Journal of Research Updates in Polymer Science, 2025, 14, 171-188 171

Advances in Fire Retardancy of Polymeric Nanocomposites and

Applications

Anthony Chidi Ezika'’, Williams Kehinde Kupolati', Emmanuel Rotimi Sadiku®? and

Christopher Idumah?®

"Department of Civil Engineering, Faculty of Engineering and Built Environment, Tshwane University of

Technology, Pretoria, South Africa

2Department of Chemical, Metallurgical and Material Engineering, Faculty of Engineering and Built
Environment, Tshwane University of Technology, Pretoria, South Africa

% Enhanced Polymer Research Institute (EnPro), Universiti Teknologi Malaysia

Abstract: Emerging advancement in nanotechnology have facilitated the embedment of nanomaterials (NMs) such as
graphene and derivatives, carbon nanotubes and derivatives, nanowires, and so on, within polymeric matrices to attain
enhanced properties, especially fire retardancy, in polymeric nanoarchitectures (PNC) for multifarious applications. In
thermal interface materials (TIM) for electronic gadgets, notable fire hazards are often ignored, whereas PNC exhibiting
electromagnetic interference (EMI) shielding are frequently subjected to accidental fires. Furthermore, fire warning
sensors with capability of rapidly exposing fire dangers in combustible materials plays a key role in mitigating or entirely
eliminating fire disasters in most scenarios. Moreover, the escalating evolution of electronic gadgets in the fifth-
generation (5G) era has made superlative fire safety, thermal stability and high-performance of PNC highly imperative.
Nanowires are one-dimensional (1-D) nanostructures possessing a high length to diameter aspect ratios, unique flame
retardant (FR), mechanical, electrical, thermal, and optical properties. The inclusion of different forms of nanowires
within polymeric matrices has tremendously enhanced the flame retardancy (F-R) of nanowire@polymeric
nanoarchitectures (N-PNC) thereby enlarging their scope of applications. Therefore, this paper presents advances in

flame retardancy of nanowire polymeric nanoarchitectures.

Keywords: Flame retardancy; Nanowires; Nanowire@polymeric nanoarchitectures, Multifarious applications.

1. INTRODUCTION

Nowadays, fire hazards, heat-shock and thermal
deterioration caused by slow heat diffusion within
microelectronic gadgets have made it critically
imperative for these materials to exhibit highly efficient
thermal control system for highly performing electronic
packaging materials. The integration of high F-R and
outstanding  electromagnetic interference (EMI)
shielding into PNC has become critically imperative.
Furthermore, with the broadening application of
thermally conductive PNC in the aviation, automobile,
maritime, oil and gas segments, and so on, not only
elevated in-plane thermal conductivity (TC),
mechanical and electrically insulative features are
essential, but thermal stability and F-R have become
critically imperative for these NMs [1].

Although possessing exceptional features such as
low weight, outstanding flexibility with processability,
inherently poor flammability as well as elevated
temperature deterioration is deficiencies for most
polymeric composites, and these flaws have restricted
their scope of application in a versatile range of
segments. In the construction sector, FR wallpapers
with multifunctional features (F-R and an automatic
alarm in fire disasters), have become attractive for
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interior decoration of houses [2]. Furthermore,
organically affiliated heat insulative materials exhibiting
poor density and low heat dissipation have undergone
wide utilization in construction and domestic gadgets.
Nevertheless, their elevated flammability and inferior
flexibility have hindered the versatility of their
application in certain segments. In order to mitigate or
completely eliminate aforementioned challenges, due
to their peculiar advantages over conventional FRs,
nanoparticulates  (nanoclays, carbon derivatives,
nanowires and so on) have been incorporated within
polymeric matrices to enhance their FR as well as
other features [3].

