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Abstract: In order to study the dynamic changes in gas concentration, to reduce gas hazards, and to protect and 
improve mining safety, a new method is proposed to predict gas concentration, based on the opposite degree algorithm. 
A priori and a posteriori values, opposite degree computation, opposite space, prior matrix, and posterior matrix are 6 
basic concepts of the opposite degree algorithm. Several opposite degree numerical formulae to calculate the opposite 
degrees between gas concentration data and gas concentration data trends can be used to predict empirical results. The 
opposite degree numerical computation (OD-NC) algorithm has greater accuracy than several common prediction 
methods, such as RBF (Radial Basis Function) and GRNN (General Regression Neural Network). The prediction mean 
relative errors of RBF, GRNN and OD-NC are 7.812%, 5.674% and 3.284%, respectively. The simulation experiments 
show that the OD-NC algorithm is feasible and effective in practice. 
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1. INTRODUCTION 

1.1. Background and Literature Review 

Mine gases can result in hypoxia, asphyxia, or even 
burning and explosions, so it is an important indicator 
to detect gas concentration for coal mine gas safety. 
Gas concentration must be maintained at a reasonable 
level as it indicates that the coal mine is safe. In China, 
for example, gas concentration security issues lead to 

many casualties each year, as shown in Table 1 (Zhou, 
2014). For available data from 2008 to 2012, total 
Chinese coal mine gas accidents totalled 675, which 
led to 3039 deaths. 

At the international level, prediction of gas 
concentration is also a serious issue, so it is not  
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surprising that significant research has been conducted 
to predict gas concentration. In 1993, numerical 
methods were used to predict gas concentration (Fang, 
1993). The gas concentration fuzzy time series 
forecasting model was established in 1995, and was 
applied to the Sichuan Furong Mining Bureau Baijiao 
Mine. The model to prevent gas explosion accidents 
was subsequently used to predict gas concentration 
(Zhou and Huang, 1995). 

In 2008, echoes were used to monitor coal mine 
gas concentration (Obst, et al. 2008), while the mixed 
adaptive system prediction method of time series 
continuous gas monitoring was presented (Sikora, et 
al. 2008). In 2010, forecasting methods based on the 
gas concentration HJM model and Monte Carlo 
simulation methods were analyzed (Wei, et al. 2010). 

The gas concentration prediction methods based on 
transformed wavelet and optimized predictor was 
analyzed in 2011 (Wang, et al. 2011). In 2012 gas 
concentration and prominent detection security became 

Table 1: Annual Coal Mine Gas Accidents, 2008 - 2012 

Year 2008 2009 2010 2011 2012 Total Number 

Accidents Times 182 157 145 119 72 675 

Number of Deaths 778 755 623 553 459 3039 
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important for the protection of mine workers and areas 
close to the mines, and gas wireless sensor networks 
(WSN) were designed, where the semiconductor gas 
sensor had a low power consumption and high sen-
sitivity. Optimizing power is based on energy efficient 
clustering protocols, so that the goal of outburst war-
ning can be achieved (Unnikrishna Menon, et al. 2012). 

1.2. Research Objective 

Intelligent methods in the prediction of gas emission 
rates and concentration are increasing, including neural 
networks and genetic algorithms. These methods have 
certain advantages and disadvantages. For example, 
neural networks require a large amount of data and are 
prone to the “less learning” and “over-learning” 
phenomena, leading to prediction accuracy that is not 
high. BP neural network will be affected by the network 
structure, with initial connection weights and thresholds 
set for training (Li, 2006).  

Genetic algorithms use selecting, crossover and 
mutation operations for computation. It has a strong 
global processing capacity, but local processing 
capacity can be weak (Deng and Liang, 2009). 
Therefore, in order to further improve forecast accuracy 
and the adaptability of the algorithm, in this paper we 
propose a new intelligent algorithm which can be 
applied to the prediction of mine gas concentration. 

