/10.12968/jowc.2002.11.9.26438

Burke JF, Naughton G, Cassai N. A histological, immunological and electron microscopic study of bovine collagen implants in the human. Ann Plast Surg 1985; 14: 515-22. http://dx.doi.org/10.1097/00000637-198506000-00004 DOI: https://doi.org/10.1097/00000637-198506000-00004

Yannas IV. What criteria should be used for designing artificial skin replacements and how well do current grafting materials meet these criteria. J Trauma 1989; 24: 29-39.

Bell E, Rosenberg M, Kemp P, Gay R, Green GD, Muthukumaran N, Nolte C. Recipes for reconstituting skin. J Biomech Eng 1991; 113: 113-19. http://dx.doi.org/10.1115/1.2891224 DOI: https://doi.org/10.1115/1.2891224

Yager D, Chen S, Ward S, Olutoye O, Diegelmann R, Cohen K. Ability of chronic wound fluids to degrade peptide growth factors in association with increased levels of elastase activity and diminishesd levels of proteinase inhibitors. Wound Repair Regen 1997; 5: 23-32. http://dx.doi.org/10.1046/j.1524-475X.1997.50108.x DOI: https://doi.org/10.1046/j.1524-475X.1997.50108.x

Downloads

Published

2013-12-30

How to Cite

Jeevithan, E., Qingbo, Z., Bao, B., & Wu, W. (2013). Biomedical and Pharmaceutical Application of Fish Collagen and Gelatin: A Review. Journal of Nutritional Therapeutics, 2(4), 218–227. https://doi.org/10.6000/1929-5634.2013.02.04.6

Issue

Section

Articles