Nanowires (NWs) are 1-D nanostructures
expressing a wide length to diameter aspect ratios and
exhibiting peculiar mechanically, electrically, thermally,
and optically affiliated features, fabricated via top-down
or bottom-up strategies based on the NWs features
(type of material and geometry). A NW is a
nanostructure, having the appearance of a wire
exhibiting diameter in the order of a nanometric (10™°
metre) [4]. Generally, NWs are known as architectures
with thickness or diameter restrained to tens of
nanometers or less and an unrestrained length.
Relative to these nanometric scales, then quantum
mechanically inclined effects become essential—
referred as "quantum wires". Differing types of
nanowires are prevalent, including superconducting
NWs (YBCO NWs), metallic NWs (NiNWs, Pt, AuNWs,
AgNWs), semiconducting (silicon NWs (SiNWs), InP,
GaN) and insulating NWs (SiO,NWs, TiO,NWs) [5-71].
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Molecularly, NWs are made up of repeating
molecularly units in either organic form (DNA) or
inorganically (MogSg—xIx). Peculiarly, NWs display
aspect ratio (length-to-width ratio) of 1000 or more [8].
Relative to NWs@PNC, for instance, metallic NWs are
constructed utilizing AC electro-deposition on PAO
templates, with subsequent surface functionalization of
NWs and direct mixing within polymeric solutions [9].

—

Synihests of a0y

Alternatively, the can undergo drying and mixture with
polymeric melts. In this instance, copper nanowires
(CuNWSs) underwent mixing with polymeric solutions
directly utilizing a miscible solvent mixture to fabricate
NW architectures appearing segregated via miscible
solvent mixing and precipitation (MSMP) [9]. The
fabrication procedure of NWs@PNC is depicted in
Figure 1a, whereas Figure 1b present SEM image of

Figure 1: Schematic elucidation of the fabrication route of metallic NWs@polymeric nanoarchitectures (a). SEM image of
CuNWs constructed via PAO templates (b). Low and elevated magnification SEM images of CUNW@PS nanoarchitecture

respectively (c, d) [9].
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Figure 2: TEM image of ultra-microtome portions of CUNW@PS nanoarchitecture constructed via MSMP technique (a). Low
and high magnification TEM of ultra-microtome section of heat pressed CUNW@PS nanoarchitecture (b, c) [9]. Typical FR heat

release rate (HRR) of NWs@PNC [10].
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CuNWSs constructed via PAO templates. Figures 1c,
1d depicts low magnification and elevated magni-
fication SEM images of CUNW@PS nanoarchitecture
respectively, garnered via MSMP technique, a typical
NWs@PS nanoarchitecture [9]. Clusters and single
NWs of several microns (length) can be typically
observed in 1b.

Furthermore, transmission electron microscopic
(TEM) images of CUNWs@PS nanoarchitectures are
presented in Figure 2a-c [9], while a typical FR curve
of a NW@PNC is presented in Figure 2d [10].

Hence, NWs as NMs are FR at minimal inclusion
within polymeric matrices and form NWs@PNC with
enhanced properties (mechanical, electrical, thermal,
and optical), especially improved flame retardant
features [1-10]. Therefore, this paper presents the
flame retardant mechanism of nanowires polymeric
nanoarchitectures and multifacet applications.

2. FR OF HYDROXYAPATITE NANOWIRES (HNS)
AND GRAPHENE OXIDE POLYDOPAMINE NANO-
PAPER

Smart FR and fire alarm wallpaper (FAW) will be
outstanding if it can simultaneously hinder fire from
spreading while sending out alerts during fire mishap.
Hence, the FAW require an ideal FR paper capable of
maintaining its structural integrity during fire, in
synergy with a thermos-sensitive sensor capable of
rapidly responding to elevated fire temperature.
Commercially available wallpaper from plant cellulosic
fibers (CWP) or synthetic polymeric exhibit low-weight,
flexibility, and inexpensiveness, as good interior decor
for homes, but with the pertinent challenge of high

flammability and promotion of fire spread during fire
disaster. In order to mitigate this challenge, there is
need to enhance the FR of the substrate. Ultra-long
hydroxyapatite nanowires (HNWs) with ultrahigh
aspect ratios possesses elevated flexibility and
capable of mitigating these challenges. Hence, in a
work, an intelligent FAW was constructed using fire-
resisting HN@GF inorganic paper as a substrate and
GO (or PGO) as a thermos-sensitive sensor, capable
of simultaneously preventing fire spreading and
sending out alarms to warm people of occurrence of
fire disaster [11].

