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Abstract: Estimation is used widely in numerous disciplines, including Mathematics, Statistics, Economics, Business, 
and Decision Sciences, among others. Estimation is a process for determining an approximation, which is a value that 
can be used for a number of purposes, even if input data are sufficient, incomplete, missing or unsecure. In practice, 
estimation relates to “using the value of a statistic inferred from a sample to estimate the value of a corresponding 
population parameter”. Estimation is usually separated into two categories, namely point estimation and interval 
estimation. The main purpose of this paper is to present a universal approach to the theory and practice of three 
methods in statistical inference to obtain point estimates, namely the moment, maximum likelihood, and Bayesian 
methods. The paper also discusses the advantages and disadvantages of the three universal approaches in practical 
applications in Economics, Business and Decision Sciences.  
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1. INTRODUCTION 

Estimation is a process for detecting an 
approximation, which is a value that can be used for a 
number of purposes, even if input data are insufficient, 
incomplete, missing, or unsecure. Usually, estimation 
relates to “using the value of a statistic inferred from a 
sample to estimate the value of a corresponding 
population parameter”.  

In mathematics, an estimate is called an 
approximation, and is written in the form of larger or 
smaller quantities of each other. It is not always 
straightforward to determine the exact values of 
functions, whether known or unknown. The appro-
ximation theorem can help to find simpler functions that 
are very close to the functions to be determined, and to 
provide more useful calculation tools.  

In statistics, an estimate is a value calculated from a 
sample and is expected to be a representative value to 
be determined for the population. A statistically valid 
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and optimal estimator would ideally be unbiased, 
consistent, (asymptotically) efficient, and robust to 
changes in the underlying assumptions.  

In terms of applications, Hawkins (1976) introduces 
point estimation of the parameters of piecewise 
regression models. Bafumi et al. (2005) provide 
practical issues in implementing and understanding 
Bayesian point estimation. Lehmann and Casella 
(2006) present a theory of point estimation. Schennach 
(2007) introduces point estimation with an 
exponentially tilted empirical likelihood. Harchaoui et al. 
(2010) provide multiple change point estimation with a 
total variation penalty. Hodges and Lehmann (2012) 
present some problems in minimax point estimation. 

Estimation is typically separated into two categories, 
namely point estimation and interval estimation. Point 
estimation is used more frequently than interval 
estimation because point estimation allows reasonably 
precise estimates of the parameters or moments that 
are of interest. Issues related to point estimation are 
still topical and interesting (see Amiri and Allahyari 
(2012), Chung et al. (2015), Yoo et al. (2017) and 
Goplerud, M. (2019), among others). 
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Estimation is applied in many fields in practice, and 
is important in Economics, Finance and Business, 
among other disciplines, because it helps to determine 
how large-scale activities may develop, plan 
distributions for workers, buy materials more 
efficaciously, estimate project revenues, costs, and 
profits, and so on.  

This paper presents a detailed and comprehensive 
analysis of the theory, examples and practical 
applications of point estimation in Economics, Business 
and Decision Sciences. In particular, the paper 
provides an overview of universal methods to 
determine point estimates in statistics.  

The remainder of the paper is organized as follows. 
In Section 3, we present some notation, definitions, and 
background theory to be used. In Section 3, we present 
three universal methods to obtain point estimates in 
statistics. We provide some practical examples to find 
point estimates in statistics in Section 4. Section 5 
discusses the advantages and disadvantages of the 
three approaches. Practical applications of the 
universal methods to Economics, Business and 
Decision Sciences are discussed in Section 6. Some 
concluding remarks and inferences are presented in 
the final section. 

2. NOTATION, DEFINITIONS, AND FOUNDATIONS  

In this section, we present some notation, 
definitions, and background theory to be used in the 
following sections. We first introduce the concept of a 
population.  

2.1. Population 

A population is a set of analogous items that is of 
interest. A population can be a group of existing objects 
or an hypothetical and possibly infinite objects 
perceived as a generalization from experience. A 
widespread aim of statistical analysis is to draw 
inferences related to the population. The elements in 
the population can typically be described by a random 
variable X. If we obtain the probability density function 
(PDF) 

  
f x;!( )  of the random variable X and the 

parameter !  that is of interest, then we know its 
population.  

