Non-Muscle Myosin IIA (Myh9) is in the Nucleus of S-Phase Entering NT2-D1 Cells

Authors

  • Gabriela Naum- Onganía UNLP, Regional Center for Genomic Studies, La Plata, Buenos Aires, Argentina
  • Rolando Rivera- Poma Bio-Research Center, National University of Pergamino, Buenos Aires, Argentina

DOI:

https://doi.org/10.6000/1929-5634.2018.07.02.4

Keywords:

Myosin9, Hox genes, NT2-D1 cells, S-phase.

Abstract

Non-muscle myosin IIA is a cytoplasmic protein that works in concert with F-actin to produce cell movement. The heavy chain of this protein is codified by the MYH9 gene. The presence of motor proteins as myosin or mono and F-actin and their role in transcription has recently been observed. Prep1–the transcription factor of HOXB genes– constitutes a dimer with Pbx1, which induces HOXB gene expression. Prep1 has been found purifying with β-actin and Myh9. HOXB transcription initiates when cells enter in S-phase, during which DNA duplication and transcription occur at the same time. Here, we have shown that Myh9 co-localizes with Prep1 in the nucleus and in the periphery of the nucleolus in S-phase NT2-D1 cells. Furthermore, we have shown that Myh9 purifies with Pbx1 from nuclear extracts of S-phase entering NT2-D1 cells –and not from cytoplasmic extracts. Taking into account these results, we conclude that Myh9 is in the nucleus of the S-phase entering NT2-D1 cells and might have a role in HOXB transcription.

References

Ikonen E, de Almeid JB, Fath KF, Burgess DR, Ashman K, Simons K, Stow JL. Myosin II is associated with Golgi membranes: identification of p200 as non muscle myosin II on Golgi-derived vesicles. J Cell Sci 1997; 110: 2155-2164. DOI: https://doi.org/10.1242/jcs.110.18.2155

Cheney RE, Riley MA, Mooseker MS. Phylogenetic analysis of the myosin superfamily. Cell Motil Cytoskelet 1993; 24: 215-223. https://doi.org/10.1002/cm.970240402 DOI: https://doi.org/10.1002/cm.970240402

Sellers JR. Myosins: a diverse superfamilly. Biochim Biophys Acta 1496: 3-22 (2000) Mochida S, Kobayshi H, Matsuda Yuda Y, Muramoto K, Nonomura Y. Myosin II is involved in transmitter release at synapses formed between rat sympathetic neurons in culture. Neuron 1994; 13: 1131-1142. DOI: https://doi.org/10.1016/0896-6273(94)90051-5

Manzanares MV, Ma X, Adelstein R, Rick. Horwitz A. Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat Rev Mol Cell Biol 2009; 10: 778-790. https://doi.org/10.1038/nrm2786 DOI: https://doi.org/10.1038/nrm2786

Gloushankova NA, Alieva NA, Krendel MF, Bonder EM; Feder HH, Vasiliev JM, Gelfand IM. Cell-cell contact changes the dynamics of lamellar activity in no transformed epiteliocytes but not in their ras-transformed descendants. PNAs USA 1997; 94: 879-883. https://doi.org/10.1073/pnas.94.3.879 DOI: https://doi.org/10.1073/pnas.94.3.879

Li D, Miller M, Chantler PD. Association of a cellular myosin II with anionic phospholipids and the neuronal plasma membrane PNAs USA 1994; 91: 853-857. https://doi.org/10.1073/pnas.91.3.853 DOI: https://doi.org/10.1073/pnas.91.3.853

Pestic-Dragovich L, Stojiljkovic L, Philimonenko AA, Nowak G, Hunt DF, Hozak P, de Lanerolle P. A myosin I isoform in the nucleus. Science 2000; 290: 337-341. https://doi.org/10.1126/science.290.5490.337 DOI: https://doi.org/10.1126/science.290.5490.337