The outstanding thermal stability and FR of the
substrate depicts the exceptional-performance of
FAW. The synergy is maintained between the
substrate and thermos-sensitive sensor enabled FAW
efficiency and durability in real life fire scenario [11].
The pristine commercial CWP derived from plant
cellulose fibers exhibited elevated combustibility and
inferior thermal stability. Results garnered from the TG
curve of the CWP reveals that the weight loss is as
elevated as 93.41%@1000 °C in air (Figure 3a).
Contrastingly, both HNs and GFs display elevated
inherent heat stability, while TG curves reveal that HNs
and GFs weight loss is only 2.90 and 0.33%,
respectively (Figure 3a) [11].

The vertical combustibility technique was utilized in
testing the FR of the HN@GF inorganic paper and
commercial wallpaper. Results show that HN@GF
inorganic paper displayed outstanding FR, as the
HN@GF paper are FR for prolonged duration of time
(Figure 3c. Contrastingly, CWP burnt easily in very
brief time (within 10 s) (Figure 3d) [11].
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Figure 3: (a) TG trend of GFs, HNs, and CWP). (b) Electrical current (I) across PGO thermos-sensitive sensor on CWP with
time in alcohol fire; schematic elucidation (inset) of damaged PGO thermos-sensitive sensor on CWP post burning procedure.
(c, d) FR examination of the HN@GF inorganic paper (c¢) and CWP (d). (e) Actual-time monitoring of the variations posed by
the alarm lamp, the alarm buzzer, and the PGO thermos-sensitive sensor on CWP during the burning step [11].
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Figure 4: FR, Mechanical and thermal conductivity of nanoarchitectures [12].

3. F-R AND THERMAL CONDUCTIVITY OF
VANILLIN-ORIENTED EPOXY RESIN FOR
THERMALLY-CONDUCTIVE EPOXY@GRAPHENE
AEROGEL NANOARCHITECTURES

Vanillin, a lignin-obtained single-aromatic entity,
has garnered escalating interest attributed to
inherently specific function as an intermediate entity for
the fabrication of differing bio-oriented polymeric
matrices. Hence, in a work, F-R and thermally-
conductive vanillin-based epoxy@graphene aerogel
(GA) nanoarchitectures were constructed [12]. Results
revealed that the, flexural strength as well as modulus
were highly improved from 72.8 MPa and 1.3 GPa to
90.3 MPa and 2.8 GPa, respectively, at 30 wt. % MEP,
attributed to the rigidity of MEP as well strong
intermolecular N-H hydrogen bonding interactions
(Figure 4). On the other hand, the cured epoxy
attained a UL-94-VO rating at low P constituent of
1.06%. The FR vanillin-oriented epoxy was then
introduced into the thermal conductive 3-D GA
architectures. (Figure 4). The garnered epoxy@
graphene nanoarchitecture displayed outstanding FR
(Figure 4) [12].

4. FR OF MG;B,0;:NW@POLY(ETHYLENE OXIDE)
(PEO) SOLID-STATE ELECTROLYTES (SSES)

High ionic conductivity, endows mechanical
features, and versatile electrochemical opportunities
are critical parameters for nanocomposite electrolytes
utilized in solid-state lithium-ion batteries (SSLIBs).
Premised on this perspective, a work constructed
Mg2B,0s NWs facilitated poly(ethylene oxide) (PEO)-
based solid-state electrolytes (SSEs) (Figure 5)
[13]Garnered SSEs possessed improved ionic
conductivity as well as wide electrochemical spectrum.
Additionally, the high ionic conductivity is ascribed to
the enhanced movement of PEO chains as well as
incremental Li migration at the interfacial segment
between Mg,B,0s@PEO-LITFSI. Additionally, the

SSEs composed of Mg,B,OsNWsdisplayed improved
FR and mechanical performances, when compared
with virgin PEO@LITFSI electrolyte (Figure 5) [13].

