
 Journal of Reviews on Global Economics, 2017, 6, 367-374 367

 E-ISSN: 1929-7092/17 © 2017 Lifescience Global

Personal Software Process with Automatic Requirements
Traceability to Support Startups

Waraporn Jirapanthong*

College of Creative Design and Entertainment Technology, Dhurakij Pundit University, Bangkok, Thailand
Abstract: This paper applies Personal Software Process (PSP) for software development activities, and uses PSP
scripts to follow the activities in software development. In particular, we have adapted a development script in order to
enable automatic traceability. The script is the cyclical process that is designed for developing a large program in a
sequence of small incremental steps. Moreover, we have extended an XTraQue tool to enable an automatic traceability
during using PSP. This enables the completeness of traceability during using PSP. The Part-of-Speech (POS)
embedded XML-based templates of software artefacts for PSP-based development, that is, functional requirements
(FR), use case, and class diagram are defined. We perform an explanatory case study in order to evaluate the
effectiveness between manual and automatic traceability during the personal software process (PSP). In particular, the
causal links between software artefacts created during software development are so-called traceability relations. The
result evaluation are concerned with precision and recall measures on the creation of traceability relations.

Keywords: Personal Software Process, Software Improvement Process, Requirements Traceability, Incremental
Development.

1. INTRODUCTION

According to Personal Software Process (PSP), the
process drives a software developer improving their
own performance by controlling and managing their
work. It is a structured framework of forms, guidelines,
and procedures for developing software. The process
is driven by scripts through the process steps, namely
design, code, compile, test, and postmortem steps.
Additionally, traceability is included an activity during
the process. However, there are still difficulties to use
traceability records or relations in order to improve the
software process.

A research question is whether it is more effective if
PSP-based software development is supported by
automatic traceability. We are concerned from the
perspective of software developers, particularly when
they work individually on the process. We have
adopted several forms based on PSP and adapted
some development scripts that support the personal
software process, and also extended a traceability tool
to enable it during PSP, which enables the
completeness of traceability. Some of the software
artefacts for PSP-based development, that is, use case
and class diagram, are extended for the process. We
have created a scenario for testing. A participant who
takes the role of the software developer was asked to
perform software development activities under PSP,
and to follow the adapted development script. The case

*Address of correspondence to this author at the College of Creative Design
and Entertainment Technology, Dhurakij Pundit University, Bangkok, Thailand;
Tel: +66 29547300; Fax: +66 29548651; E-mail: waraporn.jir@dpu.ac.th
JEL: C88, L86, M13, M15.

study was created to explore the experiences of our
approach.

The remainder of the paper is organized as follows.
Section 2 provides the background and related work to
the research, Section 3 describes the research
methodology, Section 4 presents the results evaluation
and discussion, and a conclusion is given in Section 5.

2. BACKGROUND AND RELATED WORK

2.1. Personal Software Process

A Personal Software Process (PSP) is a self-
improvement process that drives a software developer
to control, manage, and improve their work (Humphrey,
2005). It is a structured framework of forms, guidelines,
and procedures for developing software. The purpose
of PSP is to assist a software developer to improve
their software engineering skills. The baseline process,
PSP0, provides a framework for writing the first
program, and for gathering data on work. As shown in
Figure 1, the PSP0 process is driven by scripts which
guide the work.

The scripts guide software developers through the
process steps, the logs are recorded for process data,
and the plan summary provide a summary record and
reports. In the planning step, a software developer
plans to do the work. The development steps include
design, code, compile, and test. In the postmortem
step, a software developer compares thier actual
performance with the plan, and produces a summary
report. There are three main process elements in
PSP0, namely the planning, development, and
postmortem phases.

368 Journal of Reviews on Global Economics, 2017, Vol. 6 Waraporn Jirapanthong

For the postmortem phase, three main activities are
defined in the scripts, namely project review, defect
recording, and time recording, as appears in the
following activities during the postmortem phase:

- The activity called defect recording aims to:

• review the project plan summary to verify
that all of the defects found in each phase
were recorded;

• use recollection, and record any omitted
defects.