Populations that can be of finite size and defined by 
any number of characteristics is used in statistics to 
describe all the items of interest. Each item is the 
subject of a statistical observation that is defined 
specifically rather than vaguely. Populations allow 
inferences to be drawn and conclusions presented and 

analyzed regarding the characteristics of parameters 
and moments that are of interest. 

2.2. Sample 

A random statistical sample taken from the 
population is a subset of the population that is intended 
to be analyzed. The ratio of the size of the sample to 
the size of the population is the sampling fraction. It is 
analyzed to estimate the population parameters and 
moments using appropriate sample statistics to draw 
inferences and conclusions. A set of random variables 

  X1, X2 ,..., Xn  represents the sample with probability 

density function (pdf), 
  
f x;!( ) , that is the same as the 

population. The observations, or the sample values, of 
the random variables   X1, X2 ,..., Xn  are taken to be 

  x1, x2 ,..., xn . 

2.3. Sample Space 

Let X be a random variable representing a 
population with pdf 

  
f x;!( ) , where !  is a parameter of 

interest. The set of all possible values of X is defined 
as the sample space denoted by !  such that 

  
! = X " Rn : f x;#( ){ } ,

 
where n is the sample size. 

2.4. Estimation  

Let   X1, X2 ,..., Xn  be a random sample from the 

population such that 
   
X ! f x;!( )  

with !  to be the 
parameter of interest. All statistics used to predict 
parameter !  are called estimation functions of ! . The 
sample statistic, denoted as  !̂ , is defined as the 
estimator of ! , and its empirical value is called the 
estimate of ! . 

All statistical methods use random samples to 
obtain information regarding the population. The 
population is typically described by the pdf 

  
f x;!( ) . A 

statistical inference is drawn regarding the population 
distribution of 

  
f x;!( )  

based on the information 
contained in the sample. A statistical inference is a 
statement based on a sample regarding information in 
the population. There are three types of statistical 
inferences that consist of: estimation, hypothesis 
testing, both of which are in-sample, and out-of-sample 
forecasting. 

In estimation, one needs to obtain a sample value of 
the parameter !  of the population distribution, 

  
f x;!( ) , 

from the sample data. One of the key issues is how to 
obtain the estimation function of the parameter !  of 
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the population. There are three widely-used and 
universal methods of determining point estimation, 
namely the moment, maximum likelihood, and 
Bayesian methods. We will discuss each method in the 
following section. 

3. METHODS TO DETERMINE POINT ESTIMATES 

In this section, we present the three universal 
methods for determining point estimates, namely the 
moment, maximum likelihood, and Bayesian methods. 
We first discuss the moment method. 

3.1. Moment Method 

This method was first introduced by the famous 
British statistician Karl Pearson in 1902. It remains a 
classical parameter estimation method that is simple, 
yet yields consistent (though possibly biased) 
estimators under minimal assumptions. The estimates 
obtained by using the moment method are not 
necessarily sufficient statistics, in that they occasionally 
fail to take account of all the relevant information from 
the sample. 

Let   X1, X2 ,..., Xm  be a random sample from the 

population X with pdf given by 
  
f x;!1,!2 ,...,!m( )  where 

  !1,!2 ,...,!m  are the parameters to be estimated. Let :  

  
Mk = E X k( ) = xk f x;!1,!2 ,...,!m( ) dx

"#

+#

$ ,         (1) 

be the k ‘th population moment, and 
  
Mk =

1
n

Xi
k

i=1

n

!
 
be 

the corresponding k’th sample moment, for   k =1,..., m.   

In order to apply the moment method, one first 
estimates   !1,!2 ,...,!m  by setting the first m population 
moments equal to the first m sample moments. The 
procedure of the moment method is expressed in the 
following steps: 

Step 1: Calculate the first m population moments and 
the first m sample moments; 

Step 2: Set up the m systems of equations by setting 
the first m population moments equal to the first m 
sample moments; and 

Step 3: Solve the system of equations to obtain the 
estimation function. 