2. RESEARCH METHOD AND THEORETICAL 
FRAMEWORK 

2.1. Basic Concepts of the Opposite Degree 
Algorithm 

Gas data are dynamic, and the gas relationship with 
available data can be represented by the Opposite 
Degree (OD). The greater is the opposite degree, the 
greater are the differences between two associated 
variables. Correspondingly, the smaller is the opposite 
degree, the smaller are the differences between two 
associated variables. The opposite degrees are 
predominantly related with the following six concepts 
(Yue, et al. 2015; Yue, et al. 2016; Wang, et al. 2014; 
Zhou and Yue, 2015): 

1) A Priori Value 

A prior value refers to the data that have been used 
for training, and hence are obtained in advance. 

2) A Posteriori Value 

A posteriori analysis is used to predict the value 
associated with a certain set of properties. 

3) Opposite Degree Computation 

Opposite degree is the difference between the a 
priori and a posteriori values, and ranges from 

 (!",+") . 

Usually, the a priori value is A, the a posteriori value 
is B, denoted as O(A,B), and can be obtained using 
formula (1), as follows: 

O(A,B) = B ! A
A

=

negative, for B < A
0, for A = B

positive, for B > A

"

#
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%
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         (1) 

4) Opposite Space 

Flat space and three-dimensional space are the 
most common vector spaces. The flat space is the 
vector space R2, which consists of the real pairs: 

  R
2 ={(x, y) : x, y ! R} .           (2) 

The vector space R3 is three-dimensional space, 
which consists of all ordered triple real arrays: 

  R
3 ={(x, y, z) : x, y, z ! R} .          (3) 

The concept of R2 and R3 can be extended to high-
dimensional space. Setting the length as n, an ordered 
array (vector space Rn) is given in equation (4): 

  R
n ={(x1, x2 ,..., xn ) : x1, x2 ,..., xn ! R}         (4) 

where   j ! {1,2,..., n}. 

In the multi-dimensional space, the calculation of 
the opposite degree is changed to vector calculation. 
The a priori value is changed to the a priori vector, 

  A = ( A1, A2 ,..., Am ) , while the a posteriori value is 

changed to the a posteriori vector,   B = (B1, B2 ,..., Bm ) . 
The calculations are shown in equations (5) and (6), 
respectively: 

  O( A, B) ={O1( A1, B1),O2 ( A2 , B2 ),...,Om ( Am , Bm )}        (5) 

  

O( A, B) =

O1( A1, B1)
O2 ( A2 , B2 )

...
Om ( Am , Bm )
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          (6) 

5) A Priori Matrix 

The a priori matrix is a matrix (data set) that is used 
to train the prediction method. The a priori matrices are 
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obtained in advance of the numerical matrix, consisting 
of the a priori numerical composition, 

 
aij  (

 
aij ! Am"n , 

  1! i ! m ,   1! j ! n ). They include the  n  column 
properties, with each column having  m  row data, and 
each row of data corresponding to the a priori values, 

 ri  ( ri ! R ，  1! i ! m ). 

The given prior matrix,  Am!n , is shown in equation (7): 

  

A m!n=

a11 a12 ... a1n

a21 a22 ... a2n

... ... ... ...
am1 am2 ... amn
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where its a priori numerical column vector is  R , 
namely: 

  

R =

r1

r2

...
rm

!
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6) A Posteriori Matrix 

The a posteriori matrix refers to a matrix (data set) 
that is used for predictive analysis. The a posteriori 
matrix is composed of the value of the a posteriori 
values, 

 
bkj  ( 

bkj ! Bp"n ,   1! k ! p ,   1! j ! n ), including  n  
column properties, with each column property having 

 p  rows of data, and each row corresponding to the a 

posterior value,  sk  ( sk ! S ,   1! k ! p ). Opposite 
degree calculations require the a posteriori predicted 
values. 

