
62 Journal of Reviews on Global Economics, 2012, 1, 62-81  

 
 E-ISSN: 1929-7092/12  © 2012 Lifescience Global 

Study of the Tail Dependence Structure in Global Financial Markets 
Using Extreme Value Theory 

Jian Wua,#, Zhengjun Zhangb,* and Yong Zhaoc,# 

a
School of Economics and Management, Tsinghua University, Beijing 100084, China 

b
Department of Statistics, University of Wisconsin, Madison, WI 53706, USA 

c
Department of Finance, Investment and Banking, University of Wisconsin, Madison, WI 53706, USA 

Abstract: The presence of tail dependencies invalidates the multivariate normality assumptions in portfolio risk 
management. The identification of tail (in)dependencies has drawn major attention in empirical financial studies. Yet it is 
still a challenging issue both theoretically and practically. Previous studies based on either a restrictive model or the null 

hypothesis of tail (perfect) dependence does not well describe or interpret extreme co-movements in financial markets. 
This paper examines tail dependence structures underlying a broad range of financial asset classes employing the newly 
developed tail quotient correlation coefficients. In theory, the original tail quotient correlation coefficient proposed in 

(Zhang 2008) is adapted to incorporate cases with varying data driven random thresholds. Our empirical results 
demonstrate different tail dependence structures underlying various global financial markets. Either omission or 
unanimous treatment of the tail dependence structures for different financial markets will lead to erroneous conclusions 

or suboptimal investment choices. The multivariate extreme value theory framework in this study has the potential to 
serve as an useful tool in exploiting arbitrage opportunities, optimizing asset allocations, and building robust risk 
management strategies. 
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1. INTRODUCTION 

During the past years, the world economy has 

experienced unprecedented difficulties. The 

discrepancy between normality and reality has sparked 

a lot of awareness. Moreover, interests in extreme 

events in our society, reflected partially by flashy words 

such as six-sigma-events and black swan theory (Taleb 

2007), have been popping up frequently in the Wall 

Street Journal and on CNBC. In the academic world, 

the study of Extreme Value Theory (EVT), dedicated to 

dealing with these “highly improbable” events, can be 

dated decades back. There are voluminous academic 

works on this topic, such as (Chamu 2005; de Haan 

and Resnick 1977; Embrechts, Kluppelberg and 

Mikosch 1999; Heffernan and Tawn 2004; Longin and 

Solnik 2001; Poon, Rockinger and Tawn 2004; Zhang 

2008), to name a few, which deserve more attention 

given what has happened recently. Among topics on 

EVT, the study of tail dependence structures enjoys 

particular research interest due to its potential in 

solving practical financial problems, such as portfolio 

choices, hedging strategy enhancement, and credit risk 

analysis, among others. For instance, (Longin and 

Solnik 2001) used a logistic model (also called Gumbel  
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copula) to test “extreme correlation” which is tail 

independence underlying the international equity 

markets. During the time the paper was written, 

Gumbel copula was a popular method and widely used 

in various applications. However, as pointed out in 

(Poon, Rockinger and Tawn 2004), the Gumbel copula 

was restrictive in the sense that it failed to reflect the 

wide variety of tail dependencies in reality and many 

other models. (Poon, Rockinger and Tawn 2004) used 

sub-models to measure tail dependencies and 

proposed several different tail independence structures 

to deal with the tail dependence underlying equity 

markets. They believe the international stock market 

returns tend to be asymptotically independent which, to 

us, is counterintuitive, thus puzzling, given the 

increasingly interrelated global financial markets. In this 

paper, address the limitations and puzzles among the 

aforementioned academic EVT work dealing with 

financial markets. First, we propose a better alternative 

test statistics, adapted from the tail quotient correlation 

coefficient proposed in the up-to-date work (Zhang 

2008). Second, we apply the test statistics and 

simulation framework to beyond equity markets and 

into a broad range of financial markets. We start our 

discussion with a brief introduction of the fundamentals 

of EVT. 

Extreme events, by definition, are events that rarely 

happen. Statistically speaking, they only appear in the 

tails of probability distributions. Extremal events in the 
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financial world can take a variety of forms, such as the 

stock market crash as we experienced, major defaults 

in credit risk analysis, or the collapse of risky asset 

prices. In conventional statistical analysis, we treat 

these extremal events as outliers, and leave them out 

of our view most of the time. However, what happened 

recently in the financial market highlighted the 

importance of extremal events in asset pricing, portfolio 

choice, and risk management. The Pearson correlation, 

conventionally used as a dependence measure, neither 

differentiates between large and small observations, 

nor distinguishes between positive and negative 

observations. The failure of incorporating tail 

dependence underlying the financial markets that are 

actually asymptotically dependent will probably lead to 

erroneous conclusions and suboptimal investment 

choices. 

Extreme Value Theory (EVT), in many cases, is the 

natural and most efficient way to study extremal 

events. EVT refers to a well established body of 

theories that are capable of predicting the occurrence 

of extremal events, outside the range of available data 

(Embrechts, Kluppelberg and Mikosch 1999). During 

the past decade, EVT has experienced fast 

development in the research areas of Actuarial 

Science, Risk Management, and Quality Engineering. 

As evidence, EVT is documented in a high volume of 

literature. For instance, (Diebold 1998; Neftci 2000; 

Zhang 2005) discuss EVT for the univariate cases, 

while (Bouye 2002; Buhl, Reich and Wegmann 2002; 

Heffernan and Tawn 2004; Mashal and Zeevi 2002; 

Smith 2003; Smith and Weissman 1996; Starica 1999; 

Starica 2000; Tawn 1990; Zhang and Smith 2004) 

extend the discussion of EVT to multivariate settings. 

(Longin and Solnik 2001) study the extreme correlation 

of the international equity market with the market 

directions employing EVT. The encyclopedic 

(Embrechts, Kluppelberg and Mikosch 1999) offers a 

comprehensive review of both EVT theory and its 

applications with an emphasis on the financial markets.  

Among these researches, the multivariate version is 

particularly useful in the context of financial studies, 

since almost all financial applications involve more than 

one component, which can only be addressed through 

a multivariate framework. When all the constituents of a 

financial application, for instance, different pricing 

factors for a portfolio, reach their extremal levels, 

studying their relationships, namely, the extremal, 

asymptotic or tail dependence structures (these three 

terms are often used interchangeably), provides 

valuable information about the tail behavior of these 

constituents. It is well known that simultaneously 

modeling extreme observations across sections and 

time is a difficult task. Recently, (Chamu 2005; Zhang 

2005; Zhang 2008; Zhang and Smith 2010) developed 

a rigorous estimation theory for a class of max-stable 

processes, Multivariate Maxima of Moving Maxima 

(M4) model proposed by (Smith and Weissman 1996), 

and applied this theory to model practical applications 

in the areas of Finance, Environmental Science and 

Telecommunications. More importantly, these articles 

lay out a coherent testing strategy, limiting distribution, 

and modeling framework.  