- The activity called defect data consistency aims
to:

• check that the data on every defect in the
defect recording log are accurate and
complete;

• verify that the number of defects injected
and removed per phase are reasonable and
correct;

• use recollection, and correct any missing or
incorrect defect data.

- The activity called time aims to:

• review the completed Time Recording log
for errors or omissions;

• use recollection, and correct any missing or
incomplete time data.

According to (Humphrey, 2005), the authors have
proposed a template of defect recording log. The log
document contains information, for example, a software

developer’s name, and program’s name. The log
document shows a list of defect log which consists of: i)
projectidentifier, ii) fixingdate, iii) uniquedefect-number,
iv) defecttype, v) injected phase, vi) remove phase, vii)
fix time, viii) fix reference, and ix) description.

The defecttype is classified as a) documentation
that refers a defect on comments or messages; b)
syntax that refers a defect on spelling, and punctuation,
typos, and instruction formats; c) build,package that
refers a defect on change management, library, and
instruction formats; d) assignment that refers a defect
on declaration, duplicate names, scope, and limits; e)
interface that refers a defect on procedure calls and
references, I/O, and user formats; f) checking that
refers error messages, and inadequate checks; g) data
that refers a defect on structure, and content; h)
function that refers a defect on logic, pointers, loops,
recursion, computation, and function defects; i) system
that refers a defect on configuration, timing, and
memory; and j) environment that refers a defect on
design, compile, test, or other support system
problems.

The injected phase is one where a defect was
injected. The remove phase is the one where a
software developer found and fixed the defect. The
fixtime is the time a software developer tool finds and
fixes the defect. The fix reference notes the number of
the defective fix which refers a mistake fixing one
defect, and later finds and fixes the new defect. The
description section is a note that describes the reason
or location that the defect was fixed.

The authors proposed a template of time recording
log. The log document contains information, for

Figure 1: PSP0 Process Flow (Humphrey, 2005).

Personal Software Process with Automatic Requirements Traceability Journal of Reviews on Global Economics, 2017, Vol. 6 369

example, a software developer’s name, program’s
name. The log document shows a list of time log which
consists of: i) project identifier; ii) phase; iii) start date
and time; iv) interruption time; v) stop date and time; vi)
delta time; and v) comments.

The phase is the one a software develop worked
on, that is, planning, design, test. The start data and
time is the date and time when a software developer
worked on a process activity. The interruptiontime is
duration time that was not spent on the process
activity. The stop date and time is the date and time
when a software developer stopped working on that
process activity. The deltatime is the clock time that a
software developer actually spent working on the
process activity, less interruption time. The comments
section is used to remind a software developer of any
unusual circumstances regarding an activity.

2.2. Traceability

Software traceability has been recognized as an
important activity in software system development
(Ramesh and Jarke, 2001). In general, traceability
relations can improve the quality of the software
product being developed, and reduce the time and cost
associated with the development. In particular,
traceability relations can support the evolution of
software systems, reuse of parts of the system by
comparing components of the new and existing
systems, validation that a system meets its
requirements, understanding of the rationale for certain
design and implementation decisions in the system,
and analysis of the implications of changes in the
system.

Support for traceability in software engineering
environments and tools is not always adequate (Ingram
and Riddle, 2012). Software developers may have a
concern regarding the cost and benefits on traceability
activity (Antoniol et al., 2003), so that, despite its
importance, traceability is rarely established. In order to
alleviate this problem, other approaches have been
proposed to support semi- or fully-automatic generation
of traceability relations more recently (Egyed, 2005;
Kim et al., 2005; Marcus and Maletic, 2003;
Jirapanthong and Zisman, 2009). Some of these
approaches, such as the generated traceability
relations, do not have well-defined semantic meanings
that are necessary to support the benefits provided by
traceability. Some approaches have defined semantic
meanings to support the use of traceability relations.
The traceability relations are generated between

different types of software artefacts during the
development of software systems.

3. RESEARCH METHODOLOGY

In order to learn and experience the situation of
software development for startups, we chose to use a
case study approach. Our case study design is
considered because we want to cover contextual
conditions as they are relevant to the phenomenon
under examination.