The given a posteriori matrix, 
 
Bp!n , is shown in 

equation (9): 

  

B p!n=

b11 b12 ... b1n

b21 b22 ... b2n

... ... ... ...
bp1 bp2 ... bpn
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The opposite degree algorithm can be used to 
predict the value of the a posteriori matrix, 

 
Bp!n , 

corresponding to the column vector,  S : 

  

S =

s1

s2

...
sm

!
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2.2. Opposite Degree Algorithm - Numerical 
Computation 

As there can be many non-linear relationships, how 
to calculate the distance between these values is very 
important. We consider using the method of numerical 
calculation of the opposite degree algorithm. The 
smaller is the opposite degree between two gas 
emission quantities, the closer they will be, and when 
two gas emission opposite degrees are greater, the 
further apart will the difference be between them. 
Similarly, the smaller are the opposite degree related 
indicators between two sets of gas emission data, the 
closer they will be, and the greater are the opposite 
degree related indicators between two sets of gas 
emission data, the greater will be the difference. 

Due to the opposite degree vector being 
constructed by opposite degree components, the 
opposite degree space is constituted by opposite 
degree vectors. Therefore, the calculation of the 
opposite degrees is clearly closed, resulting in the 
collection of the operation as the opposite degree 
space. The main steps of the opposite degree 
numerical computation algorithm can be summarized in 
the following four steps: 

1) Establish populations of neural networks, and 
compute the basic characteristics of the a priori 
values. Calculating the value of the basic 
characteristics of the a priori initial opposite 
degree of the individual data from the population 
correlation network will facilitate calculation of 
the weights. 

2) Assess the fitness by calculating the weights, 
which are used to give the “individual data items 
/ indicators” relative importance, and then select 
the value of the a posteriori values. 

3) Select high fitness data. The opposite degree 
algorithm performs the calculations, and the 
comparisons are based on the weights and 
various parameters. 

4) According to the parameters calculated, the a 
posteriori values are predicted. 

As a result, the opposite degree numerical com-
putation (OD-NC) method can be used based on matrix 
operations. The OD-NC steps are given as follows: 

1) Calculate the opposite degree matrix of the 
training sample. The opposite degree matrix,  Oi  
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(  1! i ! m ), is the opposite degree between the 
 i th row of  Am!n R  and the  m th row of  Am!n R , 

where  Am!n R  is composed of matrix  Am!n  and 
vector  R , with  m  rows and   n+1  columns. The 
calculation of the matrix of opposite degrees is 
given in equations (11) and (12): 

  

Oi =

O(a11, ai1) O(a12 , ai2 ) ... O(a1n , ain )
O(a21, ai1) O(a22 , ai2 ) ... O(a2n , ain )

... ... ... ...
O(am1, ai1) O(am2 , ai2 ) ... O(amn , ain )

O(r1, ri )
O(r2 , ri )

...
O(rm , ri )
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ai2 ! a12
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...
ain ! a2n
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... ... ... ...
ai1 ! am1
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...
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ri ! r1
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2) Calculate weights, where 
 
! j  represents the 

weight of each data (
 
aij ), and is based on the 

following steps: 

(1) Remove all the 0 rows from matrix  Oi , which 

gives  !Oi , as all the 0 rows cannot be used to 
compute the weights. There are  i  matrices, 
which can be composed of matrix  !O , as shown 
in equation (13): 

  

!O =

!O1

!O2

...
!Om
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=

O(a21, a11) O(a22 , a12 ) ... O(a2n , a1n ) O(r2 , r1)
O(a31, a11) O(a32 , a12 ) ... O(a3n , a1n ) O(r3, r1)

... ... ... ... ...
O(am1, a11) O(am2 , a12 ) ... O(amn , a1n ) O(rm , r1)
O(a11, a21) O(a12 , a22 ) ... O(a1n , a2n ) O(r1, r2 )
O(a31, a21) O(a32 , a22 ) ... O(a3n , a2n ) O(r3, r2 )

... ... ... ... ...
O(am1, a21) O(am2 , a22 ) ... O(amn , a2n ) O(rm , r2 )

... ... ... ... ...
O(a11, am1) O(a12 , am2 ) ... O(a1n , amn ) O(r1, rm )
O(a21, am1) O(a22 , am2 ) ... O(a2n , amn ) O(r2 , rm )