More and more empirical evidences show that 

financial asset returns appear to be tail dependent. As 

a result, models lacking tail dependent specifications 

may not be efficient in risk management and portfolio 

choices, especially during the market recession or 

expansion time. Studying tail dependencies among 

financial risk variables has drawn a lot of attention in 

finance literature. However, testing tail independence 

has been considered as a difficult and interesting open 

problem. The present analysis is based on recent 

developments, with its focus on the tail independence 

testing and computation of a tail dependence measure. 

More specifically, the multivariate extreme value 

framework proposed by (Zhang 2005) is implemented 

to study the tail dependence structures among multiple 

risky financial asset classes through the proxy of the 

time series of several financial security indices. 

Besides empirical evidences of tail dependence, 

asymmetry is another research phenomenon in the 

finance literature. However, study of asymmetry is 

beyond the scope of the paper. Interested readers are 

referred to (Hong, Tu, and Zhou, 2007, Zheng, Shi, and 

Zhang, 2012).  

The rest of the paper is organized as follows: In 

Section 2, we present the definition of the tail 

dependence measure, a brief introduction of the 

Generalized Extreme Value (GEV) distribution, the 

definition of the quotient correlation coefficient, and the 

design of the hypothesis test. As part of the theoretical 

contribution of this paper, a lemma and a theorem are 

documented in Section 2 as well, with the aim of 

extending the capability of the tail quotient correlation 

coefficient as proposed in (Zhang 2008) to addressing 

applications with varying (random) data driven 

thresholds. This section also contains an explanation of 

the data employed in this study. Section 3 

characterizes the tail dependence structures underlying 

three financial markets, and the temporal evolution of a 

tail dependence measure. The conclusion remarks 



64     Journal of Reviews on Global Economics, 2012 Vol. 1 Wu et al. 

appear in Section 4. The Appendix offers the proof of 

the new theorem discussed in Section 2. 

2. PRELIMINARIES 

2.1. Methodology 

In the literature, the univariate extreme value theory 

is by now well established as a statistical technique in 

data analysis and inference for extreme observations. 

There is also substantial writing on the theoretical 

background and statistical properties of the multivariate 

EVT framework. However, the multivariate EVT is less 

widely used in practice, especially in a higher (greater 

than 2) dimensional space, due to lack of efficient 

statistical models and estimation methods. A 

combination of max-stable processes and GARCH 

processes results in a new family of parametric model, 

capable of modeling cross-sectional tail dependence 

and tail dependence across time. Results from such 

models are well documented in (Smith 2003; Smith and 

Weissman 1996; Zhang and Smith 2004). For many 

applications in this literature, tail dependencies, and 

extremal co-movements between random variables are 

characterized by the tail dependence index as defined 

below.  

Definition 2.1: Two identically distributed random 

variable pair (X, Y) are called asymptotically 

independent if 

= lim
u x

F

P Y > u X > u( ) = 0          (1) 

where 
  
x

F
= sup x R : P X x( ) < 1{ }  as studied in 

(Ledford and Tawn 2003; Schalter and Tawn 2003; 

Zhang and Smith 2004).  is also called the bivariate 

upper tail dependence index which quantifies the 

degree of dependence of the bivariate tails. If > 0 , 

the (X, Y) pair is deemed as asymptotically dependent. 

Given this definition of tail dependence/ 
independence, the next question is how to estimate it, 
especially when the joint distribution of the random 
variables is unknown. (Zhang 2008) develops a new 
test statistic, namely, the gamma test statistic for the 
hypothesis test of tail dependence/independence. 
Employing the gamma test statistic, we test the null 

hypothesis  = 0  against the alternative hypothesis 

 > 0  without estimating  directly. The simulation 

results in (Zhang 2008) also demonstrate that when the 

null hypothesis is tail independent (i.e.  = 0 ), the 

gamma test is highly efficient. These new 
methodologies lay the theoretical foundation for this 
study. The main objective of this work is to apply these 

new theories to characterize the tail dependence 
structures underlying a broader range of financial asset 
classes.  

Specifically, the modeling steps employed in this 

study are outlined as follows: 

In the first step, the data set, which is chosen to be 

certain financial index time series, is fed into a 

Generalized Autoregressive Conditional 

Heteroscedasticity, or GARCH (Bollerslev 1986) model 

to filter out the volatilities embedded in these time 

series. After this GARCH filtering step, the resultant 

financial time series becomes approximately stationary, 

thereby far more amenable to the subsequent EVT 

estimation (Dias and Embrechts 2003; Engle 2002; 

McNeil and Frey 2000). The standardized time series 

are also called pseudo-observations. According to 

(Poon, Rockinger and Tawn 2004), the EVT analysis 

results are not sensitive to the parameter choice of the 

GARCH model. 

The exceedances within the standardized time 

series that are defined as observations over a specific 

threshold are then fit to an extreme value distribution, 

because modeling of the exceedances over high 

thresholds is the widely accepted approach in the 

applications of extreme value theory. The only non-

degenerate limit distribution of the exceedances over 

certain thresholds has been proven to be Generalized 

Pareto Distribution (GPD). The rigorous proof of this 

statement and the connection between GPD and 

Generalized Extreme Value distribution (GEV) can be 

found in (Pickands 1975). (Embrechts, Kluppelberg and 

Mikosch 1999) also offers detailed review and 

discussions on this issue. In this study, GEV is chosen 

as the extreme value distribution to fit the 

exceedances, since it is a more general approach. 

GEV is a convenient unifying representation of three 

types (Gumbel, Fréchet, and Weibull) of extreme value 

distributions, whose distribution functions take the 

following parametric form: 

  

H (x) = exp 1+
x μ

+

1/

         (2) 

where μ  is the location parameter, >0 is the scale 

parameter, and  is the shape parameter. One point 

worth noting is that the GEV fitting process is applied to 
the positive and negative exceedance series, 
respectively. This approach enables the model to 
distinguish the tail dependences between the financial 
booming and distressing periods. 
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With the estimated parameters from the GEV fitting 
step, the transformation formula similar to those 
proposed in (Coles and Tawn 1994) are employed to 
convert the pseudo-observations to the unit Fréchet 

scale ( μ =1, =1, =1), which is required by the 

subsequent hypothesis testing procedure. Values 
below the specific threshold are transformed based on 
their ranks. 

After the data transformation step, we can employ 

the hypothesis test to explore whether the certain tail 

dependence structure is supported by the data. In this 

study, the tail quotient correlation coefficient and the 

corresponding gamma-test (or the chi-squared test in 

this paper) as presented in (Zhang 2008) are 

implemented to determine the tail dependence 

structures underlying the selected financial time series.  