5. SYNERGISTIC INCREMENT IN FR AND
THERMAL CONDUCTIVITY OF
GRAPHENE@SILVERNWS@EPOXY
NANOARCHITECTURES

The fire hazards incurable from polymeric oriented-
thermal interface materials (TIMs) utilized in electronic
gadgets are usually ignored. In addition to the elevated
filler embedment causing the degradation of
mechanically, thermally, and processing features
hinder further usage of the conventional polymer-
oriented TIMs. Hence, in a work, a ternary TIMs
fabricated from epoxy resin (EP) matrix, silver
nanowires (AgNWs), with small inclusion of FR
modified graphene (GP-DOPQO) were constructed to
mitigate these challenges [14]. Summarily, a “branch-
appearing” approach having a polymeric matrix as
backbone and FR molecular entity was initially utilized
in functionalizing reduced graphene oxide (RGO)
towards incrementing the FR grafting ratio and RGO’s
compatibility within the matrix, and the garnered
GP@DOPO was subsequently in situ inculcated within
the EP@AgNW nanoarchitectures. The inclusion of
GP@DOPO (2 wt. %) is capable of incrementing the
thermal conductivity to 1.413 W/(m K) at a very low
AgNW increment (4 vol. %), which is 545 and 56%
increments in comparison with pristine EP and
EP@AgNW, respectively [14].

The garnered enhancement of thermal conductivity
was put down to the synergetic effect of AQNW and
GP@DOPO, relative to enhancement in distribution
and bridging effect of AgNWs through inclusion of
GP@DOPO. Moreover, the elevated FR grafting level
and outstanding compatibility of GP@DOPO induced
elevated catalytically charring influence on EP matrix.
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Figure 5: Construction route, FR and EMI of PEO@LITFSI electrolyte nanoarchitectures [13].

Nevertheless, the elevated FR grafting amount and the
outstanding compatibility of GP@DOPO resulted in a
strong catalytic charring effect on EP matrix, which
further formed a robust protective char layer through
synergy of AQNW and graphene architecture. Hence,
the FR of EP@AgNW was notably enhanced by
inculcating GP@DOPO, i.e., the PHRR, THRR and
TSP minimized by 27.0, 32.4, and 30.9% in com-
parison with EP@AgNW, respectively [14] (Figure 6).

6. FR OF ULTRA-LONG HYDROXYAPATITE
NWS@ARAMID NANOFIBERS

Herein, elevatedly flexible, heat stable, and FR
nanoarchitecture paper possessing high dielectrically
breakdown strength along with mechanical strength
was constructed by synergistically embedding ultra-
long hydroxyapatite (HAP) nanowires combined with
aramid nanofibers (ANFs) via vacuum-facilitated
filtration procedure (Figure 7) [15].

The as-constructed HAP/ANF nanoarchitecture
paper possesses hanowire/nanofiber networked
framework as well as a layered architecture for appli-
cations in miniature and flexible electronic gadgets,
elevated-voltage electrically insulating equipments,
and FR and elevated-temperature segments [15].

7. FR OF UNSATURATED POLYESTER@F-HAPNW
NANOHYBRIDS

Zero-toxic, minimally-smoking, elevated-efficiency
and ecobenign F-R have become imperative recently.
Here, polyphosphazene cross-linked with hexachloro-
cyclotriphosphazene (HCCP), 3-aminopropyl-
triethoxysilane (APTES), and dopamine (DA) was
utilized in modifying hydroxyapatite nanowires
(HAPNW), thereby deriving a novel ecobenign nano-
hybridized architecture (FHAPNW) [16]. Subsequently,
f-HAPNW was embedded within unsaturated polyester
(UPR) matrix in the presence of nanowires architecture
with a high aspect ratio, in accompaniment by
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Figure 6: Synergistic enhancement in thermal conductivity and FR of epoxy@AgNWs nanoarchitectures through inclusion of

“branch-appearing” FR functionalized GN [14].
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outstanding interfacially inclined compatibility. Hence,
the embedment of a small levels of -HAPNW attained
a complete enhancement in the F-R and mechanical
features of UPR nanoarchitectures, including 23%
decrement in total heat release rate (THR), 25.7% and
29.5% minimization in total smoke production (TSP)
and the peak of CO production rate (PCOP) on
inclusion of 2 wt.% content Figure 8 [16].