... ... ... ... ...
O(am(1,1, am1) O(am(1,2 , am2 ) ... O(am(1,n , amn ) O(rm(1, rm )
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(2) The last column is a reference value for 
prediction, namely  !!O . The calculation of the 
matrix of the weights is given in equation (14):  
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O(O(r2 , r1),O(a21, a11)) O(O(r2 , r1),O(a22 , a12 )) ... O(O(r2 , r1),O(a2n , a1n ))
O(O(r3, r1),O(a31, a11)) O(O(r3, r1),O(a32 , a12 )) ... O(O(r3, r1),O(a3n , a1n ))
... ... ... ...
O(O(rm , r1),O(am1, a11)) O(O(rm , r1),O(am2 , a12 )) ... O(O(rm , r1),O(amn , a1n ))
O(O(r1, r2 ),O(a11, a21)) O(O(r1, r2 ),O(a12 , a22 )) ... O(O(r1, r2 ),O(a1n , a2n ))
O(O(r3, r2 ),O(a31, a21)) O(O(r3, r2 ),O(a32 , a22 )) ... O(O(r3, r2 ),O(a3n , a2n ))
... ... ... ...
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... ... ... ...
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(3) Calculate absolute values, where the weights 
denote the important levels: 

  

| O '' |=

| O1
'' |

| O2
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| Om

'' |
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         (15) 

(4) Calculate the mean value of each column. Prior 
to any calculations, part of the column may 
contain “E”, in which case the results of the “E” 
are deleted from the data, and calculate the 
mean value, with  !i  taken as the mean value for 
each column. The default value of the “E” is 0. 
The calculations are given in equation (16): 

  
!i =

(| O(O(r2 , r1),O(a2i , a1i )) |" + | O(O(r3, r1),

O(a3i , a1i )) |+...+ | O(O(rm#1, rm ),O(am#1,i , ami )) |)
m $ (m#1)

      (16) 

(5) Calculate the weight. First, calculate the 
reciprocal of the mean value; second, obtain the 
sum; and finally, divide the total weight by the 
sum. The weight for each column is 

 
! j , and the 

calculation is given in equation (17): 

  

!i =

1
!i

1
!1

+
1
!2

+ ...+ 1
!n

         (17) 

3) Calculate the prediction sample opposite degree 

matrix.  Ok

!

is the opposite degree matrix based 
on the opposite degree calculation of row  k  
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(  1! k ! p ) of 
 
Bp!n  and row  m  of  Am!n , as given 

below: 

  

Ok

!

=

O(a11,bk1) O(a12 ,bk 2 ) ... O(a1n ,bkn )
O(a21,bk1) O(a22 ,bk 2 ) ... O(a2n ,bkn )

... ... ... ...
O(am1,bk1) O(am2 ,bk 2 ) ... O(amn ,bkn )
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4) Calculate the test sample’s mean opposite 
degree and weighted opposite degree. The 
calculation methods of the mean opposite 
degree, 

 
!kj (  1! i ! m ，  1! k ! p ，  1! j ! m ), and 

the weighted opposite degree, 

 
!kj

"

(  1! i ! m ，  1! k ! p ，  1! j ! m ), are given in 
equations (19) and (20), respectively: 

  
!kj =

(O(ai1,bk )+O(ai2 ,bk 2 )+ ...+" O(ain ,bkn ))
n

     (19) 

 
  
!kj

"

= (O(ai1,bk1) #$1 +O(ai2 ,bk 2 ) #$2 + ...+% O(ain ,bkn ) #$n ) . (20) 

5) Calculate alternative data row. According to 
equation (21), select the rows that contain 

 !kl (  1! k ! p ，  1! l ! n ) as the alternative row: 

  !kl = min(| O(a1n ,bkn ) |, | O(a2n ,bkn ) |,..., | O(amn ,bkn ) |) .     (21) 

6) Find the basis data row. Select the row with 
minimum value (

  
min(!kj ) ), and record its real 

value as  sk . 

7) Calculate the result matrix based on equation 
(22): 

  
sk

!

= sk " (1+#kj

!

) ,         (22) 

where the output is the result matrix: 

S
!
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s1
!
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3. GAS CONCENTRATION ANALYSIS AND 
PREDICTION BASED ON OD-NC 

3.1. Data Sources 

We select several commonly used variables in the 
analysis of gas concentration, namely wind speed 
(m/s), temperature (˚C), negative pressure (kpa), CO 
concentration (ppm), and 3 minutes for the interval 
form time series, as shown in Table 2 (Zeng, 2011). 