3.2. Maximum Likelihood Method 

In statistics, from the given observations, maximum 
likelihood estimation (MLE) is the most commonly-used 

method to estimate the parameters for the statistical 
model from the given observations for which the 
likelihood function is maximized. More precisely, let 

  X1, X2 ,..., Xn  be a random sample from population X 

with pdf 
  
f x;!( ) , in which !  are the parameters to be 

estimated. The likelihood function, 
 
L !( ) , is the joint pdf 

of the sample,   X1, X2 ,..., Xn , and is defined as: 

  
L !( ) = f xi ;!( ) .

i=1

n

"           (2) 

The value !  that leads to the maximum value of the 
likelihood function, 

 
L !( ) , is the MLE of ! , and is 

defined by  !̂  such that: 

  
!̂ = Arg sup

!"#
L !( ) .           (3) 

In general, the estimates obtained using MLE has 
the following properties: 

Property 1 (Unbiasedness and Efficiency) 

Let 
 

Yi{ }  
be a sequence of i.i.d. observations and !  

be the parameters to be estimated. If an estimator 

  
!̂ y( )  is unbiased and efficient, then 

  
!̂ y( )  

is also the 
minimum variance unbiased estimator (MVUE). 

Property 2 (Consistency) 

Let 
 

Yi{ }  
be a sequence of i.i.d. observations and !  

be the parameters to be estimated. Then, the MLE of !  
is consistent. 

Property 3 (Asymptotic Normality) 

Let 
 

Yi{ }  
be a sequence of i.i.d. observations and !  

be the parameters to be estimated, 
  
Yi ! f

!
y( )  and  !̂  is 

the MLE of ! . It follows that: 

  

n !̂ "!( ) d# $# N 0, 1

"E %2

%! 2
log f

!
y( )

&

'
(

)

*
+

&

'

(
(
(
(
(

)

*

+
+
+
+
+

.  

Property 4 (functional transformation) 

If  !̂  is the MLE of !  and 
 
g !( )  is a known function 

of ! , then 
  
g !̂( )

 
is the MLE of 

 
g !( ) . 
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See Lehmann (2004) and Lehmann and Casella 
(2006) for the proofs of Properties 1 - 4.  

The maximum likelihood estimation procedure can 
be expressed in the following: 

Step 1: Let the random sample   x1, x2 ,..., xn  be obtained 

from the population X with pdf 
  
f x;!( ) ; 

Step 2: Determine the likelihood function of the sample 

  x1, x2 ,..., xn , as shown in (2); 

Step 3: Detect  !̂  such that 
  
L !̂( )  reaches a maximum, 

as shown in (3). 

3.3. Bayesian Method 

The Bayesian estimator is an estimator that 
minimizes the posterior expected value of a loss 
function (that is, the posterior expected loss), such that 
it maximizes the posterior expectation of a utility 
function, or the posterior likelihood function. 

The Bayesian estimation technique treats the 
parameter as a random variable. Thus, one can assign 
a probability distribution to indicate the trust of the 
actual value of the parameter. This is a subjective or 
prior distribution that is based on the opinions of 
experienced researchers, and is established before the 
data are used. Bayes’ Theorem gives the conditional or 
posterior distribution of the parameters given the data 
by combining the existing prior information together 
with the data information. 

Theoretically, we let   X1, X2 ,..., Xn  be a random 

sample with pdf 
  
f x,!( )  or 

  
f x |!( ) , where !  are the 

parameters to be estimated. The pdf of !  is defined as 
the prior distribution of !  and is denoted by 

 
h !( ) . The 

conditional density or posterior distribution, 

  
k ! | x1, x2 ,..., xn( ) , of !  for the sample   x1, x2 ,..., xn  is 
given by:  

  

k ! | x1, x2 ,..., xn( ) =
h !( ) f xi |!( )

i=1

n

"

h !( ) f xi |!( )
i=1

n

" d!
#$

+$

%
.         (4) 

Let  !̂  be an estimator of !  and 
  
L !̂ ,!( )  be the loss 

function. Then the posterior expected loss is given as: 

  
g !̂( ) = L !̂ ,!( )"# k ! | x1, x2 ,..., xn( ) d!.         (5) 

The Bayesian estimator,  !̂ , is the estimator that 
minimizes the posterior expected loss. In this paper, we 
consider two types of loss functions, namely quadratic 
loss 

  
L !̂ ,!( ) = !̂ "!( )  and absolute loss 

  
L !̂ ,!( ) = !̂ "! . 