Generally, this work constructed ecobenign
hierarchical -HAPNW architecture, and attained a total
enhancement in UPR nanocomposites performance,
offering an anchor for designing highly performing
UPR nanoarchitectures [16].

8. FR AND SMOKE SUPPRESSION OF PP@ZINC
OXIDE NWS

In order to effectively improve the FR of epoxy resin
(EP), a new core-shell organic—inorganic hybridized
NWs relying on copper aromatic-sulfide and
polyphosphazene hetero-architecture were
constructed and synthesized using a dual-step
synthesizing approach, including the synthesis of 2,4-

dichlorothiophenol-Cu (CI-Cu) nanowires and the in-
situ coating of poly(cyclotriphosphazene-co-4,4'-
sulfonyldiphenol) (PZS) on CI-Cu nanowires (CI-
Cu@PZS). On inclusion of 0.5 wt. % of CI-Cu@PZS-2
NWs, EP limited oxide index (LOI) incremented to a
maximum of 27.4 % [17]. The synergistic disposition of
EP with 0.5 wt. % CI-Cu@PZS-2 NWs studied by cone
calorimeter examination revealed that the peak of heat
release rate (PHRR), and total smoke production
(TSP) decremented by 2450 %, and 22.73 %,
respectively, whereas the residue mass incremented
by 135.82 % Figure 9 [17].

It was concluded that CI-Cu@PZSNWs garnered
notable synergistic impact on the F-R enhancement,
smoke suppression and mechanical strength [17]

In a similar work, Polyethylenimine/phytic acid
(PEI/PA) layer and silver nanowires (AgNWs)
conductive networks were constructed on cotton fibers
surface via layer-by-layer assemblage technology
along with dip-coating strategy, attributable to
elevatable electrostatic interactivity as well as bonding
effect. Specifically, cotton fabric with 24.2wt. % of
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Figure 8: FR of silicon-oriented polyphosphazene-functionalized hydroxyapatite nanowires [16].
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[17].

PEI/PA layering and 7.5wt. % of AgNWs network
possessed effectual self-extinguishment  while
minimizing the PHRR value to about 58.59% of pure
cotton fabric (Figure 10) [17].

9. FR OF HAP@SILICA AEROGEL NANOARCHI-
TECTURE

Organic heat insulating materials exhibiting low
density and low thermal conductivity with FR have
undergone vast usage in building and domestic
appliances [18]. Nevertheless, their elevatedly
flammable and inferior flexibility features hamper their
usage on subjection to certain situation. Thus, in a
work, novel nanoarchitecture paper exhibiting low
thermal conductivity, FR and good mechanical
features was fabricated by utilizing ultra-long
hydroxyapatite (HAP) NWs as scaffolds for silica
aerogels (Figure 11) [18].

On the other hand, the garnered paper exhibited
notable FR with peak heat release rate (HRR) of only
33.1 W/g on inclusion of silica aerogel of 50 wt.%,
thereby presenting the as-constructed HAP/silica
aerogel nanoarchitecture for applications in protecting
insulation materials, FR wallpapers, specialty fire
clothing, and so on [18].

10. FR TI;C.,TX MXENE ARCHITECTURE FOR
RAPID, RE-APPLICABLE AND WEATHER-
PROTECTION FIRE WARNING

In this work, biomimetic polyethylene glycol or
polyvinyl pyrrolidone polymer in decoration with
TisC,Tx MXene architecture having outstanding FR
and specific fire cyclic warning disposition was
constructed [19]. Fire warning sensors constructed
relying on as-fabricated FR MXene architectures
display very rapid fire warning signal and recovery time
(~1.8 s and ~1.0 s), resistance switching disposition
with >4 orders of magnitude, and stabilized fire cyclic
signaling capability for 100 cycles. Structural
observation and analysis show that, during fire,
polymeric molecules heat pyrolysis enable the
oxidation of MXene sheets thereby forming a miniature
fish scale-like C/N dopped titania architecture, which
triggers its electron excitation thereby generating a
sensitive resistance transition to initiate ultra-fast fire
cyclic warning signal (Figure 12) [19].