The following are used to identify the variables, 
where G1, F1, F2, F3, F4 are wind speed (m/s), 
temperature (˚C), negative pressure (kpa), and CO 
concentration (ppm), respectively. 

The time series is not included in the calculations, 
and the final gas concentration data are shown in Table 
3. In the comparisons, we select the top 22 groups as 
training samples, and the last 8 groups as test 
samples. 

3.2. Gas Concentration Prediction Based on OD-NC 

The calculation procedure is based on the OD-NC 
algorithm. The prediction results are given in equation 
(24): 

  

S
!

=

0.9671
0.9096
0.8966
0.9449
0.9449
0.9628
0.9464
0.9265
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         (24) 

3.3. Analysis and Findings 

In order to analyze the accuracy of the OD-NC 
algorithm, we provide a comparative analysis of the 
RBF, GRNN and OD-NC algorithms. The RBF (Radial 
Basis Function) is a radial basis function neural 
network, and the GRNN (General Regression Neural 
Network) algorithm is a generalized regression neural 
network.  

These three algorithms are designed for processing 
the data in Table 3. For purposes of comparison with 
the real values, the three methods are used to predict 
the real values in Table 4 and Figure 1, to predict the 
relative errors of the results in Table 5, and to predict 
the mean relative errors of the results in Table 6.  
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Table 2: Gas Concentration Data 

Time (min) G1 F1 F2 F3 F4 

0:00 0.95 1.8 9.25 0.61 3.5 

0:03 0.93 1.88 9.25 0.61 3 

0:06 0.94 1.58 9.25 0.61 3 

0:09 0.93 1.8 9.25 0.61 3 

0:12 0.93 1.67 9.31 0.61 3 

0:15 0.98 1.67 9.31 0.62 3 

0:18 0.95 1.8 9.31 0.61 3 

0:21 0.95 1.8 9.31 0.61 3 

0:24 0.95 1.89 9.31 0.61 3 

0:27 0.94 1.88 9.31 0.61 2 

0:30 0.94 1.89 9.31 0.61 2 

0:33 0.93 1.8 9.31 0.61 2 

0:36 0.95 1.8 9.31 0.61 2.5 

0:39 0.95 1.67 9.31 0.61 3 

0:42 0.93 1.99 9.31 0.61 3 

0:45 0.94 1.89 9.31 0.61 3 

0:48 0.98 1.88 9.31 0.61 12 

0:51 1.02 1.78 9.31 0.61 18.75 

0:54 1.05 1.67 9.38 0.61 20.75 

0:57 1.01 1.89 9.38 0.61 17.75 

1:00 1 1.89 9.38 0.61 7.5 

1:03 0.98 1.67 9.38 0.61 5 

1:06 0.95 1.88 9.38 0.61 4.5 

1:09 0.95 2.08 9.38 0.61 3.5 

1:12 0.98 1.99 9.38 0.61 3.5 

1:15 0.95 1.78 9.38 0.6 3.5 

1:18 0.95 1.78 9.38 0.6 3.5 

1:21 0.98 1.89 9.38 0.61 3.5 

1:24 0.98 1.67 9.31 0.6 3 

1:27 0.98 1.99 9.31 0.6 3 

 

From the above tables, the relative error and mean 
relative error can be compared. The OD-NC algorithm 
is superior to the RBF and GRNN algorithms. From 
Figure 1, it is clear that the prediction results from the 
different methods show that the real value is close to 
the OD-NC prediction results. In Table 6, the OD-NC 
relative error control in less than 4%. Therefore, the 
OD-NC algorithm is a feasible and effective method for 
predicting gas concentration. 