Vreudge S, Ferrai C, Miluzio A, Hauben E, Marchisio PC, Crippa MP, Bussi M, Biffo S. Nuclear myosin VI enhances RNA polymerase II-dependent transcription. Mol Cell 2006; 23: 749-55. https://doi.org/10.1016/j.molcel.2006.07.005 DOI: https://doi.org/10.1016/j.molcel.2006.07.005

Hu P, Wu S, Hernandez N. A role for -actin in RNA polymerase III transcription. Genes & Dev 2004; 18: 3010-3015. https://doi.org/10.1101/gad.1250804 DOI: https://doi.org/10.1101/gad.1250804

Kukalev A, Nord Y, Palmberg C, Bergman T, Percipalle P. Actin and hnRNP U cooperate for productive transcription by RNA polymerase II. Nature Struct Mol Biol 2005; 12: 238-244. https://doi.org/10.1038/nsmb904 DOI: https://doi.org/10.1038/nsmb904

Hofmann WA, et al. Actin is part of pre-initiation complexes and is necessary for transcription by RNA-polymerase II. Nature Cell Biol 2004; 6: 1094-1101. https://doi.org/10.1038/ncb1182 DOI: https://doi.org/10.1038/ncb1182

Naum-Ongania G, Diaz VM, Blasi F, Rivera-Pomar R. Nuclear actin polymerization from faster growing ends in the initial activation of Hox gene transcription. Are nuclear speckles involved? Transcription 2013; 4: 260-272. https://doi.org/10.4161/trns.27672 DOI: https://doi.org/10.4161/trns.27672

Ferrai C, Naum-Ongania G, Longobardi E, Palazzolo M, Disanza A, Victor M Diaz, et al. Induction of HoxB Transcription by Retinoic Acid Requires Actin Polymerization. MBC 2009; 20: 3543-3551. https://doi.org/10.1091/mbc.e09-02-0114 DOI: https://doi.org/10.1091/mbc.e09-02-0114

Wu X, Yoo Y, Okuhama NN, Tucker PW, Liu G, Guan JL. Regulation of RNA-polymerase-II-dependent transcription by N-WASP and its nuclear binding proteins. Nature Cell Biol 2006. On line publication, 10.1038/ncb1433 DOI: https://doi.org/10.1038/ncb1433

Yoo Y, Wu X, Guan J. A novel role of the actin- nulceating Arp2/3 complex in the regulation of RNA polymerase II-dependent transcription. J Biol Chem 2007; 282: 7616-7623. https://doi.org/10.1074/jbc.M607596200 DOI: https://doi.org/10.1074/jbc.M607596200

Amankwah KS, De Boni U. Ultrastructural localization of filamentous actin within neuronal interphase nuclei in situ. Exp Cell Res 1994; 210: 315-325. https://doi.org/10.1006/excr.1994.1044 DOI: https://doi.org/10.1006/excr.1994.1044

Philimonenko VV, et al. Nuclear actin and myosin I are required for RNA polymerase I transcription. Nature Cell Biol 2004; 6: 1165-1172. https://doi.org/10.1038/ncb1190 DOI: https://doi.org/10.1038/ncb1190

Fomproix N, Percipalle P. An actin-myosin complex on actively transcribing genes. Experimental Cell Research 2004; 294: 140-148. https://doi.org/10.1016/j.yexcr.2003.10.028 DOI: https://doi.org/10.1016/j.yexcr.2003.10.028

Simeone A, Acampora D, Arcioni L, Boncinelli E. Sequential activation of Hox2 homeobox genes by retinoic acid in human embryonal carcinoma cells. Nature 1990; 346: 763-766. https://doi.org/10.1038/346763a0 DOI: https://doi.org/10.1038/346763a0

Fisher D, Mechali M. Vertebrate HoxB gene expression requires DNA replication. EMBO J 2003; 22: 3737-48. https://doi.org/10.1093/emboj/cdg352 DOI: https://doi.org/10.1093/emboj/cdg352

Spinella MJ, Freemantle SJ, Sekula D, Chang JH, Christie AJ, Dmitrovsky E. Retinoic acid promotes ubiquitination and proteolysis of cyclin D1 during induced tumor cell differentiation. J Biol Chem 1999; 274: 22013-8. https://doi.org/10.1074/jbc.274.31.22013 DOI: https://doi.org/10.1074/jbc.274.31.22013