We need the following Lemma 2.2 and Theorem 2.3 

from (Zhang 2008, Lemma 9.1 and Theorem 3.2) in 

deriving a new theorem, which allows varied threshold 

values. 

Lemma 2.2: Suppose 
   
X ,  X

1
,  X

2
,…  ,  are positive 

random variables. Then 
  
X

n

a.s.

P
X  if and only if 

there are two sequences of random variables 

  1
n( ) ,   

2
n( )  such that 

   1
n( ) < X

n
X <

2
n( ) ,   n = 1,  2,  …  ,  and 

  
1

n( ) a.s.

P
1 , 

  
2

n( ) a.s.

P
1, as  n . 

In this lemma, the notation a.s. stands for 

convergence with probability 1, and P stands for 

convergence in probability. We now illustrate how to 

identify the tail dependencies based on varying 

threshold values.  

Let 

X
1
,

Y
1
,

   X
2
,

  Y
2
,

   …,

  …,

   X
n

  Y
n

          (3) 

be an independent array of unit Fréchet random 

variables. Now let 
   
U

i
,   Q

i( ) ,   i = 1,  …  , n  be a bivariate 

random sequence, where both 
 
U

i
 and 

 
Q

i
 are 

correlated and have support over 
  

0,   u(  for a high 

threshold value   u.  Let
 

X
ui
= X

i
I

X
i
>u{ }

+U
i
I

X
i

u{ }
, 

 
Y

ui
= Y

i
I

X
i
>u{ }

+ Q
i
I

X
i

u{ }
,
    i = 1,  …  , n . Then 

  

X
u1

Y
u1

, 

  

X
u2

Y
u2

, 

 

,

 

X
un

Y
un

         (4) 

is a bivariate random sequence drawn from two 

dependent random variable 
 
X

ui
 and 

 
Y

ui
. Notice that  

and 
  

Y
ui

I
Y

ui
>u{ }

  =  Y
i
I

Y
i
>u{ }( )  are independent, but 

  

X
ui

I
X

ui
u{ }

  =  U
i
I

X
i

u{ }( )  and 
  
Y

ui
I

Y
ui

u{ }
  =  Q

i
I

Y
i

u{ }( )  

are dependent. In fact, one can easily construct 
arbitrarily dependent structure for values below the 
threshold value of  u . 

Theorem 2.3: Suppose 
 
V

i
 and 

 
W

i
, 

   i = 1,…, n  are 

exceedance values (over the threshold  u ) in (4), i.e. 

  
V

i
max X

i
u,0( )  and 

  
W

i
max Y

i
u,0( ) , and U

i
 and 

Q
i
 have the distribution   e

1 u
e

1 x
,   0 < x < u . Define 

  

q
u,n

=

max
i n

u +W
i( ) / u +V

i( ){ } +
max

i n
u +V

i( ) / u +W
i( ){ } 2

max
i n

u +W
i( ) / u +V

i( ){ }
max

i n
u +V

i( ) / u +W
i( ){ } 1

,         (5) 

where  u  is a positive threshold. Then the random 

variables 
  
max
i n

(u +W
i
) / (u +V

i
)  and 

  
max
i n

(u +V
i
) / (u +W

i
)  are tail independent, i.e., 

lim
n

P
1

n
max
i n

u +W
i

u +V
i

+1 x,
1

n
max
i n

u +V
i

u +W
i

+1 y

= e
(1 e

1/u ) / x (1 e
1/u ) / y ,

       (6) 

Furthermore, as  n  the random variable 
  
q

u,n
 is 

asymptotically chi-squared distributed, i.e.,  

  
2n(1 e 1/u )q

u,n

d

4

2 ,          (7) 

where 
4

2  is chi-squared distributed random variable 

with 4 degrees of freedom. 

The limits of 
  
q

u,n
 from a broad class of bivariate 

distributions are shown to be directly related to the tail 

dependence index. The value of 
  
q

u,n
 is interpreted as 

the probability that one stock at least has a big price 
drop (negative return over  u ) given another stock 
already has a big price drop (negative return over  u ). 
In other words, this tail dependence quantity 
straightforwardly informs regulators, risk managers, 
and practitioners of the existence of extreme co-
movements in the market. This dependence measure 
is both intuitively and practically appealing. The 

following example shows q
u,n

 converges to a positive 

value with probability one. 
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Example 2.4: Suppose Z
l
, l = 1,…L,  are 

independent unit Frechét random variables with 

distribution function 
  
F(x) = exp( 1 / x), x > 0.  Let 

X = max
1 l L l1

Z
l
, Y = max

1 l L l2
Z

l
, where 

l1
> 0,  

li
l

= 1, i = 1,2.  Let 
  
c

1
= max

l L
(

l1 l2
)  and 

c
2
= max

l L
(

l2 l1
) , then 

P(X Y c
1
) = P(max

l l1
Z

l
< max

l
c
1 l2

Z
l
) = 1 , and 

  
P(Y X c

2
) = P(max

l l2
Z

l
<

  
max

l
c

2 l1
Z

l
) = 1 . 

Therefore, 
  
max

i n
Y

i
X

i{ } a.s.
c

1
, 

  
max

i n
X

i
Y

i{ } a.s.
c

2
, and 

  

q
n

a.s. c
1
+ c

2
2

c
1

c
2

1
,  as 

 n . 

As an illustration of the capability of the construction 
in Example 2.4, we show in Figure 1 the simulation 
results of various bivariate dependence structures and 
their comparison with both X  and Y  under different L 
choices from Example 2.4. It becomes obvious from 
Figure 1 that the construction in Example 2.4 is 
capable of capturing a variety of dependence 
structures. 

Certainly, there are alternative extreme dependence 

measures, such as coefficient of tail dependence 

(Ledford and Tawn 1996) derived from a sub-model, in 

the extreme value literature. In the study of the 

asymptotic dependency of equity and fixed income 

securities, (Hartmann, Straetmans, and de Vries 2004) 

use the asymptotic distribution of Ledford and Tawn’s 

coefficient of tail dependence to test the null hypothesis 

 

Figure 1: Comparison of different bivariate dependence structures with the construction in Example 2.4 under different choices 
of L. All random variables are in standard normal scales. In each subplot, we only plot the values above threshold 1.28, i.e., 
above 90% quantile. 
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of asymptotic dependence between two random 

variables. However it is not our purpose to compare 

those methods here. Our main goals are to calculate 

tail quotient correlation coefficients and to explore 

market behavior.  

Notice that in practice we may need to choose a 
threshold value based on the observed values or 

transformed values. 
 
