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Abstract: This paper contributes to the new keynesian literature by showing that stable endogenous cycles can emerge 
as equilibrium solutions of the traditional IS-LM model. The application of the original Bogdanov-Takens theorem allows 

us to determine the regions of the parametric space where the model exhibits a global indeterminate solution, and a low-
growth trapping region, characterized by a continuum of equilibrium trajectories in the proximity of a homoclinic 
bifurcation. 
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1. INTRODUCTION 

Recent literature has revived attention on the 

nonlinear dynamic properties of the celebrated IS-LM 

model to explain the persistence of endogenous 

fluctuations in a macro-economic system, and justify its 

theoretical relevance for both fiscal and monetary 

stabilization policies to act as a possible selection 

device among different equilibria (Makovinyiova and 

Zimka 2009; Kali inská 2012). 

In general, the interest for the traditional IS-LM 

framework is largely undermined by the severe 

functional restrictions needed to generate the required 

oscillating pattern. In particular, a Kaldorian S-shaped 

investment function, is generally appealed by this 

literature to show the emergence of cyclical solutions 

(Schinasi 1981, 1982; Lorenz 1993; Sasakura 1994; 

Bischi et al. 2001). Unfortunately, the adoption of non-

linear functions increases the difficulties in handling this 

model. 

To overcome this problem, analyses of phase 

transitions from a determinate equilibrium to stable 

oscillations, and potentially chaotic motion, are 

explained either by imposing time-delayed feedbacks in 

the tax collection function (Cai 2005; De Cesare and 

Sportelli 2005; Fanti and Manfredi, 2007; Neamtu et al. 

2007; Tu et al. 2013), or by looking at some specific 

parameter regions through the standard Hopf 

bifurcation theorem (Gandolfo 1997; Makovinyiova 

2011; Guirao et al. 2012; Neri and Venturi 2007). 

However, most of this literature confines herself entirely 

on the grounds of a local analysis (Slobodyan 2007;  
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Chamley 1993; Benhabib and Farmer 1994, 1996; 

Benhabib and Perli 1994; Benhabib et al. 1994, 2000), 

and so lacks providing a complete picture of the 

dynamics emerging outside the small neighborhood of 

the steady state, to whom we refer to as global 

indeterminacy. 

This paper aims to show that all the government 

attempts to stabilize output through fiscal policies, 

when aggregate demand fluctuates around a trend, 

might produce a destabilizing effect in the full system 

dynamics. To prove this, we apply the Bogdanov-

Takens bifurcation theorem (henceforth, BT), a global 

analysis tool which allows us to prove that a trajectory, 

starting in the vicinity of a saddle steady state can 

approach from outside a limit cycle enclosing a non 

saddle steady state, and characterize the regions of the 

parametric space where the model gives rise to a 

global indeterminate equilibrium, where active policies 

might not be able to avoid the emergence of a low-

growth trapping region.
1
 

The paper develops as follows. Section 2 introduces 

the model, specifies the functions, and derives the 

long-run equilibrium. Section 3 points out the stability 

properties of the equilibrium, and shows the conditions 

for the emergence of stable limit cycles. Section 4 

applies the Bogdanov-Takens theorem to prove the 

possibility of global indeterminacy in presence of a 

homoclinic bifurcation. Some examples are also 

discussed to validate the model. A brief conclusive 

section reassesses the main findings. All necessary 

proofs are provided in Appendix. 

                                            

1
The Bogdanov-Takens bifurcation is a powerful mathematical tool in 

simplifying highly non-linear dynamical system, and is largely used in 
mathematics, physics and biology, but has found a surprisingly limited 
application in economics (Benhabib et al. 2001; Bella and Mattana 2014). 
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2. THE MODEL 

Assume the simple dynamic fixed-price Schinasi’s 

variant of the IS-LM model for an open economy, with 

pure money financing of the budget deficit which, in the 

case of an instantaneous adjustment in the money 

market, implies the following system of first order 

differential equations (Schinasi 1981, 1982; 

Makovinyiova 2011) 

   

R = L(R,Y ) M

Y = I(Y , R) S(Y D , R)+G T (Y )+ N (Y )

M = G T (Y )+ N (Y )

 (P) 

where dots stand for time-derivatives. It is assumed 
that all functions are continuously differentiable at a 

suitable order. L R,Y( )  is the liquidity function, which 

relates the demand for money to the (real) interest rate, 

R, and the income level, Y. 
  
