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Abstract: Ultrafiltration membranes are widely used in wastewater filtration due to their efficiency relative to
conventional water treatment technologies. To improve the antifouling property of the PVDF membrane, a composite
ultrafiltration membrane was fabricated employing the in-situ embedment approach throughout the phase inversion
process and utilizing a new 2D material, MAX phase Molybdenum Titanium Aluminium Carbide (Mo,TiAIC;). The
membranes were described using Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM),
and porosity measurements. Rejection tests were applied to study the produced membranes. Adding Mo,TiAIC,
increased the hydrophilicity of the composite membrane compared to the pristine membrane. Porosity and membrane
pore size increased with the addition up to 0.6% wt. The most hydrophilic membrane (M3) recorded the highest protein
rejection of 84.9%, which was much higher than that of the pristine membrane. These findings highlight the potential of

Mo, TiAIC, as a promising PVDF membrane additive.
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1. INTRODUCTION

Ultrafiltration (UF) is a low-pressure membrane
process widely applied in water treatment due to its
high separation efficiency and compact design [1]. UF
membranes,which are available in both polymeric and
ceramic forms, effectively remove various pollutants
and microorganisms from water [2]. The technology
has found applications across diverse industries,
including textiles, dairy, and pharmaceuticals [2].
Recent advancements have focused on the
development of tight UF membranes with smaller pore
sizes (300-5000 Da) to improve the rejection of trace
organic compounds and reduce fouling [3]. However,
challenges such as low water flux and high operating
pressure still need to be addressed [3]. UF membranes
have become increasingly important in drinking water
production as a safety barrier against bacteria and
viruses, and in wastewater treatment for solute
separation and water reuse [4]. The growing demand
for improved membranes is driven by the increasing
prevalence of water pollution and the associated
treatment challenges.

Polyvinylidene fluoride (PVDF) is one of the most
widely used materials for ultrafiltration membranes
owing to its excellent properties. PVDF exhibits high
mechanical strength, good thermal and chemical
stability, resistance to aging, and favorable film-forming
ability [5, 6]. These characteristics make PVDF
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membranes suitable for various water treatment
applications. However, the hydrophobic nature of
PVDF leads to membrane fouling issues, which is a
significant limitation [7, 8]. To address this challenge,
researchers have developed various modification
strategies to enhance the hydrophilicity and antifouling
performance of PVDF membranes. These include
surface coating, blending with hydrophilic materials,
and chemical modifications such as amination and
grafting [7, 8]. These modifications aim to improve
membrane wettability, reduce organic fouling, and
enhance overall filtration efficiency while maintaining
PVDF’s desirable properties [6, 8].

Membrane modification techniques can be broadly
categorised into surface modification, physical blending
(or doping), and chemical grafting [9]. Surface modi-
fication techniques involve hydrophilization, heating,
and coating [9]. Chemical grafting can be achieved
through “rafting-to” or “grafting-from” techniques [9].
Physical blending involves incorporating additives into
the membrane matrix during synthesis [10]. Nanoma-
terial incorporation is a widely used and effective
method due to its simplicity, cost-effectiveness, and
minimal structural disruption [9]. Various nanoma-
terials, such as metal nanoparticles, zeolites, and
carbon nanotubes, have been successfully integrated
into membranes [9]. Other modification techniques
include plasma treatment, surfactant modification, and
polymer blending [10]. These modifications aim to
improve membrane hydrophilicity, reduce fouling, and
enhance overall performance [11, 12]. Emerging ma-
terials like polydopamine offer promising opportunities
for membrane surface modification [12].
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MAX phases are layered ternary carbides/nitrides
with a general formula M, AX,, where M is a transition
metal, A is an A-group element, and X is carbon or
nitrogen [13]. Their structure consists of M, AX,
sheets interleaved with A layers, resulting in a com-
bination of metallic and ceramic properties [14].
MXenes, which are two-dimensional derivatives of
MAX phases, are obtained by selectively etching the A
layer through chemical treatment [13]. Mo,TIiAIC, is a
specific MAX phase compound that can be transformed
into Mo,TiAIC, MXene [15]. MXenes exhibit high
hydrophilicity and electrical conductivity [13]. Mo, TiAIC,
demonstrates mechanical stability and metallic elec-
trical conductivity, with Mo 4d states dominating at the
Fermi level [16]. The derived Mo,TiAIC, MXene shows
improved catalytic activity for hydrogen evolution
reaction over time, attributed to MoO, formation [15].