For quadratic loss, the posterior distribution is the 
mean square error, such that: 

  
g !̂( ) = !̂ "!( )

2

"#

+#

$ k ! | x1, x2 ,..., xn( ) d!.         (6) 

Let 
  
g ' !̂( ) , so that : 

  
!̂ k ! | x1, x2 ,..., xn( )
"#

+#

$ d! = !
"#

+#

$ k ! | x1, x2 ,..., xn( ) d!  

such that: 

  
!̂ = !

"#

+#

$ k ! | x1, x2 ,..., xn( ) d!          (7) 

as 

 
  

k ! | x1, x2 ,..., xn( )
"#

+#

$ d! =1.  

For the absolute loss, the posterior distribution is 
the mean absolute error, as shown in the following: 

  

g !̂( ) = !̂ "!
"#

+#

$ k ! | x1, x2 ,..., xn( ) d!

        = !̂ k ! | x1, x2 ,..., xn( )
"#

!̂

$ d! "!̂ k ! | x1, x2 ,..., xn( )
!̂

+#

$ d!

   " !k ! | x1, x2 ,..., xn( )
"#

!̂

$ d! + !k ! | x1, x2 ,..., xn( )
!̂

+#

$ d!.

(8) 

Set: 

  
g ' !̂( ) = 0 , we get 

  
k ! | x1, x2 ,..., xn( )

"#

!̂

$ d! = k ! | x1, x2 ,..., xn( )
!̂

+#

$ d!.  

In addition, we have: 

  
k ! | x1, x2 ,..., xn( )

"#

!̂

$ d! + k ! | x1, x2 ,..., xn( )
!̂

+#

$ d! =1.  

Thereafter, we obtain: 

  
k ! | x1, x2 ,..., xn( )

"#

!̂

$ d! = k ! | x1, x2 ,..., xn( )
!̂

+#

$ d! = 1
2

.  

Based on the above discussion, the procedure for 
the Bayesian method can be expressed in the following 
steps: 
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Step 1: Find the prior distribution, 
 
h !( ) ; 

Step 2: Calculate 
  
h !( ) f xi |!( )

i=1

n

"
 
and 

  
h !( ) f xi |!( )

i=1

n

"
#$

+$

% , 

and thereafter derive the posterior distribution; and 

Step 3: Minimize the posterior expected loss to find the 
estimator of ! .  

We discuss some examples in the next section to 
illustrate the methods discussed above. 

4. EXAMPLES 

In this section, we provide examples for each of the 
three universal methods that have been discussed 
above. 

4.1. Moment Method 

We first provide an example of the moment method. 

Example 1 

Assume that   X1, X2 ,..., Xn  is a random sample from 
a population X with pdf given by: 

  

f x;!,"( ) =
1

! # "
,  if x $ !;"( )

0,          if x % !;"( )

&

'
(

)
(

.  

We wish to obtain estimates of the parameters !  
and !  using the moment method. 

Solution 

Let X have a uniform distribution, 
   
X !UNIF 0,!( ) . 

Therefore: 

  

E X( ) = ! +"2

Var X( ) = E X 2( ) # E X( )$
%

&
'

2
=

! #"( )2

12

E X 2( ) =
! #"( )2

12
+ E X( )$
%

&
'

2
.

 

In addition, we have:   M1 = X .  

By the moment method, 
  
E X( ) = M1 , so that: 

  
! +"

2
= X #! +" = 2X .           (9) 

According to the moment method, we have:  

  
E X 2( ) = M2 =

1
n

Xi
2

i=1

n

! , 

such that: 

 
  

! "#( )2

12
+ E X( )$
%

&
'

2
=

1
n

Xi
2

i=1

n

( .  

Thereafter, we obtain: 

  

! "#( )2
=12 1

n
Xi

2

i=1

n

$ " E X( )%
&

'
(

2)

*
++

,

-
.. =12 1

n
Xi

2

i=1

n

$ " X
2)

*
++

,

-
..