I(R,Y ) is the investment 

function, which is assumed to depend on income and 

on the interest rate. S(R,Y D )  represents savings as a 

function of both disposable income and the interest rate 
as a further argument (Cai 2005; Makovinyiova 2011). 
M describes the nominal money supply. T(Y) is the tax 
collection function, which only depends on income. 
Finally   G > 0  is the (constant) government expenditure, 

whereas  and  are scale parameters. In addition, 

following standard textbooks, we introduce international 
trade by assuming a net export function, 

  
N (Y ) = N qY , where N  is a fixed amount, and q is 

the marginal propensity to import out of income. Since 
we consider fixed exchange rates, the trade-balance 
disequilibrium leads to an immediate change in both 

the money stock and the excess demand for goods. 

For the sake of a simple representation, we shall 

assume a tax function linear in Y, so that 
 
T Y( ) = Y . 

Hence, 
  
Y

D
= 1( )Y . 

Whereas there is no theoretical and empirical 
disagreement in the literature on the following 

derivatives 

  
L

Y
> 0; L

R
< 0  

And 

  
I

R
< 0; I

Y
> 0;S

Y
> 0  

 

less clear is the sign of S
R
, which remains ambiguous 

(Abrar 1989).
2
 Additionally, since 

  
I

YY
0 , the gross 

investment is expected to behave in a sigmoid 
Kaldorian fashion.

3
 We show that this is crucial for the 

scopes of the paper. 

2.1. Steady State 

Let R ,Y ,M( )  be values of R,Y ,M( )  in (P) such 

that R = Y = M = 0 . Simple algebra shows that, at the 
steady-state, we have  

  
H (R,Y ) = 0          (1.1) 

  
M = L (R,Y )         (1.2) 

 

Y =
G + N

+ q
        (1.3) 

where we group total inventories as 

H (R,Y ) = I (R,Y ) S (R, 1( )Y )          (2) 

to simplify notation. 

Conditions for existence and uniqueness of the 
steady state follow consequently. Let 

  
= H (R,Y )            (3) 

with  conveniently smooth in all its arguments. Let 

also 
 R

 and 
 RR

 be the first and second-order 

derivatives of  with respect to R. If Alternatively, if 
 R

 

changes sign 

Let now  is a point of the parameter space. 

Then 

Lemma 1 Let 
  
ˆ { :

R
> 0  or 

  R
< 0} . Then, 

if  
ˆ , 

R
 has a definite sign in the domain 

                                            

2
It is commonly thought that savings would increase when interest rate rises. 

However, the relationship between interest rate and savings is more complex 
and uncertain. Economists explain this ambiguity by distinguishing a 
substitution effect from an income effect, so that, depending on which effect 
prevails, the economic agent is a net lender or a net borrower (Blanchard and 
Fisher 1989). 
Empirical evidence for Italian data seems to support this findings. In details, 

  
S

R
> 0  in the 70's and during the period 2000-2005; whereas 

  
S

R
< 0  for the 

whole 80's and 90's (Baffigi 2011). 
3
As output increases above its natural level, agents will invest at a decreasing 

rate, since a government intervention to stabilize the economy is expected 
when output moves further away from his trend. This renders the intermediate-
run equilibrium locally unstable. To avoid this, the government might set the 
level of public spending or the amount of taxes to stabilize the economy, but 
this presumes that the policy-maker knows at each point in time where the 
economy is along the cycle, which is unrealistic. 
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D ={(R) : R > 0} , the function  monotonically 

decreases with the interest rate, and only one 
intersection (i.e., one steady state) with the R-axis 

occurs. Consider now 
 

, where, 
   

{ :
R
 

changes sign at R = R̂} . Assume 
  RR

> 0 . Then, if (i) 

  
( R̂) < 0 , there are two steady states, one with a low 

interest rate R ,Y( )  and one with a high interest rate 

  
R
+
,Y( ) ; (ii) 

  
( R̂) = 0 ,  there is one steady state; (iii) 

( R̂) > 0 , there are no steady states (see, Figure 1). 

The reverse statements apply for 
  RR

< 0 . 

 

Figure 1: The 
  

(R)  function. 