Recent studies have demonstrated the effectiven-
ess of incorporating nanofillers like graphene oxide
(GO) and MXene into PVDF membranes to enhance
their performance. These modifications have led to
increased water permeability, with flux improvements
ranging from 48% to 240% compared to pristine PVDF
membranes [17-19]. The addition of nanofillers also
significantly improved membrane hydrophilicity, as
evidenced by reduced water contact angles [17, 20].
Furthermore, the modified membranes exhibited en-
hanced antifouling properties and dye rejection capa-
bilities. For instance, GO-ZnO/PVDF membranes sho-
wed a substantial reduction in irreversible fouling ratio
for bovine serum albumin [18], while MXene-modified
GO/PVDF membranes demonstrated 100% removal of
crystal violet dye [20]. These improvements in membr-
ane performance were attributed to the synergistic effe-
cts of the nanofillers, including their high specific surf-
ace area and oxygen-containing functional groups [17].

2. MATERIALS AND METHODS

2.1. Materials

Polyvinylidene fluoride (PVDF) (Mw = ~ 534,000,
Sigma-Aldrich, product no. 427152), polyvinylpyr-

rolidone (PVP) (Mw = ~ 40,000, Sigma-Aldrich, product
no. PVP40), N-methyl-2-pyrrolidone (NMP) (Carl Roth,
product no. 4306.1, > 99%), and Mo,TiAIC, MAX
Phase powder (200mesh, 99%) was obtained by
BEIJING 33ENE TECHNOLOGY CO., LTD, China. All
chemicals were of analytical grade and used without
further purification.

2.2. Membrane Preparation

The first preparation was made at room
temperature, with stirring for 2 hours to homogeneously
distribute the Mo,TiAIC, MAX Phase nanoparticles in
the solvent. After that, the stirring rates were gradually
increased from 800 rpm to about 1600 rpm to enable
proper dispersion of the nanoparticles. After dispersion,
the vessel containing the mixture was then put into a
water bath at about 60°C. This controlled heating
ensured the gradual dissolution of the PVDF pellets
and PVP powder into the stirring NMP solution. While
the polymers were dissolving, the viscosity of the
solution gradually increased, naturally reducing the
stirring speed. Careful handling resulted in a
homogeneous and well-dispersed resultant mixture
ready for membrane casting. This was then poured on
the borosilicate plate and compressed with another
plate to yield the membrane. The thickness of the
membrane was controlled by the Scotch tape method,
where a number of superimposed layers of Scotch tape
provide a particular thickness. This was to ensure that
the compressed solution was completely soaked in
distiled water for two days for the complete
solidification of the membrane and to ensure that there
were no residual solvents and impurities left behind.
The Scotch tape method was employed as an
alternative phase inversion technique due to the
unavailability of a Doctor Blade, while still ensuring
precise control over the membrane thickness. Further,
post-treatment was carried out by dipping the
membrane for two days in isopropanol and then for two
days in glycerol to enhance its stability and keep it from
becoming brittle. The treated membrane was air-dried
and stored for filtration applications.

Table 1: Composition of Samples with Varying MAX Phase Mo.TiAIC, Content

Sample Code PVDF (%wt) PVP (%wt) NMP (%wt) MAX Phase Mo.TiAIC; (%wt)
M1 20 2 78.0 0.0
M2 20 2 77.6 0.4
M3 20 2 774 0.6
M4 20 2 77.2 0.8

*Composition percentages are by weight.
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The MAX Phase concentration was optimized within
the range of 0.1 wt% to 0.9 wt%, based on findings
from previous research [21, 22].