=12 1
n

Xi " X( )
2

i=1

n

$
)

*
++

,

-
...

 

Hence: 

  
! "# =

12
n

Xi " X( )
2

i=1

n

$ .  

In addition, we have: 

  
2! = 2X + 2 3

n
Xi " X( )

2

i=1

n

# .  

Therefore: 

  
! = X +

3
n

Xi " X( )
2

i=1

n

#  and 
  
! = X "

3
n

Xi " X( )
2

i=1

n

# .  

Estimation of !  and !  by the moment method is 
given by: 

   
!! = X "

3
n

Xi " X( )
2

i=1

n

# and 
   
!! = X +

3
n

Xi " X( )
2

i=1

n

# .  

4.2. Maximum Likelihood Method 

We now provide an example of the maximum 
likelihood method. 

Example 2  

Let   X1, X2 ,..., Xn  is a random sample from 
population X with pdf given by: 

  

f x,!( ) =
1"!( ) x"! , if x # 0,1( )

0,               if x $ 0,1( )

%
&
'

('
.  

What is the maximum likelihood estimate of ! ? 
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Solution 

The likelihood function of the random sample has 
the following form: 

  
L !( ) = f xi ;!( )

i=1

n

" .   

Thereafter, we obtain: 

  

log L !( ) = log f xi ;!( )
i=1

n

"
#

$
%%

&

'
(( = log

i=1

n

) f xi ;!( ) = log
i=1

n

) 1*!( ) xi
*!+

,
-
.

= n log 1*!( ) *! log
i=1

n

) xi( ) .
 

It is necessary to maximize 
  
log L !( )  

with respect to 
! , as follows: 

  

d log L !( )
d!

=
d

d!
n log 1"!( ) "! log

i=1

n

# xi( )
$

%
&

'

(
)

=
"n

1"!
" log

i=1

n

# xi( ) .
 

Solving 
  

d log L !( )
d!

= 0  yields: 

  

1
1!"

= !
1
n

log
i=1

n

# xi( ) = !log x  or 
  
! =1+ 1

log x
.  

The maximum value of !  can be represented by 
examining the second derivative, so the estimate of !  
is given by: 

  
!̂ =1+ 1

log x
.  

4.3. Bayesian Method 

Finally, we provide an example of the Bayesian 
method. 

Example 3 

Let   X1 =1, X2 = 2  be a random sample,   n = 2 , from 
a distribution where the pdf is described by: 

  
f x |!( ) = 3

x

"

#
$
%

&
'! x 1(!( )3(x

; x = 0,1,2,3.  

If the prior density function of !  is: 

  

h !( ) =
k,   if ! " 1

2
,1

#

$
%

&

'
(

0,   otherwise

)

*
+

,
+

.  

What is the posterior density function of ! ? 

Solution 

According to the assumption, we have: 

  
h !( )

1/2

1

" d! =1  and 
  

k
1/2

1

! d" =1 ;  

where:  

  

h !( ) f xi |!( )
i=1

n

" = f x1 |!( ) f x2 |!( ) h !( )

=
3
x1

#

$
%%

&

'
((!

x1 1)!( )3)x1 3
x2

#

$
%%

&

'
((!

x2 1)!( )3)x2 2

= 2
3
x1

#

$
%%

&

'
((

3
x2

#

$
%%

&

'
((!

x1+x2 1)!( )6)x1)x2

= 2 3
1

#

$
%
&

'
(

3
2

#

$
%
&

'
(! 3 1)!( )3

=18! 3 1)!( )3

 

  
h !( ) f xi |!( )

i=1

n

" d!
#$

+$

% = 18! 3 1#!( )3

1/2

1

% d! = 9
140

.  

The conditional distribution with sample 

  X1 =1, X2 = 2  is given by: 

  

k ! | x1 =1, x2 = 2( ) =
18! 3 1"!( )3

9
140

= 280! 3 1"!( )3
.  

Therefore, the posterior distribution of !  is: 

  

k ! | x1 =1, x2 = 2( ) =
280! 3 1"!( )3

, if ! # 1
2

,1
$

%
&

'

(
)

0,                     otherwise

*

+
,

-
,

.  