Proof Let  
ˆ . Since, by assumption, its first 

derivative does not vanish in D, the function 
  

(R)  is 

always monotonically decreasing/increasing in D and 

only one steady state is possible. Conversely, if 
 

, 

  
(R)  follows a parabolic evolution, and multiple 

intersections (i.e., multiple equilibria) with the R-axis 
may occur. 

3. LOCAL STABILITY ANALYSIS 

Consider the Jacobian matrix associated to (P), at 
the steady state 

   

J =

L
R

L
Y

H
R

H
Y

q( ) 0

0 q 0

         (4) 

where, for the sake of a simple notation, the arguments 
of the partial derivatives have been dropped. Consider 
the characteristic polynomial 

  
Det I J( ) = 3

+ Tr(J ) 2 B(J ) + Det(J )        (5) 

where I is the identity matrix, and 

Tr(J ) = H
Y

q( ) + L
R

Det(J ) = ( + q)H
R

B(J ) = L
R
H
Y

q( ) H
R
L
Y

 

are the trace, the second order sum of principal minors, 

and the determinant of  J , respectively. 

To study the stability properties in a planar system 
from the local analysis perspective, it is crucial to 

establish the signs of both Det(J )  and Tr(J ) . The 

neat Routh-Hurwitz criterion applies, showing that 
necessary conditions for the emergence of attracting 

orbits imply that 

  
H

R
< 0           (6.1) 

  
H

Y
q( ) + L

R
> 0         (6.2) 

which guarantee that the steady state is an unstable 

node or focus. More precisely 

Proposition 1 Recall Lemma 1. Let ˆ  and first 

assume 
  
H

R
> 0 . Then, the (unique) steady state is an 

unstable node or focus if (6.2) is satisfied. Conversely, 

if H
R
< 0 , the steady state is a saddle. 

Let now 
 

 and assume first 
  RR

> 0 . As shown 

in Lemma 1, we can either have a dual steady state, 
one steady state or no steady states at all. In the 

former case, at 
  

R ,Y( ) , 
  
H

R
> 0 , so that the low 

interest rate equilibrium is an unstable node or focus if 

(6.2) is satisfied. The other steady state R
+
,Y( )  has 

  
H

R
< 0  and is therefore a saddle. The low interest rate 

steady state and the high interest rate steady state 

interchange their stability properties if 
  RR

< 0 . 

Proof To exclude a saddle we need Det(J ) > 0 , 

which happens if 
  
H

R
> 0  applies. Furthermore if (6.2) is 

satisfied, 
  
Tr(J ) > 0 , and the steady state is an 

unstable node or focus. 

As well discussed in the literature, we obtain that 

Remark 1 This characteristic can be justified in a 
Kaldorian perspective, namely with the assumption of a 

S-shaped investment function (Schinasi 1981). 

which implies also that 

Corollary 1 From the perspective of the local 
analysis, only a Kaldorian-type economy, satisfying 
conditions in (6.i) can give rise to stable limit cycles. 
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Proof In the neighborhood of the non-saddle steady 

state we can have oscillating solutions if 
  
H

R
> 0 . In this 

case, since 
  
L

R
< 0 , 

  
Tr(J )  has positive sign only if 

  
H

Y
q( ) + L

R
> 0 , which implies a greater-than-

unity marginal propensity to spend out of income. 

In the next section, we use specific functional forms, 
joint with some numerical examples, to characterize the 
regions of the parametric space where the model 
exhibits a global indeterminate solution, and a low-
growth trapping region, for an economically plausible 

range. In details, we assume 
 
I =

Y

R
 as in Neamtu et 

al. (2007), we set  L = kY hR  as in Makovinyiova 
(2011), while we maintain a general savings function. 

4. THE BOGDANOV-TAKENS BIFURCATION 

In this section, we discuss the application of the BT 
theorem to system (P). The theorem allows us to detect 
a particular type of global phenomenon, namely the 
homoclinic bifurcation, by which orbits growing around 
the non-saddle steady state collide with the saddle one. 
As shown hereafter, this phenomenon can be used to 
establish the possibility of global indeterminacy of the 
equilibrium. Hence, let us give the following 

Definition 1 Given the fixed point R ,Y ,M( ) , and 

the associated Jacobian matrix  J , system (P) 

undergoes a Bogdanov-Takens bifurcation if the 

linearization of  J  around that point has a double-zero 

eigenvalue. 