3.1. Defining Research Questions

This research is based on the question: “Is it more
effective if PSP-based software development is
supported by automatic traceability?”. The research
proposes to discover the experiences of software
developers following PSP using automatic software
traceability activity is more effective than its manual
counterpart.

3.2. Conducting Research

The research seeks to explain the presumed causal
relationships between software artefacts under PSP-
based development. We have used several forms to
follow the activities in PSP (Humphrey, 2005) and a
development script as shown in Table 1, which is
adapted from (Humphrey, 2005). It is a cyclical process
that we applied for programming. The process is
designed for developing a large program in a sequence
of small incremental steps.

The paper extended an XTraQue tool (Jirapanthong
and Zisman, 2009) to enable traceability during using
PSP. This enables the completeness of traceability
during PSP. According to the meta model in
(Jirapanthong and Zisman, 2009), we have extended
the templates of software artefacts for PSP-based
development, that is, use case and class diagram. We
also added a template of funcational requirements (FR)
for specifying the user requirements.

In our templates, for example, a use case is
composed of:

(1) Use_Case_ID – this attribute is identified as a
use case;

(2) Title – the element Title is the title of use case;

(3) Description – the element Description is
specified for a brief textual description;

370 Journal of Reviews on Global Economics, 2017, Vol. 6 Waraporn Jirapanthong

(4) Level – the element describes the level of
functionality that it describes within a system;

(5) Preconditions – the element describes the
conditions that must be satisfied before its
execution;

(6) Postconditions – the elements describes the
conditions that must be satisfied after its
execution;

(7) Primary_actors – the element specifies primary
users of the use case;

(8) Secondary_actors – the element specifies
secondary users of the use case;

(9) Flow_of_events – the element specifies a list of
the events that triggers the use case and the
specification of the normal events that occur
within it. The element Flow_of_events consists of
the sub-element Event, which specifies a
particular event being preceded in the use case;

(10) Exceptional events – the element describes the
events that do not always occur when the use
case is executed;

Table 1: A Development Script

Purpose To guide development of programs

Entry Criteria Problem description or compoen

General

Step Activities Description

1 Requirements and
Planning

Obtain the requirements and produce the development plan.
requirements document
design concept
size, quality, resource, and schedule plans

Produce a master Issue Tracking log

2 High-level Design
(HLD)

Produce the design and implementation strategy
Functional Specifications
State Specifications
Operational Specifications
Development Strategy
Test Strategy and Plan

3 High-level Design
Review (HLDR)

Review the high-level design
Review the development and test strategy
Fix and log all defects found
Note outstanding issues on the Issue Tracking log
Log all defects found

4 Development Design the program and document the design in the PSP Design templates
Review the design and fix and log all defects
Implement the design
Review the code and fix and log all defects
Compile the program and fix and log all defects
Test the program and fix and log all defects
Complete the Time Recording log.
Reassess and recycle as needed

5 Postmortem Complete the Project Plan Summary form with the actual time, defect, and size data

Exit Criteria A thoroughly tested program
Completed Project Plan Summary with estimated and actual data
Completed Estimating and Planning templates
Completed Design templates
Completed Design Review checklist and Code Review checklist
Completed Test Report template
Complete Issue Tracking log
Completed PIP forms
Completed Time and Defect Recording logs

Personal Software Process with Automatic Requirements Traceability Journal of Reviews on Global Economics, 2017, Vol. 6 371

(11) Superordinate use case – the element specifies
a use case for which the use case is elaborated;

(12) Subordinate use cases – the element specifies a
use case to which the use case is specified.

Figure 2 illustrates a use case Create an online
order. The use case is identified with UseCaseID
(“UC1”). The use case contains information, that is,
Title, Description, Level, Preconditions, Postconditions,
Primary_actor, Secondary_actors, Flow_of_events,
Exceptional_events, Superordinate_use_case, and
Subordinate_use_case that describe the context of the
use case.