We discuss the advantages and disadvantages of 
the three universal approaches in the next section. 

5. ADVANTAGES AND DISADVANTAGES OF THE 
UNIVERSAL APPROACHES 

The three universal methods of statistical inference 
to determine point estimates are the moment, 
maximum likelihood, and Bayesian methods. These 
approaches can be used to calculate precise values of 
the parameters or moments when the data set have no 
missing or incomplete values. This is the primary 
advantage of the universal methods. In addition, these 
methods are easy to apply and involve simple 
computer algorithms. However, in practice, it is often 
the case that data sets are encountered with missing or 
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incomplete values, which is the principal disadvantage 
of these approaches.  

Cases of missing or incomplete data are a 
widespread issue that is frequently encountered in, for 
example, in the health, education and transportation 
fields, among others. This issue arises for many 
reasons, such as respondents not answering certain 
items in survey questions, non-acceptance and 
incomprehensible responses, among others (for further 
details, see Schafer and Graham (2002)). The issues 
related to missing and incomplete data can also be 
classified as two different types, namely missing 
outcomes and missing covariates. 

The issues related to the estimation of parameters 
or moments in non-linear regression models with 
missing or incomplete data have been considered in a 
variety of topical areas, including the following: Wang 
et al. (2002) executed a JCL estimator to estimate the 
parameters in logistic regression with missing 
covariates. This method was extended by Hsieh et al. 
(2009) and Lee et al. (2012) in their respective 
research. In this vein, Lukusa et al. (2016) analyzed a 
semiparametric inverse probability weighting (SIPW) of 
a zero-inflated Poisson (ZIP) regression model with 
missing covariates. 

It is clear that it is both meaningful and necessary to 
extend classical methods such as moment, maximum 
likelihood, and Bayesian methods to obtain point 
estimates for statistical inference to be useful when the 
data set contains missing or incomplete values. For 
further details concerning this issue, reference is made 
to Little (1992), Horton and Kleinman (2007), and Pho 
et al. (2018, 2019b), among others.  

We discuss practical applications of the three 
universal approaches to Economics, Business and 
Decision Sciences in the next section. 

6. APPLICATIONS IN ECONOMICS, BUSINESS AND 
DECISION SCIENCES 

Estimation has been applied in many cognate fields, 
and is important in Economics, Finance, Business, and 
Decision Sciences, among other disciplines, because it 
can be used to determine how large-scale activities 
may develop, plan distributions for workers, buy 
materials more efficaciously, estimate project 
revenues, costs, and profits, and so on.  

 

We review the applications of the methods 
discussed above to Economics, Business and Decision 
Sciences in the next sub-section. 

6.1. Economics 

Estimation methods have been used extensively for 
time series and panel data in Economics over an 
extended period. Sargan (1958) presented estimation 
methods of univariate and multivariate economic time 
series relationships using instrumental variables. 
Sargan (1961) introduced maximum likelihood 
estimation of economic time series relationships 
together with autoregressive residuals. Klein and 
Ozmucur (2002) provided estimation of China’s 
economic growth rate. Chevillon and Hendry (2005) 
considered non-parametric direct multi-step estimation 
for forecasting economic processes.  

Chen, Favilukis and Ludvigson (2013) presented 
estimation of economic models with recursive 
preferences. Rizal, Sahidin and Herawati (2018) 
introduced economic value estimation of mangrove 
ecosystems in Indonesia. Further interesting empirical 
examples in economics have been considered in 
Gordois et al. (2012), Teulings and Zubanov (2014), 
Hoderlein et al. (2017), and Cao et al. (2019), among 
others. 

6.2. Business  

In addition to estimation that has been widely used 
in Economics, estimation is also very popular in 
Business. Taylor and McGuire (2007) introduced a 
synchronous bootstrap to account for dependencies 
between lines of business in the estimation of the loss 
reserve prediction error. Anderson and Sherman 
(2010) applied the Fermi estimation technique to 
business problems. Smith (2013) developed sampling 
and estimation methods for use in business surveys. 
Obaidullah (2016) considered revisiting estimation 
methods of business and related tax incentives. For 
further interesting practical examples, see Yong and 
Yuanyuan (2007), Pomenkova (2010), and Casciano et 
al. (2011), among others.  