4. CONCLUSION AND DISCUSSION 

The paper introduced the concept of opposites, 
constructed the opposite degree algorithm, and 
discussed the OD-NC algorithm, as follows: (1) the 
opposite degree algorithm was obtained by cyclic 
matrix and data, and expressed the relationship of the 
training data; (2) calculated the effect of data and 
matrix of the predicted value, obtained the degree of 
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Table 3: Final Gas Concentration Data 

No. F1 F2 F3 F4 G1 

1 1.8 9.25 0.61 3.5 0.95 

2 1.88 9.25 0.61 3 0.93 

3 1.58 9.25 0.61 3 0.94 

4 1.8 9.25 0.61 3 0.93 

5 1.67 9.31 0.61 3 0.93 

6 1.67 9.31 0.62 3 0.98 

7 1.8 9.31 0.61 3 0.95 

8 1.8 9.31 0.61 3 0.95 

9 1.89 9.31 0.61 3 0.95 

10 1.88 9.31 0.61 2 0.94 

11 1.89 9.31 0.61 2 0.94 

12 1.8 9.31 0.61 2 0.93 

13 1.8 9.31 0.61 2.5 0.95 

14 1.67 9.31 0.61 3 0.95 

15 1.99 9.31 0.61 3 0.93 

16 1.89 9.31 0.61 3 0.94 

17 1.88 9.31 0.61 12 0.98 

18 1.78 9.31 0.61 18.75 1.02 

19 1.67 9.38 0.61 20.75 1.05 

20 1.89 9.38 0.61 17.75 1.01 

21 1.89 9.38 0.61 7.5 1 

22 1.67 9.38 0.61 5 0.98 

23 1.88 9.38 0.61 4.5 0.95 

24 2.08 9.38 0.61 3.5 0.95 

25 1.99 9.38 0.61 3.5 0.98 

26 1.78 9.38 0.6 3.5 0.95 

27 1.78 9.38 0.6 3.5 0.95 

28 1.89 9.38 0.61 3.5 0.98 

29 1.67 9.31 0.6 3 0.98 

30 1.99 9.31 0.6 3 0.98 

 
Table 4: Prediction Results 

Prediction Value (%) 
No. Real Value (%) 

OD-NC RBF GRNN 

1 0.95 0.9671 0.7791 0.9574 

2 0.95 0.9096 0.8571 0.8089 

3 0.98 0.8966 0.8919 0.8897 

4 0.95 0.9449 0.9274 0.9528 

5 0.95 0.9449 0.9274 0.9528 

6 0.98 0.9628 0.9229 0.9540 

7 0.98 0.9464 0.8998 0.8994 

8 0.98 0.9265 0.9117 0.8910 
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Table 5: Relative Errors of the Three Methods 

Relative Error (%) 
No. 

OD-NC RBF GRNN 

1 0.0180 0.1799 0.0078 

2 0.0425 0.0978 0.1485 

3 0.0851 0.0899 0.0921 

4 0.0054 0.0238 0.0029 

5 0.0054 0.0238 0.0029 

6 0.0176 0.0583 0.0265 

7 0.0343 0.0818 0.0822 

8 0.0546 0.0697 0.0908 

 

Table 6: Mean Relative Errors of the Three Methods 

Method OD-NC RBF GRNN 

Mean Relative Error (%) 3.2837 7.8120 5.6736 

 

 
Figure 1: Prediction results. 

opposition, and then analyzed the influencing factors of 
weights; (3) according to the weight values, and testing 
data of opposite degree mean and the weighted 
opposite degree, determined the reference for 
calculation; and (4) through the opposite degree 
algorithm, it is possible to predict numerical data.  

The prediction results showed that: (1) the OD-NC 
algorithm was superior to the competing RBF and 
GRNN algorithms; and (2) the mean error of the OD-
NC algorithm was controlled within 4%, which was 
lower than for the other methods. Therefore, the OD-
NC algorithm is feasible and effective in the prediction 
and analysis of gas concentration in practice. 

Gas concentration is an important test data of the 
mine. A dangerous gas situation can cause a large 

number of casualties and property losses, and affect 
economic efficiency. By analyzing and predicting gas 
concentration, the future security of the mines can be 
evaluated. In order to reduce casualties, material and 
financial losses, we can use the new algorithm to 
predict gas concentration.  

Future research will continue to improve the 
accuracy of the algorithm, and apply the algorithm to 
additional practical projects. 
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