V

i
 and 

 
W

i
 may also be 

approximated by 
  
V

i
 and

  
W

i
, respectively, where 

  
V

i
 and 

W
i
 are marginally transformed values based on a fitted 

parametric distribution or a non-parametric 
transformation method. We now present a new 
theorem, closely related to Theorem 2.3. 

Theorem 2.5: With the established notations in 

Theorem 2.3, suppose 
   
V

i,n
 and 

   
W

i,n
 are exceedance 

values (over the threshold 
  
u

n
= u

n

*
a

n
), where 

   
V

i,n

a.s.

P
V

i
,  

   
W

i,n

a.s.

P
W

i
,  

u
n

* a.s.

P
u,a

n
,a

n
/ n 0  as   n .  Define 

   

q
n
=

max
i n

u
n
+W

i,n( ) / u
n
+V

i,n( ){ }
+max

i n
u

n
+W

i,n( ) / u
n
+V

i,n( ){ } 2

max
i n

u
n
+W

i,n( ) / u
n
+V

i,n( ){ }
max

i n
u

n
+W

i,n( ) / u
n
+V

i,n( ){ } 1

.         (8) 

Then as n ,  the random variable 
  
q

n
 is 

asymptotically chi-squared distributed, i.e., 

2n(1 e
1/u

n )q
n

d

4

2 ,         (9) 

A proof of Theorem 2.4 is presented in Appendix.  

Corollary 2.6: With the established notations in 
Theorems 2.3 and 2.4, suppose  u  is the 

 
p th 

percentile of unit Fréchet distribution. Suppose 
  
X

n,p
 is 

the 
 
p th sample percentile of 

 
X

i
s, and 

  
Y

n,p
 is the 

 
p th 

sample percentile of 
 
Y

i
s. Define 

  
u

n
= min( X

n,p
,Y

n,p
) , 

then Equation (9) holds. 

Equations (8) and (9) and Corollary 2.5 together 

constitute a test statistic, namely, the chi-squared test, 

which can be used to determine whether there is tail 

dependence between two random variables. The 

corresponding hypothesis test is designed as: 

H0: X and Y are tail independent versus H1: X and Y 

are tail dependent. 

When 2(1 e
1/u

n )q
n
> , H0 is rejected in favor of 

H1, where  is the upper th percentile of the chi-

squared distribution with 4 degrees of freedom, which 
is the asymptotic distribution of the quotient statistic as 
in Eq. (8). The efficiency of the chi-squared test based 
on Theorem 2.3 has been illustrated in (Zhang 2008). 
The empirical power has been shown to be about 88%. 
In this study, the chi-squared test based on Corollary 
2.5 is applied to each local window, which comprises 
500 consecutive observations, and the local window 
will slide from the beginning to end of each time series 
to expose the temporal variation of the tail dependence 
underlying different financial markets. In each window, 

 u  is set to be u
n
. 

We argue that changing a fixed threshold  u  to a 

randomly varying threshold u
n
 makes V

i
 and W

i
 being 

dependent, and 
   
V

i,n
 and 

   
W

i,n
 being dependent as well. 

As sample sizes tend to infinity, the varying threshold 

 
u

n
 tends to infinity. We really deal with tail values. 

Each of those pair tail values tends to be independent, 
i.e. asymptotically independent. In other words, Eqn. 
(9) does test the null hypothesis of tail independence. 
We have not seen any other statistics possess this 
property. Based on this, it may be reasonable and safe 
to say that our work is the first to conceptually solve a 
tail independence testing problem. 

2.2. Data 

As mentioned in the introduction, a significance of 

this study is the extension of the financial asset classes 

under consideration beyond the equity assets into other 

asset categories, such as fixed income assets and 

commodity assets. The time series of multiple financial 

security indices will be employed as proxies for the 

corresponding asset classes to explore the tail 

dependence structures embedded in them. 

Specifically, for the equity market, we focus on the 

tail dependence structures underlying three major 

European indices, namely, Financial Times index 

(FTSE 100), Cotation Assistee en Continu (CAC 40), 

and Deutscher Aktien IndeX (DAX), rather than the 

three U.S. indices (i.e. DJIA, S&P 500, and NASDAQ), 

which have been well studied in a number of previous 

works (Zhang 2005). The time horizon chosen for these 

equity indices ranges from November 26, 1990 to 

October 20, 2008, which is the maximum common time 

horizon for these three indices. In an effort to test the 

tail dependence structure across different financial 

asset classes, an equity index and a fixed income 

index are paired. The S&P 500 index and the yield on 
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the U.S. 10-year Treasury Note are used as the proxies 

for these two markets, respectively. Similarly, the 

maximum common time horizon for these two indices, 

which ranges from January 2, 1962 to October 20, 

2008, is chosen for these two time series. As another 

test on the cross asset class tail dependence structure, 

the DJIA index (used to proxy the equity market) and 

the Dow Jones AIG Commodity index (used to proxy 

the commodity market) are paired for the tail 

dependence test. Based on the same rationale, 

January 3, 1991 to October 20, 2008 is determined to 

be the time horizon for these two time series. 

For all of the security indices mentioned above, 

daily price data are retrieved from Yahoo! Finance for 

subsequent analysis in this study. 

3. RESULTS 

3.1. Data Processing and Transformation 

Before the actual tail dependence modeling and 

testing step, the daily price time series are first 

converted to logarithmic return series, due to the 

statistically appealing properties associated with the 

return series (Cochrane 2005; Tsay 2005). As an 

illustration, the negative logarithmic returns of the three 

selected equity indices are plotted in Figure 2. From 

this figure, we are able to identify extremal return 

observations, jumps in returns, and clustering in 

volatility from all three equity index return series. 

As indicated in (Embrechts, Kluppelberg and 

Mikosch 1999), the EVT modeling of the tails of a 

distribution requires the observations to be stationary. It 

is well known that most financial return series exhibit 

certain degrees of autocorrelation, and more 

importantly, heteroscedasticity. In order to mitigate their 

effects on the subsequent EVT modeling, the raw 

return series are filtered by a GARCH(p,q) model. 

Here, we do not assume the financial time series under 

consideration are GARCH, rather we employ a GARCH 

process to model volatilities. From this GARCH filtering 

step, the conditional standard deviations embedded in 

these raw return time series are extracted. Then the 

original return time series are divided by estimated 

conditional standard deviations to obtain pseudo-

observations. (Poon, Rockinger and Tawn 2004) points 

out that the tail dependence results are not sensitive to 

the choices of the volatility filters. As such, the results 

presented in this study are all based on a GARCH(1,1) 

 

Figure 2: Negative logarithmic return time series of the three equity indices: FTSE 100, CAC 40, and DAX. Daily returns ranging 
from November 26, 1990 to October 20, 2008 are plotted. 