6.3. Portfolio Optimization in Decision Sciences 

There have also been several applications of the 
universal methods in Decision Sciences. The theory 
underlying Decision Sciences play an extremely 
important and significant role in the world of science  
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and affects all aspects of decision making in the real 
world. A scientific theory is an explanation of a certain 
area of the natural world that can be tested repeatedly, 
using empirical, numerical or experimental data. 
Published scientific theories have stood up to scientific 
scrutiny and have contributed comprehensively to the 
accumulation of scientific knowledge.  

The first field in decision sciences which uses the 
methods discussed in the paper to obtain an optimal 
solution is portfolio optimization. Some definitions and 
theory for this issue are introduced by Markowitz 
(1952). Pouya et al. (2016) solved the multi-objective 
portfolio optimization problem using invasive weed 
optimization. Fouque et al. (2017) developed portfolio 
optimization and stochastic volatility asymptotics. 
Olivares et al. (2018) provided a robust perspective on 
transaction costs in portfolio optimization. For further 
interesting practical applications, see Chen (2015), 
Pinto et al. (2015), Macedo et al. (2017) and Dai and 
Wen (2018), among others. 

6.4. Bayesian Estimation 

Bayesian estimation plays a very important and 
meaningful role in practical applications. As interesting 
examples, Schütt et al. (2016) introduced pain free and 
accurate Bayesian estimation of psychometric 
functions for (potentially) overdispersed data. Dupin et 
al. (2017) provided Bayesian estimation of the global 
biogeographical history of the Solanaceae. Chib et al. 
(2018) presented Bayesian estimation and 
comparisons of moment condition models. Bernhard et 
al. (2019) analyzed Bayesian estimation of the specific 
shear and bulk viscosity of quark-gluon plasma. For 
further practical applications, see Matzke et al. (2015), 
Angelis et al. (2017) and Marsman et al. (2019), among 
others. 

6.5. Other Disciplines 

The applications in decision sciences are diverse 
and plentiful. There have been many research papers 
that have considered this issue, with the following 
examples. Arvai et al. (2004) analyzed the teaching of 
students to obtain superior decisions about the 
environment based on lessons in the decision 
sciences. Pidgeon and Fischhoff et al. (2011) 
introduced the role of the social and decision sciences 
in communicating uncertain climate risks. Chang,  
McAleer and Wong (2017) evaluated the connections  
 

among decision sciences, management information, 
and financial economics.  

Chang, McAleer and Wong (2018) evaluated the 
connections among the decision sciences and some 
related cognate disciplines, such as economics, 
finance, business, and big data. Pho et al. (2019a) 
presented applications of the distribution functions in 
statistics to decision sciences. Pho et al. (2019c) 
provided applications of the optimization solution to 
decision sciences. Furthermore, readers may refer to 
the useful practical contributions of Mettler (2010), 
Haward and Janvier (2015), Pagell et al. (2019), 
among others. 

7. CONCLUDING REMARKS  

The paper presented a detailed and comprehensive 
approach to the theory and practical application of 
three universal methods in statistical inference for point 
estimation, namely the moment, maximum likelihood, 
and Bayesian methods. In addition, we discussed the 
advantages and dis-advantages of the three 
approaches, and we reviewed the practical applications 
of the three methods in Economics, Business and 
Decision Sciences. 

It can be seen that the three universal approaches 
are popular for obtaining point estimates, and can 
provide precise values when the data set has no 
missing values. In addition to this advantage, the 
approaches are easy to apply and incorporate into 
simple algorithms. Nevertheless, in practice, we often 
encounter data sets that contain missing values. This is 
the primary disadvantage of these methods.  

In the paper, we also introduced some methods to 
deal with the missing data problem that can be used as 
a combination and extension of the universal methods 
to analyze many important problems in the literature 
(see, for example, Tian and Pho (2019), Tuan et al. 
(2019), Truong et al. (2019), Chang et al. (2019) and 
Ly et al. (2019a, b), among others, for practical 
applications in Economics and Finance).  
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