Basically, assuming that some non-degeneracy 
conditions are satisfied, the BT singularity is referred to 
as a co-dimension two bifurcation, that is to say two 
parameters must be varied for such bifurcation to 
occur. Therefore, 

Lemma 2 Let ( , )  be the values for which 

simultaneously 
  
B(J ) = 0  and 

  
Det(J ) = 0 . Specifically, 

=
G+N

+q( )
1

(1 S
Y
)R

q+S
Y

(1 S
Y
)
 and 

 
= R S G+N

+q( ) . Then, for =  

and = , the linearization matrix  J  has a zero 

eigenvalue of multiplicity two, and a third eigenvalue 

given by 
  
Tr(J ) . 

Proof As shown in Appendix, the candidate 

bifurcation values 
 
( , )  are obtained by equating to 

zero, and thus combining, 
  
B(J )  and 

  
Det(J ) , given 

steady state values in (P). 

Next we use a two-dimensional center manifold 
reduction to put system (P) in a truncated Jordan 

canonical form, and introduce the following auxiliary 

variables μ =  and  v = . The systematic 

procedure given by Wiggins (1991) allows us to obtain 
the following 

Lemma 3 For parameter values 
 
( , )  sufficiently 

close to ( , )  the vector field in (P) is topologically 

equivalent to the following system (joint with 
  
μ = 0  and 

v = 0 ) 

    

w
1

w
2

=
0 1

0 0

w
1

w
2

+ A(μ,v)
w

1

w
2

+
F

1

F
2

        (7) 

where 
   
A(μ,v)  is a matrix that vanishes at 

  
(μ,v) = (0,0) , while 

  
F

1
 and 

  
F

2
 contain the high order 

nonlinear terms. 

Proof See Appendix. 

The system (7) can be further simplified via normal 
form theory and time rescaling. A transverse family of 
this vector field (i.e., versal deformation) can be lastly 
found, such that the study of the local dynamics can be 
used to infer the presence of the global bifurcation in 
the original vector field, (P). For our economy, we can 
show the following 

Proposition 2 The transverse family 

   

w
1
= w

2

w
2
=

1
w

1
+

2
w

2
+ w

1

2
+ sw

1
w

2
    s = ±1

         (8) 

is a topologically equivalent versal deformation of (7). 

The unfolding parameters, 
 1

 and 
 2

, are functions of 

μ =  and  v = , and satisfy the transversality 

condition 
 

(
1
,

2
)

(μ , )
|
μ= =0

0 . Therefore, the change of the 

original bifurcation parameters 
 
( , )  through 

1
 and 

 2
 is a local diffeomorphism. 

Proof See Appendix for all necessary 
computations. 

The global bifurcation associated with system (8) 
crucially depends on the sign of s. If we assume 

  s = +1 ,
4
 it follows that 

Lemma 4 Recall Proposition 1. For parameter 

values ( , )  sufficiently close to 
 
( , )  we can identify: 

                                            

4
The case where 

  
s = 1  is very similar, so we leave it out of this 

demonstration. 
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i) a curve 
  
N

1
,

2( ) :
1
= 49

25 2

2
+ O

2

5/2( ),  2
> 0{ }  

corresponding to a saddle homoclinic bifurcation; and 

ii) a curve 
  
M

1
,

2( ) :
1
=

2

2
,  

2
> 0{ }  corresponding 

to a (sub-critical) Andronov-Hopf bifurcation. For the 
scope of our analysis, we will henceforth concentrate 

on the case 
 1

< 0 . 

In case of a dual steady state, it is indeed true that 
one steady state is a saddle (S) whereas the other 
steady state is non saddle (NS). In particular, according 
to the parameters specification being considered: 

i) the NS equilibrium located above the curve  M  is 
a source, and there exists a heteroclinic 
connection leading from NS to S; 

ii) the NS equilibrium located below the curve N  is 
a sink, there exists a heteroclinic connection 
leading from S to NS; 

iii) the NS equilibrium located between the two 
curves  M  and  N  is an unstable focus, 
surrounded by a unique and repelling cycle. 

Proof See Wiggins (1991) and Guckenheimer and 
Holmes (1983) for a systematic specification of these 
two curves. 

A straightforward economic implication is 
associated to case (ii). That is to say: 

Remark 2 For parameter values 
 
( , )  sufficiently 

close to 
 
( , ) , the equilibrium associated to the IS-LM 

model is globally indeterminate. The basin of attraction 
of the low-growth steady state can be interpreted as a 
low-growth trapping region. 