Study of the Tail Dependence Structure in Global Financial Markets Journal of Reviews on Global Economics, 2012 Vol. 1      69 

model fitting. Yet, more sophisticated GARCH models, 

such as heavy-tail GARCH models (Mikosch 2003; 

Nelson 1991), or GARCH models with weakly 

stationary residuals as studied in (Lee and Hansen 

1994; Shinki and Zhang 2008), can be treated as 

useful extensions to this body of work. The 

GARCH(1,1) filtered conditional standard deviations 

present in all three equity index time series are shown 

in Figure 3.  

From Figure 3, it becomes obvious that all return 

time series demonstrate variations in volatility to certain 

degree. The conditional standard deviation time series 

reminds us of several familiar instances when the 

financial markets experience excess volatilities, such 

as the 1997-1998 Russian credit crisis and Asian 

financial crisis, and the 2001-2002 tech-bubble. 

Additionally, all three time series in Figure 3 peak at the 

right end, which put the intensity of the financial turmoil 

that we are experiencing right now into historical 

perspective. The conditional standard deviation series 

are employed subsequently to standardize the raw 

return series. The devolatilized return series are also 

called pseudo-observations, and they have drawn 

attentions in a large number of financial data analysis, 

e.g. (Dias and Embrechts 2003; Engle 2002; McNeil 

and Frey 2000), to name a few. As will be shown 

shortly (Figures 5-7) with the unit Fréchet 

transformation plots, one can immediately tell that the 

devolatilized time series are more stationary in 

comparison to their original counterparts, but the 

GARCH fitting process does not eliminate the 

persistency of the extremal jumps present in the return 

series. This result is consistent with that reported in 

(Poon, Rockinger and Tawn 2004), although 

heteroscedasticity is a major source of tail 

dependence, it cannot explain all the market co-

movement on its own. 

The next task is to fit the exceedance data within 
the pseudo-observation series over some high 
thresholds ( u ) to a generalized extreme value (GEV) 
distribution. In the empirical study, we choose the 
threshold  u  in a way to leave ten percent of the 
pseudo-observations above/below u , in order to carry 
out reasonable parameter estimation. The parametric 
formula of the GEV distribution as given in Eq. (2) is 
employed in a maximum likelihood estimation (MLE) to 
determine the three parameters, namely, the location 

 

Figure 3: The conditional standard deviation time series corresponding to FTSE 100, CAC 40, and DAX equity indices from a 
GARCH(1,1) filtering process. 
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parameter μ , the scale parameter , and the shape 

parameter , in the GEV distribution. As mentioned in 

the methodology section, the GEV fitting is applied to 
both the positive and negative pseudo-observation time 
series, separately. The estimated parameters from the 
GEV fitting are summarized in Tables 1 and 2 for the 
negative and positive exceedance series, respectively. 
From the last column of both Tables 1 and 2, we notice 

that the shape parameter  is larger than zero. More 

importantly, the confidence intervals for all  

estimations are positive, and do not include zero. This 
can be treated as strong evidence that the probability 
distributions of the underlying financial asset returns 
are heavy-tailed. Hence, the conventional thin-tailed 
distribution (e.g. normal distribution) based modeling 
approach turns out to be not appropriate.  

In order to provide an intuitive assessment of the 

GEV fitting, the empirical Cumulative Distribution 

Function (CDF) of the positive tail exceedances within 

the pseudo-observation series of the CAC 40 equity 

index along with its CDF fitted from the GEV 

distribution are illustrated together in Fig Figure 4. 

From this figure, we can tell that the fitted distribution 

closely follows the exceedance data. 

In order to isolate dependence aspects from 

marginal distributional features, it is convenient to 

transform the pseudo-observation series to a standard 

marginal distribution. Theoretically, the pseudo-

observation series can be transformed to any 

distribution, as long as the distribution function is 

continuous and strictly increasing. However, the 

hypothesis testing statistics and the corresponding 

asymptotic distribution as presented in Eqs. (7) and (8) 

require the data to be under the Fréchet scale. Hence, 

in this study, we transform the pseudo-observation 

series by the inverse of the unit Fréchet distribution 

function based on the three parameters estimated from 

the GEV fitting step. As mentioned before, the positive 

and negative pseudo-observation series are fitted into 

GEV distributions separately. Accordingly, they are 

transformed into the unit Fréchet distribution separately 

as well. The parameters used for this transformation 

step come from the different sets of parameter 

estimations reported in Tables 1 and 2. With these 

parameters, the formula reported in (Coles and Tawn 

1994) are employed for transformation. As an 

illustration of the transformation results, the 

standardized logarithmic return series, together with 

the transformed positive and negative exceedance 

series under the unit Fréchet scale, are presented in 

Figures 5-7 for the FTSE 100, CAC 40, and DAX equity 

indices, respectively. 

Table 1: Estimations of Parameters from GEV Fitting of Standardized Negative Exceedance Series. 

Indices 
 
N

u
 μ (CI)  (CI)  (CI) 

FTSE 100 459 1.4853 0.2850 0.3979 

  [1.4525, 1.5180] [0.2572, 0.3159] [0.2757, 0.5201] 

CAC 40 465 1.5122 0.2836 0.3385 

  [1.4813, 1.5431] [0.2581, 0.3117] [0.2369, 0.4402] 

DAX 467 1.4638 0.2584 0.5064 

  [1.4350, 1.4926] [0.2323, 0.2873] [0.3887, 0.6241] 

N
u

 is the number of exceedances used in the GEV fitting, and the threshold is chosen as 
  
u = 1.2 . 

 

Table 2: Estimations of Parameters from GEV Fitting of Standardized Positive Exceedance Series 

Indices 
 
N

u
 μ (CI)  (CI) (CI) 

FTSE 100 497 1.4360 0.2190 0.3695 

  [1.4128, 1.4591] [0.1995, 0.2404] [0.2686, 0.4705] 

CAC 40 471 1.4367 0.2271 0.3712 

  [1.4118, 1.4616] [0.2061, 0.2501] [0.2638, 0.4785] 

DAX 473 1.4245 0.2222 0.3759 

  [1.3995, 1.4496] [0.2011, 0.2455] [0.2582, 0.4936] 

N
u

 is the number of exceedances used in the GEV fitting, and the threshold is chosen as 
  
u = 1.2 . 
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Figure 4: Comparison of the empirical CDF of the positive tail exceedances within the pseudo-observation series of the CAC 40 
equity index with its CDF fitted from the GEV distribution. 

 

 

Figure 5: Standardized FTSE 100 negative logarithmic return series and the unit Fréchet transformation of both the positive and 
negative exceedance series. 