2.3. Membrane Characterization

The morphology and the cross-section of the
membranes were studied using a ZEISS EVO 15
Scanning Electron Microscope (SEM). Functional
groups and chemical interactions of the membranes
before and after incorporating Mo,TiAIC, MAX Phase
and filtration were analyzed by Fourier transform
infrared (FTIR) spectroscopy. Fourier transform
infrared (FTIR) spectroscopy PerkinElmer Spectrum
Two Fourier-transform infrared spectrometer (FTIR)
was used to confirm the successful incorporation of
Mo,TiAIC, MAX Phase and to analyze any chemical
interactions between the membrane components. The
membrane porosity was measured using the equation
1[21],

£% =L (1

The W,, was determined by immersing a piece of
membrane in distilled water for 24 h, removing the
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excess water using blotting paper, and measuring its
weight [21]. The W4 was measured by oven drying the
same membrane samples for 12 h and measuring their
weights [21].

where:

W, = the membrane’s dry weight (g)

W = the membrane’s wet weight (g)

A = membrane area (cm?)

p = water density = 1 g/cm3

L = thickness of the membrane (cm)
3. RESULTS AND DISCUSSION

3.1. Characterization of PVDF/ MAX Phase

Mo, TiAIC, Membrane

3.1.1. Membrane Morphology and Porosity

The surface morphologies of the membranes (M1,
M2, M3, and M4) were analyzed using SEM and the
average pore distances were measured with Imaged
software. The Figure 1a, 1b, 1¢, and 1d exhibit the
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(d) M4 Morphology

Figure 1: Surface morphology of the fabricated PVDF and Mo,TiAIC,/PVDF composite membranes observed under SEM,
showing the effect of MAX phase incorporation on membrane structure.
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surface morphology. The mean pore size values of M2,
M3, and M4 are, respectively, 30nm, 650nm, and
1144nm.

The M1 membrane, which was unmodified, had
unevenly distributed pores and cracks that tended to
appear. In some places, aggregations were also seen.
With the addition of Mo,TiAIC, MAX Phase, we can
clearly see a pore formation that is evenly distributed
than M1. The pore sizes are small, which is in the nano
range. The M3 membrane has an increment in the pore
size than the M2 membrane, and M4 has the largest
pore size. All 4 membranes’ thickness is kept in the 30
pm to 50 ym range. These results indicate that pore
formation and pore size increase with the incorporation
of Mo, TiAIC, MAX Phase, consistent with observations
reported for other MAX Phase-based ultrafiltration
membranes [21, 22].

The porosity has an optimum condition even though
the pore size has increased, as shown in Figure 2. The
highest porosity can be seen in the M3 membrane.
While the lowest can be seen in the M2 membrane.
The porosity and pore size were not assessed in the
M1 membrane due to the aggregations and cracks in
the membrane. From Figure 2 it is clear that with the
increment of Mo,TiAIC, MAX Phase, the Pore Size
increases, but not the porosity. By this result, we can
clearly identify that, even though the size of a single
pore increases due to the incorporation of the MAX
Phase number of pores would not increase.
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Figure 2: Variation of membrane porosity (%) and average
pore size (nm) as a function of Mo, TiAIC; loading, illustrating
the influence of MAX phase content on membrane
morphology.

3.1.2. Membrane Chemical
Molecular Structure

Composition and

The chemical composition and molecular structure
analysis were conducted using a Fourier Transform

Infrared Spectroscopy. The Figure 3 depicts the FTIR
spectra before filtration of Bovine Serum Albumin. The
peak observed was at 1402 cm™’, which corresponds to
the stretching vibration of C-H [21]. The peak appeared
at 1178 cm™ corresponds to the vibrational modes of
C-F bonds [21]. These peaks are a sign of the
presence of C-H and C-F functional groups, as would
be expected in the PVDF polymer [21]. These two
peaks showed no noticeable change with the
incorporation of the MAX Phase, confirming that the
structural integrity of the PVDF matrix remained
unaffected.
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Figure 3: FTIR spectrum of the membranes before filtration,

indicating the characteristic functional groups of PVDF and
the presence of Mo, TiAIC,-related peaks.