We can finally conclude that, even though the IS-LM 
model may exhibit local uniqueness and a determinate 
saddle path equilibrium, the local analysis is not able to 
tell the full story, since a deepen investigation reveals 
that indeterminacy arises in the large, when a global 
bifurcation analysis is conducted. In particular, when 
the low-growth steady state is a sink, unless agents 
anticipate that their destiny will be the high-growth 
steady state (starting their development close to the 
high-growth steady state from the beginning), the 
economy almost always converges (is trapped) to the 
low-growth steady state (Benhabib et al. 2008; Boldrin 
et al. 2001; Mattana et al. 2009). 

To confirm our results, we will now illustrate some 
examples and derive the corresponding bifurcation 
diagrams. The simulations are based on a set of 
parameter values as in Tu et al. (2013) and 

Makovinyiova (2011), setting = 0.4  and leaving  

free to vary. Therefore 

Example 1 Consider  = 0.15 . Numerical 

calculations give 
1
,
2( ) = 0.05,0.27( ) . In this case, the 

steady state is unique and determinate. 

 

Figure 2: The saddle path steady state. 

Example 2 Let now = 0.22 . Then 

 1
,

2( ) = 3390, 3149( ) . In this case, we have two 

steady states with a heteroclinic connection leading 
from the non saddle to the saddle equilibrium. 

 

Figure 3: Trapping region with a sink. 

Example 3 If alternatively  = 0.32 , it follows that 

 1
,

2( ) = 5.99,555.33( ) . In this case, the model again 

exhibits two steady states, though the non-saddle 
steady state is unstable, and surrounded by a sub-
critical Hopf cycle. 

As clearly depicted in Figures 1-3, we can conclude 
that a policy action aimed to lowering the tax rate below 
its critical value, allows us to stabilize the economy 
towards a saddle-path stable steady state. Conversely, 
if we set  above a certain threshold, i.e. in our model 

above 21%  of income, an odd situation arises. 

Namely, indeterminacy occurs, with the economy 
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potentially trapped in a low growth equilibrium with 
distorsive effects on output due to excessive taxation. 

 

Figure 4: Trapping region with a cycle. 

5. CONCLUSIONS 

This paper innovates the literature regarding a 

dynamic IS-LM model of Schinasi’s type. First of all, we 

find that, with a nonlinear function of total inventories, 

the model admits a dual steady state, characterized by 

a uniform long-run income level, but different interest 

rates. One of these steady states is a saddle, and the 

other is a non-saddle equilibrium. 

Once determined the three-dimensional system of 

differential equations implied by the optimization 

process, we first provide a characterization of the long-

run dynamics. We focus, in particular, on the conditions 

which allow the emergence of two steady state, one 

characterized by a relatively high growth rate, and one 

with a relatively low growth level. Finally, we show that 

the model undergoes, in plausible regions of the 

parameters space, a co-dimension 2 Bogdanov-Takens 

bifurcation. The interesting point is that a generic vector 

field undergoing a Bogdanov-Takens bifurcation can be 

put in correspondence of a simple planar system, 

entirely preserving stability and bifurcation 

characteristics of the original vector field. The unfolding 

of this planar system is fully known, and permits the 

derivation of very useful details regarding the dynamics 

of any highly nonlinear dynamical system in proximity 

of the bifurcation. For the scopes of the paper, we are 

particularly interested in the determination of the 

regions in the parameters space implying a particular 

type of global phenomenon, namely the homoclinic 

bifurcation, by which orbits growing around the non-

saddle steady state collide with the saddle steady 

state. The emergence of this phenomenon is used to 

establish the possibility of global indeterminacy of the 

equilibrium for the IS-LM model. 

APPENDIX 

1. Translation of the Fixed Point to the Origin and 
Taylor Expansion 

Substitute   Y = Y Y ,   R = R R , and   M = M M , 
in system (P). Hence 

R = k(Y +Y ) h(R + R) (M + M )

Y =

( + μ)(Y +Y )

(R + R)
S((R + R),(1 v)

(Y +Y ))+G + N ( + v + q)(Y +Y )

M = G + N ( + v + q)(Y +Y )

      (A.1) 

where μ = , and = , are new trivial variable. 