Additionally, the artefacts created under PSP-based
development, that is, functional requirements, use case
and class diagram, are then represented in terms of
XML formats. We also added the textual parts of the
artefacts with part-of-speech (POS) tags, which denote
grammatical roles are annotated in terms of XML
elements. As shown in Figure 3, an example of some
part of the XML-based POS-embedded use case is

given. The words in the textual parts of use case are
annotated with XML POS-tags denoting their
grammatical roles.

4. TEST CASES

In order to take into consideration the PSP-based
software developing with traceability, we have created
a scenario in our testing: changes to functional
requirements. In particular, a participant who takes the
role of a software developer was asked to perform
software development activities under PSP. In
particular, the participant was asked to follow the
development script, as shown in Table 1.

We asked participants to perform the software
development twice: (i) by applying the tool to enable
the traceability; and (ii) by manually performing the
traceability log. The scenario involved many types of
documents, so the traceability relations were expected
to be captured among various types of documents.

For the first development, the participant applied the
tool to enable traceability. During the development

Figure 2: Template of Use Case.

372 Journal of Reviews on Global Economics, 2017, Vol. 6 Waraporn Jirapanthong

script, we also asked the participant to perform the
following tasks:

 (i) Apply the tool to generate traceability relations
after finishing Requirements and Planning
activities;

(ii) Apply the tool to generate traceability relations
after finishing High-level Design Review (HLDR)
activities.

These tasks aimed to generate traceability relations
between:

(a) functional requirements;

(b) functional requirements and class diagram;

(c) functional requirements and use cases.

For the second development, the participant
manually captured the traceability relations. During the
development script, the participant recorded the

traceability relations in the log as their own
development style. The results of manually traceability
capturing were recorded in the log.

Our testing scenarios are based on a single
software developer. In particular, there are changes on
system or user requirements. As shown in Figure 4, the
stakeholders involved in this case are likely:

(a) software analysts (or imitators) that specify
changes to be done in a design part of a
software product;

(b) software analysts and software developers (or
imitators) who identify the effects of these
changes in the other related design software
artefacts.

5. EVALUATION RESULTS AND ANALYSIS

For a test, we provides the participants with
software requirements and some other software

Figure 3: Template of XML-based Use Case.

Personal Software Process with Automatic Requirements Traceability Journal of Reviews on Global Economics, 2017, Vol. 6 373

artefacts such as vision documents, and executive
summary of the software project.

We manually counted the number of software
artefacts created in the tests. As shown in Table 2, the
number of requirements artefacts created by applying
the tool is 2 and the number of requirements artefacts
are manually created is 3. The figures in the table show
the difference in the numbers of software artefacts that
are created in the same task, and having the same
software requirements. Moreover, Table 3 gives a
summary of the number of traceability relations
identified in the tests. In the table, ST is the set of
traceability relations automatically created by the tool;
and UT is the set of traceability relations manually
created by the software developer.

Table 3: Summary of Traceability Relations Created
Manually and Automatically

 UT ST

Number of requirements artefacts identified 16 17

Number of design artefacts identified 15 12

Total number of artefacts identified 31 29

Additionally, Table 4 shows a summary of the
number of artefacts created or changed in the tests. In
the table, ST is the set of artefacts expected to be
created or changed, and UT is the set of artefacts that
are created or changed.

Table 4: Summary of Artefacts Involved in the Tests

 Test 3

UTgroup 1 31

STgroup 1 29

| STgroup 1 ∩ UTgroup 1| 26

Table 5 shows the results for each test in terms of
recall and precision rates, and provide positive
evidence about our approach to apply the automatic
traceability to PSP-based software development at a
high level of recall and precision. In particular, the
precision figure is 0.90, and the recall figure is 0.84.

Additionally, the time spent during the generation of
traceability relations during PSP-based software
development varies, depending on the size of the
artefacts and the number of requirements and design

Figure 4: Testing Scenarios.