O’Neill C, Jordan P, Ireland G. Evidence for two distinct mechanism of anchorage stimulation in freshly explanted and 3T3 Swiss mouse fibroblasts. Cell 1986; 44: 489-96. https://doi.org/10.1016/0092-8674(86)90470-8 DOI: https://doi.org/10.1016/0092-8674(86)90470-8

Berthelsen J, Zappavigna V, Mavilio F, Blasi F. Prep1, a novel functional partner of Pbx proteins. EMBO J 1998; 17: 1423-33. https://doi.org/10.1093/emboj/17.5.1423 DOI: https://doi.org/10.1093/emboj/17.5.1423

Berthelsen J, Zappavigna V, Ferretti E, Mavilio F, Blasi F. The novel homeoprotein Prep1 modulates Pbx-Hox protein cooperativity. EMBO J 1998; 17: 1434-45. https://doi.org/10.1093/emboj/17.5.1434 DOI: https://doi.org/10.1093/emboj/17.5.1434

Jacobs Y, Schnabel CA, Cleary ML. Trimeric association of Hox and TALE homeodomain proteins mediates Hoxb2 hindbrain enhancer activity. Mol Cell Biol 1999; 19: 5134-5142. https://doi.org/10.1128/MCB.19.7.5134 DOI: https://doi.org/10.1128/MCB.19.7.5134

Testoni B, Vollenkle C, Guerrieri F, Gerbal-Chaloin S, Blandino G, Levrero M. Chromatin dynamics of gene activation and repression in response to interferon alpha (IFN (alpha)) reveal new roles for phosphorylated and unphosphorylated forms of the transcription STAT2. J Biol Chem 2011; 286: 20217-27. https://doi.org/10.1074/jbc.M111.231068 DOI: https://doi.org/10.1074/jbc.M111.231068

Diaz VM, Bachi A, Blasi F. Purification of the Prep1 interactome identifies novel pathways regulated by Prep1. Proteomics 2007; 7: 2617-23. https://doi.org/10.1002/pmic.200700197 DOI: https://doi.org/10.1002/pmic.200700197

Rosonina E, Ip JY, Calarco JA, Bakowski MA, Emili A, McCracken S, Tucker P, Ingles CJ, Blencowe BJ. Role for PSF in Mediating Transcriptional Activator-Dependent Stimulation of Pre-mRNA Processing In vivo. Mol Cell Biol 2005; 25: 6734. https://doi.org/10.1128/MCB.25.15.6734-6746.2005 DOI: https://doi.org/10.1128/MCB.25.15.6734-6746.2005

Chambeyron S, Bickmore WA. Chromatin decondensation and nuclear reorganization of the HoxB locus upon induction of transcription. Genes Dev 2004; 18: 1119-1130. https://doi.org/10.1101/gad.292104 DOI: https://doi.org/10.1101/gad.292104

Morey C, Kress C, Bickmore WA. Lack of bystander activation shows that localization exterior to chromosome territories is not sufficient to up-regulate gene expression. Genome Res 2009; 19: 1184-94. https://doi.org/10.1101/gr.089045.108 DOI: https://doi.org/10.1101/gr.089045.108

Dignam JD, Martin PL, Shastry BS, Roeder RG. Eukaryotic gene transcription with purified components. Methods Enzimology 1983; 101: 582-98. https://doi.org/10.1016/0076-6879(83)01039-3 DOI: https://doi.org/10.1016/0076-6879(83)01039-3

Downloads

Published

2018-08-16

How to Cite

Onganía, G. N.-., & Poma, R. R.-. (2018). Non-Muscle Myosin IIA (Myh9) is in the Nucleus of S-Phase Entering NT2-D1 Cells. Journal of Nutritional Therapeutics, 7(2), 59–66. https://doi.org/10.6000/1929-5634.2018.07.02.4

Issue

Section

Articles