Figures 5-7 reveal that the unit Fréchet 

transformation is a monotonic transformation of the 

exceedances, in the sense that the exceedances within 

all of the return time series retain their relative 

magnitudes before and after transformation. Direct 

observation of the series also makes it clear that 

among these three indices, the CAC 40 index looks 

more “similar” to the DAX index than to the FTSE 100 

index. This is reflected through the fact that the 

exceedances with high magnitudes in both the positive 

and negative exceedances series appear at the same 

time on both the CAC 40 and DAX indices. Such a 

pattern is not apparent when we pair FTSE 100 with 

either CAC 40 or DAX indices. Hence, we have reason 

to conjecture that the CAC-DAX index pair will have 

higher tail dependence than both the FTSE-CAC and 

FTSE-DAX pairs. This intuition is further proven 

through the hypothesis test and the computation of the 

tail dependence index ( ) presented in the following 

sections. 

The same data processing and transformation 

procedure performed above for the three equity indices 

are applied on all the time series employed in both the 



72     Journal of Reviews on Global Economics, 2012 Vol. 1 Wu et al. 

 

Figure 6: Standardized CAC 40 negative logarithmic return series and the unit Fréchet transformation of both its positive and 
negative exceedance series. 

 

 

Figure 7: Standardized DAX negative logarithmic return series and the unit Fréchet transformation of both its positive and 
negative exceedance series. 
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equity-fixed income and the equity-commodity tail 

dependence tests. In Table 3 and 4, the GEV fitting 

parameter estimations are reported for the negative 

and positive exceedance series, respectively. The plots 

for the pseudo-observation time series as well as their 

unit- Fréchet transformation plots are omitted because 

of their similarities to the results exhibited in Figures 5-

7 for the equity indices. A noticeable result from both 

Tables 3 and 4 is that both the parameter estimation 

and the confidence intervals for the shape parameter 

 are away from zero, which is same as the heavy-

tailed distribution we have observed on the equity 

markets. This testing result also implies the necessity 

of the EVT treatment of these financial markets. 

3.2. Hypothesis Testing 

After all pseudo-observation time series are 

transformed to the unit- Fréchet distribution, we can 

employ hypothesis test to determine whether certain 

tail-dependence structure is supported by the data. In 

this study, the tail quotient correlation coefficient and 

the corresponding chi-squared-test presented in our 

new Theorem 2.4 are applied for the hypothesis testing 

task. The subsets of the pseudo-observation data are 

used to control the Type I error. According to this 

scheme, 500 consecutive pseudo-observation points 

are sampled from all of the financial time series, and a 

full enumeration local window scheme is employed to 

study the temporal variation of the tail dependence 

structure as well. In each test, we use the 95th 

percentiles of the data as the threshold value. Thus, 

the test significance level is chosen as  = 0.05 . The 

test results are summarized in Table 5 for the three 

selected equity indices. In this table, Index Pairs 

column indicates the two pseudo-observation time 

series paired for the hypothesis test, which plays the 

role of the V
i
 and W

i
 series in Eq. (5) or the 

  
V

i
 and 

  
W

i
 

series in Eq. (7). For instance, (FTSEn, CACp) means 

that the test results are reported by calculating the 

quotient correlation coefficient with its sample coming 

from the negative exceedance series of the FTSE 100 

index and the positive exceedance series of the CAC 

40 index. Other testing pairs are defined similarly. In 

Table 3: Estimations of Parameters from GEV Fitting of Standardized Negative Exceedance Series 

Indices 
 
N

u
 μ  (CI)  (CI) (CI) 

S&P 500 1214 1.4495 0.2562 0.5296 

  [1.4316, 1.4674] [0.2395, 0.2740] [0.4540, 0.6053] 

10-Year Note 1073 1.4758 0.2874 0.5504 

  [1.4543, 1.4973] [0.2671, 0.3091] [0.4672, 0.6335] 

DJIA 453 1.4401 0.2619 0.6140 

  [1.4098, 1.4704] [0.2330, 0.2944] [0.4816, 0.7464] 

DJ-AIG 459 1.4767 0.2752 0.4546 

  [1.4458, 1.5076] [0.2480, 0.3054] [0.3380, 0. 5712] 

N
u

 is the number of exceedances used in the GEV fitting, and the threshold is chosen as u = 1.2 . 

 

Table 4: Estimations of Parameters from GEV Fitting of Standardized Positive Exceedance Series 

Indices 
 
N

u
 μ (CI)  (CI)  (CI) 

S&P 500 1228 1.4563 0.2478 0.4056 

  [1.4392, 1.4733] [0.2329, 0.2637] [0.3347, 0.4766] 

10-Year Note 1161 1.4840 0.2943 0.4997 

  [1.4626, 1.5054] [0.2747, 0.3153] [0.4186, 0.5809] 

DJIA 490 1.4497 0.2420 0.3679 

  [1.4227, 1.4767] [0.2193, 0.2670] [0.2498, 0.4861] 

DJ-AIG 476 1.4544 0.2442 0.4427 

  [1.4276, 1.4812] [0.2207, 0.2701] [0.3306, 0.5548] 

N
u

is the number of exceedances used in the GEV fitting, and the threshold is chosen as 
  
u = 1.2 . 
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Table 5, the Rejection Rate column reports the 

percentage of rejecting H0, when we slide the local 

window along the time series. 

Table 5: The Hypothesis Test Results for the Tail 

Dependence Structure Underlying the Three 
Selected Equity Indices 

Index Pairs Rejection Rate 

(FTSEp, CACp) 0.4811 

(FTSEn, CACn) 0.3141 

(FTSEn, CACp) 0 

(FTSEp, CACn) 0 

(FTSEp, DAXp) 0.5302 

(FTSEn, DAXn) 0.3084 

(FTSEn, DAXp) 0.011 

(FTSEp, DAXn) 0.0588 

(CACp, DAXp) 0.6153 

(CACn, DAXn) 0.4015 

(CACn, DAXp) 0 

(CACp, DAXn) 0.0428 

 

In the discussion that follows, we define the 

exceedance pair consisting of the constituent time 

series with the same sign (i.e. positive v.s. positive or 

negative v.s. negative) to be same-sign-pair and the 

pair including the time series with the opposite signs 

(i.e. positive v.s. negative or negative v.s. positive) to 

be opposite-sign-pair. The hypothesis test results 

summarized in Table 5 suggest that the degree of 

extremal co-movements in the same-sign-pairs with 

their constituent time series coming from different 

equity indices (for instance, FTSEp-CACp or CACn-

DAXn), are high in general, as indicated by the high 

rejection rates for the corresponding pairs. A larger 

rejection rate means that the null hypothesis of the chi-

squared test is rejected over a bigger portion of the 

time horizon. On the contrary, the opposite-sign-pairs 

of different equity indices tend to move independently 

in the tail parts no matter whether the two constituent 

exceedance time series come from the same index or 

from different indices. This conclusion can be drawn 

from the small rejection rates reported for these pairs in 

Table 5. We can see that the rejection rates for all the 

opposite-sign-pairs are smaller in magnitudes when 

compared with the rejection rates for the same-sign-

pairs. The test results for several opposite-sign-pairs 

are even zero, meaning nowhere on the time series 

exhibits tail dependence between the two underlying 

exceedance series. Detailed observations of the results 

in Table 5 also reveal that the degree of tail 

dependence between the CAC 40 and DAX indices is 

higher than that either between FTSE 100-CAC 40 pair 

or between FTSE 100-DAX pair, as indicated by the 

higher rejection rates for the same-sign-pairs consisting 

of the CAC 40 and DAX indices. This result is 

consistent with our conjecture by just looking at the 

pseudo-observation time series illustrated in Figures 5-

7.  