Table 2: Summary of Requirements and other Artefacts

 Number of artefacts

Number of expected requirements artefacts to be created or changed 2

Number of actual requirements artefacts created or changed 3

Number of expected design artefacts to be created or changed 4

Number of actual design artefacts to be created or changed 4

Total number of expected artefacts to be created or changed 6

Total number of actual artefacts that are created or changed 7

374 Journal of Reviews on Global Economics, 2017, Vol. 6 Waraporn Jirapanthong

artefacts. We spent 6 hours to identify all traceability
relations manually, and 2 hours by automatically.

Table 5: Precision and Recall Rates

 Test

Precision 0.90

Recall 0.84

6. CONCLUSION

A Personal Software Process (PSP) is a personal
improvement process which drives a software
developer to improve their own work. It provides a
framework for writing the first program and for
gathering data on work. Several forms of documents
are involved. Recording traceability information
becomes a challenge. Otherwise, the traceability
activity for personal working is often ignored due to its
difficulties. This research has shown that some degree
of systematic process in creating traceability relations
is facilitated by the tool.

The results of creation are measured by using
precision and recall rates. The precision is measured
as 90.0% and recall is measured as 84.0%. The results
shown provide a positive outcome to the approach. The
author has also discussed the experience with
participants, who agreed that having a traceability log
during PSP-based software development in an
automatic way to allow them to work more effectively.
Considering the developing time factor, the traceability
relations assist them to verify and validate the
requirements. Moreover, having completed and
corrected traceability relations helped them to manage
the tasks more easily.

However, we also found that data in software
development grow continuously with the number of
documents. It is important to specify the documents

clearly and validly. The difficulty in documenting
management leads the following issues, that is,
missing semantics, failure to interpret semantics,
missing of relevant documents, and failure to search
documents.

ACKNOWLEDGEMENT

The author wishes to thank Chia-Lin Chang and
Michael McAleer for helpful comments and
suggestions.

REFERENCE

Antoniol, G., G. Canfora, G. Casazza, A. Lucia, E. Merlo. 2003.
“Recovering Traceability Links between Code and
Documentation.” IEEE Transactions on Software Engineering
28(10):970-983.
https://doi.org/10.1109/TSE.2002.1041053

Egyed, A. 2003. “A Scenario-Driven Approach to Trace Dependency
Analysis.” IEEE Transactions on Software Engineering 29(2):
116-132.
https://doi.org/10.1109/TSE.2003.1178051

Humphrey, W.S. 2005. PSP: A Self-Improvement Process for
Software Engineers. Addison Wesley. ISBN: 0-321-30549-3.

Ingram, C. and S. Riddle. 2012. “Cost-Benefits of Traceability.” Pp.
23-43. in Software and Systems Traceability. edited by
Huang, J., O. Gotel, and A. Zisman. Springer. ISBN: 978-1-
4471-2239-5.
https://doi.org/10.1007/978-1-4471-2239-5_2

Jirapanthong, W. and A. Zisman. 2009. “XTraQue: traceability for
product line systems.” Software System Model 8(1):117-144.
https://doi.org/10.1007/s10270-007-0066-8

Kim, D., S. Chang, and H. La. 2005. “Traceability Map: Foundations
to Automate for Product Line Engineering.” In Proceeding of
the 3rd ACIS International Conference on Software
Engineering Research, Management and Applications
(SERA’05), Pp. 274-281.

Marcus, A., J. I. Maletic. 2003. “Recovering Documentation-to-
Source-Code Traceability Links using Latent Semantic
Indexing.” In Proceeding of the 25th International Conference
on Software Engineering (ICSE), Oregon, USA, May 03-10,
Pp. 125-135.
https://doi.org/10.1109/icse.2003.1201194

Ramesh, B. and M. Jarke. 2001. “Towards Reference Models for
Requirements Traceability.” IEEE Transactions on Software
Engineering 27(1):58-93.
https://doi.org/10.1109/32.895989

Received on 16-02-2017 Accepted on 13-05-2017 Published on 09-06-2017

DOI: https://doi.org/10.6000/1929-7092.2017.06.38

© 2017 Waraporn Jirapanthong; Licensee Lifescience Global.
This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License
(http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in
any medium, provided the work is properly cited.