The peak at 1650 cm’ depicts the -C=0 bonds, and
the peak at 1275 cm” depicts the C-N bonds [17, 23].
The peaks are formed due to the successful deposition
of PVP, and these bands are characteristic of the
acylamino functional groups present in the PVP
structure [23]. The hydrophilicity of the membranes was
enhanced by the addition of PVP. This is because the
hydrophilicity was derived from the interactions of polar
attractive forces and hydrogen bonds between
acylamino and water molecules [23]. The peaks at 876
and 1042 cm™ correspond to C-C and C-O stretching
vibrational modes [24]. When the membranes before
and after filtration were compared, a reduction in these
two peaks was observed, indicating that the hydrophilic
characteristics imparted by PVP were diminished after
filtration.

The peak at 3321 cm™, corresponds to N-H
stretching vibration, indicating the presence of amine or
amide functional groups prior to filtration [25]. This
peak is formed before filtration and then vanishes after
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filtration. This is due to Catalytic N-H Bond Activation
and Breaking. Transition metal complexes, such as
those present in the Mo,TIAIC, MAX phase, can
weaken and activate N-H bonds by coordinating to
them, making the bonds more reactive and easier to
break, which can result in new bond formation and the
loss of the original N-H bond [25].
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Figure 4: FTIR spectrum of the membranes after filtration,
highlighting potential changes in functional groups and
surface chemistry following protein filtration.

3.2. Membrane Performance

3.2.1. Bovine Serum Albumin (BSA) Rejection

A homemade dead-end filtration apparatus was
used to determine the BSA rejection ratio. A 1000mg/L
BSA concentration solution was used as the feed. The
UV-Visible Spectroscopy was performed to find the
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Figure 5: BSA rejection performance of neat PVDF and
Mo, TiAICo/PVDF composite membranes, demonstrating the
effect of MAX phase addition on separation efficiency.

concentration of the solution before and after filtration.
The M1 and M2 membranes have the lowest rejection,
while M3 has the highest rejection. The reason for the
better rejection of M3 and M4 can be seen from Figure
4. After filtration, the M1 and M2 membrane peaks
decreased slightly, which resulted in lower BSA
rejection. The peaks in M3 and M4 have almost
vanished and have a drastic BSA rejection. However,
the M3 membrane exhibited the highest protein
rejection of 84.9%, which is slightly lower than the BSA
rejection reported for the Ti;AlIC, MAX phase/PVDF
membrane (90.6%) [21].

4. CONCLUSION

This study utilised the composite MAX phase
Mo,TIAIC, to synthesise PVDF membranes for
ultrafiltration  applications. Different amounts of
Mo,TiAIC, were incorporated to determine the optimum
nanoparticle-to-polymer  ratio. Various analytical
techniques were employed to examine and monitor the
structural and performance changes induced by the
additive. The performance of the nanocomposite
membranes was evaluated through BSA rejection
tests. The incorporation of Mo,TiAIC, increased the
mean pore diameters of the membranes to
approximately 30 nm, 650 nm, and 1144 nm,
respectively. However, these effects were significant
only up to a concentration of 0.6 wt%. Among all
samples, the M3 membrane exhibited the highest BSA
rejection of 84.9%. The findings of this study
demonstrate the potential of Mo, TiAIC, as an effective
additive for minimising PVDF membrane fouling,
warranting further investigation into its long-term
performance and applicability in complex feed systems.
Future work will focus on conducting extended filtration
experiments to assess membrane durability and
antifouling behaviour over time, as well as exploring the
performance of the Mo,TiAIC,/PVDF mixed matrix
membranes in treating actual wastewater samples to
validate their practical applicability under realistic
operating conditions.
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