Following the same hypothesis testing procedure, 

the tail dependence structures underlying the equity-

fixed income market pair, as well as the equity-

commodity market pair are explored. The hypothesis 

test results are summarized in Table 6 and 7, 

respectively. 

Table 6: The Hypothesis Test Results for the Tail 
Dependence Structure Underlying the Equity 
and Fixed Income Markets 

Index Pairs Rejection Rate 

(SP500p, 10YEARp) 0.0686 

(SP500n, 10YEARn) 0.0744 

(SP500n, 10YEARp) 0.1841 

(SP500p, 10YEARn) 0.0939 

 

Table 7: The Hypothesis Test Results for the Tail 
Dependence Structure Underlying the Equity 
and Commodity Markets 

Index Pairs Rejection Rate 

(DJIAp, DJAIGp) 0.0579 

(DJIAn, DJAIGn) 0.0045 

(DJIAn, DJAIGp) 0.0961 

(DJIAp, DJAIGn) 0.0642 

 

The hypothesis testing results presented in Tables 

6-7 demonstrate the following tail dependence 

structures across different asset classes. The results in 

Table 6 expose the tail dependence structure between 

the S&P 500 index, which is used as a proxy for the 

equity market, and the 10-Year Treasury Note yield, 

which is used as a proxy for the fixed income market. 

In contrast with the tail dependence structure 

underlying the equity markets, which are reported in 

Table 5, the tail dependence between the equity and 

the fixed income exceedance series is low in general, 

which is reflected through the low level of rejection 

rates. However, rejection rates for the opposite-sign-

pairs are higher than those for the same-sign-pairs, 

which mean that the extremal returns of opposite signs 
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have higher co-movement tendency. This different tail 

dependence structure can possibly be explained by the 

“fly to quality” effect that has long been observed 

between the equity and the fixed income markets. This 

conjecture can be further supported by the fact that the 

rejection rate for the (SP500n, 10YEARp) pair is the 

highest among the rejection rates for all pairs between 

these two markets. This means that when the equity 

market experiences extremal negative returns, the 10-

Year Treasury Note market will experience extremal 

positive returns with relatively higher probabilities. The 

interaction between the recent historical losses on the 

U.S. equity markets and the unprecedented gains on 

the U.S. Treasury markets is powerful evidence of this 

tail dependence structure. 

The results presented in Table 7 group the tail 

dependence structure between the equity and the 

commodity markets and underlying the equity and the 

fixed income markets into the same camp. The tail 

dependence between the equity market and the 

commodity market is low in general, although not as 

significant as the structure underlying the equity and 

the fixed-income markets. The opposite-sign-pairs from 

the equity and the commodity markets also 

demonstrate higher tail dependences than the same-

sign-pairs do.  

3.3. Tail Dependence Index 

As a direct measure to quantify the tail dependence, 

the tail dependence index as studied in (Ledford and 

Tawn 2003; Schalter and Tawn 2003; Zhang and Smith 

2004) is discovered in this section. The formula of the 

tail dependence index is given in Eq. (1), and the index 

computations are summarized in Table 8. 

From Table 8, we can see that the empirical tail 

dependence index results are consistent with the 

hypothesis testing results reported in Tables 5-7. The 

tail dependence index of the same-sign-pairs from the 

equity market is the highest among all exceedance 

pairs. The opposite-sign-pairs from the equity market 

exhibit the least level of tail dependence, as reflected 

by their close-to-zero M.E.D.I. The opposite-sign-pairs 

for the equity-fixed income markets and the equity-

commodity markets exhibit higher M.E.D.I. than their 

Table 8: The Tail Dependence Index for Different Financial Asset Classes 

Index Pairs M.E.D.I Std. Dev. 

(FTSEp, CACp) 0.6021 0.1137 

(FTSEn, CACn) 0.5289 0.1390 

(FTSEn, CACp) 0 0 

(FTSEp, CACn) 0 0 

(FTSEp, DAXp) 0.4880 0.1114 

(FTSEn, DAXn) 0.4277 0.1092 

(FTSEn, DAXp) 0.0099 0.0139 

(FTSEp, DAXn) 0.0056 0.0097 

(CACp, DAXp) 0.5645 0.1185 

(CACn, DAXn) 0.5189 0.1400 

(CACn, DAXp) 0.0042 0.0073 

(CACp, DAXn) 0.0097 0.0131 

(SP500p, 10YEARp) 0.0973 0.0955 

(SP500n, 10YEARn) 0.0786 0.0953 

(SP500n, 10YEARp) 0.2007 0.0907 

(SP500p, 10YEARn) 0.2220 0.1115 

(DJIAp, DJAIGp) 0.0996 0.0544 

(DJIAn, DJAIGn) 0.1245 0.0424 

(DJIAn, DJAIGp) 0.1146 0.0359 

(DJIAp, DJAIGn) 0.1107 0.0431 

In this table, M.E.D.I. stands for the average empirical estimation of the tail dependence index. Std. Dev. represents the sample standard deviation of the tail 
dependence index series. 



76     Journal of Reviews on Global Economics, 2012 Vol. 1 Wu et al. 

same-sign-pair counterparts. This phenomenon is more 

apparent between the equity and the fixed-income 

markets. In this sense, the tail quotient correlation 

coefficient is indeed a tail dependence, i.e., a 

conditional probability at upper tails. 

Besides the average empirical tail dependence 

index reported in Table 8, the time series of the tail 

dependence index are also illustrated in Figures 8-10 

employing the full local window enumeration scheme, 

in order to further expose the temporal evolution of the 

tail dependence structures underlying different financial 

markets. 