Taylor expanding the system with respect to all 5 
variables, we have 

    

R

Y

M

= J

R

Y

M

+B μ,( )
R

Y

M

+

0

f
2

0

    (A.2) 

where 

   

B μ,( ) =
0 0 0

Y

R
+1
μ

Y
1

R
μ v 0

0 v 0

   (A.3) 

and 

   

f
2
=

2
( +1)

Y

R +2
S

RR

R2
+

2

Y 1

R
(1 )2 S

YY
Y 2

+

Y 1

R +1
(1 )S

RY
RY

 

2. Coordinate Change 

For double zero eigenvalues, a possible candidate 
for the eigenbasis is 
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T =

u
1

v
1

z
1

1 0 z
2

u
3

v
3

1

=

j
22

j
21

1

j
21

( j
11
+ j

33
)( j

11
+ j

22
+ j

33
)

j
21

j
32

1 0
j
11
+ j

22
+ j

33

j
32

j
12

j
13

+
j
11

j
22

j
21

j
13

j
11
+ j

22

j
21

j
13

1

 (A.4) 

where T is the transformation matrix. Therefore, 
operating the coordinate change  

    

R

Y

M

= T

w
1

w
2

w
3

 

the vector field in (A.2) becomes: 

w
1

w
2

w
3

=

0 1 0

0 0 0

0 0 Tr(J (0))

w
1

w
2

w
3

+M

w
1

w
2

w
3

+

F
1
w
1
,w

2
,w

3,( )
F
2
w
1
,w

2
,w

3,( )
F
3
w
1
,w

2
,w

3,( )

     (A.5) 

where M = T
-1
JT , and 

  

F
i

w
1
, w

2
, w

3,( ) =
1

D

( v
1
+ v

3
z

1
)Q v(w

1
+ z

2
w

3
)v

1
z

2

(u
1

u
3
z

1
)Q v(w

1
+ z

2
w

3
)(z

1
u

1
z

2
)

( u
1
v

3
+ v

1
u

3
)Q + v(w

1
+ z

2
w

3
)v

1

 

with 
  
D = v

1
+ v

3
z

1
u

1
v

3
z

2
+ v

1
u

3
z

2
 and 

  

Q =
2

( +1)
Y

R
+2

S
RR

(u
1
w

1
+ v

1
w

2
+ z

1
w

3
)2
+

+
2

Y
1

R
(1 )2

S
YY

(w
1
+ z

2
w

3
)2

Y
1

R
+1

(1 )S
RY

(u
1
w

1
+ v

1
w

2
+ z

1
w

3
)(w

1
+ z

2
w

3
)

 

3. Computation of the Center Manifold and Normal 
form for the Non-Linear Part 

We now begin the task of reconducting the non-
linear part of our vector field to the simplest form. The 
underlying idea is to perform near-identity 
transformations to remove the terms that are 
unessential in the analysis of local dynamical behavior. 
Recall that after the simplification of the linear part, our 
vector field, restricted to the center manifold, is the 
following 

    

w
1

w
2

=
0 1

0 0

w
1

w
2

+ A μ,( )
w

1

w
2

+
F

1

F
2

    (A.6) 

where 

  

A μ,( ) = 1 2

3 4

      (A.7) 

with: 

  

1
= 1

D

Y

R
+1 μ( v

1
+ v

3
z

1
)u

1
+

Y
1

R
μ v ( v

1
+ v

3
z

1
) v

1
z

2
v

  

  
2
= 1

D

Y

R
+1 μ( v

1
+ v

3
z

1
)v

1( )   

  

3
= 1

D

Y

R
+1 μ(u

3
z

2
1)u

1
+

Y
1

R
μ v (u

1
u

3
z

1
) (z

1
u

1
z

2
)v

 

  
4
= 1

D

Y

R
+1 μ(u
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Consider now only the linear and quadratic terms in 
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)  in our planar vector field 

w
1

w
2

=
0 1

0 0

w
1

w
2

+
F
1

F
2

     (A.8) 

Following the procedure detailed in Freire et al. 
(1989) and Gamero et al. (1991), via successive 
transformations, the vector field reduces to the 
topologically equivalent normal form 
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To know how the normal form is affected by the 

bifurcation parameters  and , we need now to find 

a relationship between the original system and the 
versal deformation parameters of the reduced system 

in (A.9). Consider first the matrix 
   
A(μ,v)  in (A.7). 

Easily, it can be shown that  
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