From Figure 8, we see that the tail dependence for 

the same-sign-pairs from the equity market is generally 

 

Figure 8: Time series of the empirical tail dependence index  for the same-sign-pairs between (a) FTSE 100 and CAC 40 
indices; (b) FTSE 100 and DAX indices; (c) CAC 40 and DAX indices. 
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Figure 9: Time series of the empirical tail dependence index  for the opposite-sign-pairs between the S&P 500 equity index 
and the 10-Year Treasury Note yield. 

high, as reflected by the high magnitude of . This is 

consistent with the hypothesis testing results reported 

in the previous sections. Moreover, these time series 

tell us more about the temporal evolution of . As 

illustrated from the three subplots in Figure 8, all  

series apparently exhibit upward trends. Since  is a 

tail dependence measure, this upward trend means 

that the degrees of tail dependence underlying these 

equity markets increase over the testing period. The 

results plotted in Figure 8 are consistent with the tail 

dependence testing results for the European equity 

markets reported in (Poon, Rockinger and Tawn 2004), 

but in a more intuitive fashion. According to (Poon, 

Rockinger and Tawn 2004), the presence of tail 

dependence will render the traditional way of risk 

evaluation and management inefficient, if not invalid. If 

a model fails to incorporate the tail dependence 

underlying certain financial markets when they are 

actually tail dependent, it will probably overlook risk 

factors, hence underestimating the associated risks. 

When the degree of tail dependence increases, which 

is represented by the upward-trended  series, the 

degree of erroneous risk evaluation and management 

also increases accordingly. As the mis-estimation and 

mismanagement accumulates, may it lead to a new 

round of turmoil on the financial markets? 

As illustrated in Figure 9, the time series of the tail 

dependence index for the opposite-sign-pair between 

the equity and the fixed-income markets exhibits a 

different pattern from the results illustrated in Figure 8. 

Prior to 1997, the tail dependence index between the 

S&P 500 and the 10-year Treasury Note markets has a 

clear upward trend, meaning the degree of tail 

dependence between these two markets increases 

over that period of time. After 1998, the tail 

dependence index experiences a sharp drop down to 

zero, and then continues with an oscillatory increasing 

pattern during recent years. The tail dependence index 

for the opposite-sign-pair between the equity and the 

commodity markets, as plotted in Figure 10, exhibits 

yet another different pattern. Neither series shows clear 

directional trend, rather demonstrating an oscillatory 

pattern. In addition, as opposed to the results shown in 

Figures 8 and 9, where the two series in each figure 

show high correlations, the two series in Figure 10 

present an obvious lag phenomenon. This pattern is 

especially prominent over the 1990 to 2007 period. 

During this period, it seems that the tail dependence 

index series for the (DJIAn, DJAIGp) pair lags four 

years behind that for the (DJIAp, DJAIGn) pair. This lag 

phenomenon may manifest the economic cyclic period 

underlying these two markets. 

The study in this section extends the research in the 

similar studies, e.g. (Longin and Solnik 2001; Poon, 

Rockinger and Tawn 2004), which only place their 

focuses on the tail dependence structure underlying 

different equity markets. Both the hypothesis testing 

and the tail dependence index results support the 

conclusion that the tail dependence structures 

underlying different types of financial markets, e.g. 

equity v.s. fixed-income market or equity v.s. 

commodity market, are clearly different from the 
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structure underlying the equity v.s. equity market. 

When we try to apply the tail dependence results to the 

practical scenarios as proposed in (Poon, Rockinger 

and Tawn 2004), namely, the portfolio choice, the 

Sharpe Ratio sharpening, the hedging strategy 

adjustment, the complex option valuation, and the 

credit risk analysis, it is important to be aware of the 

different tail dependence structures underlying these 

financial markets. Given an investment universe 

spanned by multiple financial asset classes, the 

recognition of the difference in tail dependence 

structures will lead to better informed and potentially 

optimal asset allocation and risk management 

decisions. 

4. CONCLUSION 

In this study, a multivariate extreme value 

framework is implemented, and the Extreme Value 

Theory (EVT) is employed to characterize the tail 

dependence structures for various financial asset 

classes. The EVT framework implemented in this study 

enables us to explore the widespread tail dependence 

phenomenon on the financial markets, which has been 

overlooked in the finance literature (Poon, Rockinger 

and Tawn 2004). Such omission may lead to erroneous 

estimation of market risks, or suboptimal asset 

allocations. As to the specific multivariate EVT model, a 

newly developed test-statistic, namely, the tail quotient 

correlation coefficient, as well as the associated chi-

squared testing procedure are implemented to 

efficiently find the tail dependence structures 

underlying various financial markets and their temporal 

evolutions. 

Another contribution of this study is that it 

overcomes the limitations of the previous similar 

researches, such as (Longin and Solnik 2001; Poon, 

Rockinger and Tawn 2004), which use sub-models in 

measuring tail dependencies and only deal with the tail 

dependence underlying the equity markets. Due to 

such limitations, the above research is silent about the 

tail dependence structures among other asset classes, 

hence is less helpful in addressing the needs of multi-

strategy investment vehicles, whose investment 

universe easily spans beyond the equity world. The tail 

quotient correlation coefficients are defined for only tail 

values and have direct and intuitive tail probability 

interpretations. Besides the equity market, this study 

expands its scope of researching the tail dependence 

structure into non-equity financial markets, such as the 

fixed-income security market as well as the commodity 

market. From both the hypothesis testing and the tail 

dependence index computation results presented in 

Section 3, we can see clearly that the tail dependence 

structures underlying different financial markets are not 

unanimous. Treating the tail dependences for various 

financial markets equally will probably lead to 

erroneous conclusions and suboptimal investment 

choices.  

 

Figure 10: Time series of the empirical tail dependence index  for the opposite-sign-pairs between the DJIA equity and the 
DJAIG commodity indices. 
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The multivariate EVT framework, the statistical 

testing method, as well as the tail dependence 

measure implemented in this work can serve as a 

useful tool in exploiting the innovative EVT based 

arbitrage opportunities and building robust risk 

management strategies within a certain asset class and 

across different asset classes.  

APPENDIX 

A proof of Theorem 2.4 is provided as follows. By Lemma 2.2, there exist 
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Notice that 
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Since 
 j

n( ) + k
n( )( ) l

n( ) + m
n( )( )  converges to 1 almost surely for all j, k, l, m, and 

  

max
i n

W
i
+ u( ) V

i
+ u( ){ }  

and max
i n

V
i
+ u( ) W

i
+ u( ){ }  are asymptotically independent, so by Slutsky’s Theorem and Theorem 2.3, we have 
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both the first probability and the last probability in the above inequalities converging to   e
1 e

1/u( )/ x 1 e
1/u( )/ y

 as 

  
n ,  hence the middle one converges to the same joint distribution function   e

1 e
1/u( )/ x 1 e

1/u( )/ y
. The proof of the 

asymptotic distribution of nq
n

 is then similar to the proof of the asymptotic distribution nq
n

 in Theorem 2.3. 
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