11. ENHANCED FR OF GRAPHENE@ HEXAGONAL
BORN NITRIDE NWS@EPOXY NANOARCHITEC-
TURE

The heat aging, thermal shock and fire hazard
caused by delayed heat diffusion  within
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microelectronic gadgets need a highly-efficient heat
management system exhibiting elevated-performance
electronic packaging materials. Hence, in a work,
notable heat conductivity and FR of polymeric-oriented
heat conductive composites (PTCs) are mitigated via
several synergistic effects of hexagonal born nitride
(hBN) and few FR modified graphene [20]. Summarily,
a multifunctionalized hydrophilic graphene-oriented
hybrid composed of Ni(OH), nanoribbons and reduced
graphene oxide (rGO) underwent synthesization via
dual-step hydrothermal procedure. The resultant
rGO@NIi(OH), hybrid and hBN sheets (lateral size of
4.37 £1.68 uym and thickness of 80+ 21 nm) utilized as
synergistic and reinforcements, respectively, was

stacking

Epoxy matrix

simultaneously embedded within EP matrix [20].
Results exposed that the binary reinforcement
displayed several synergisms for enhancement of heat
conductivity and FR of composites (Figure 13) [20].

12. FR AND EMI OF TPU@PA-APP@TI;C,TX-SCS
NANOARCHITECTURES

Inculcating elevated FR and outstanding

electromagnetic interference (EMI) shielding within
polymeric materials is critically essential and even
dispersion of conductive fillers within polymeric
materials remains a daunting challenge due to inherent
interfacial

incompatibility of the polarity between
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Figure 13: FR and thermal conductivity of synergistic -GO@HBNNWs@Epoxy nanoarchitectures [20].
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polymeric matrix and conductive reinforcements.
Hence, in a bid to maintain integral conductive films
within hot compression steps, the construction of novel
EMI shielding polymeric nanoarchitectures where
conductive films closely adhere to polymeric
nanoarchitectural layers has garnered attention. Thus,
in a work, salicylaldehyde-functionalized chitosan
embedded titanium carbide nano-hybrid (TizC,Tx-SCS)
synergized with piperazine-functionalized ammonium
polyphosphate (PA-APP) for the construction of
thermoplastic polyurethane (TPU) nanoarchitectures,
with inclusion of reduced graphene oxide (rGO) films
into TPU@PA-APP@TisC,Tx-SCS nanoarchitectures
through customized air facilitated hot pressing strategy
[21]. The THR, TSR and total carbon monoxide yield
for TPU nanoarchitecture containing 4.0 wt.% Ti3C,Tx-
SCS nano-hybrid were 58.0%, 58.4% and 75.8%
reduced in comparison with pristine TPU, respectively
(Figure 14) [21].

This work offers a potential technique for
constructing fire safe with EMI shielding polymeric
nanoarchitectures [21].

13. HYDROXYAPATITE NANOWIRES
(HAPNWS)@BORON  NITRIDE  NANOSHEETS
(BNNSS)

Due to increase in the scope of application of
thermally conductive nanocomposites in the aviation
segment and so on, high in-plane thermal conductivity
(TC), mechanical flexibility and electrical insulation, as
well as heat stability and FR are essential. Despite
exceptional features (low weight, satisfactory flexibility
as well as processability, the intrinsically fire and
elevated temperature deficiencies of polymeric
matrices are detrimental for most polymeric-oriented
thermally  conducting  nanocomposites, thereby
severely hindering their usage in extreme
environments. In order to mitigate this challenge, a
facile technique of fabricating a flexy inorganic based
composite films instigated by emergence of inorganic

NWs in fabricating F-R paper was construed. Here, 1-
D hydroxyapatite nanowires (HAPNWSs) garnered
through solvo-thermal approach and 2-D boron nitride
nanosheets (BNNSs) constructed via liquid phase
exfoliation underwent inculcation utilizing vacuum-
facilitated filtration in forming layer-architecture
composite films, where HAPNWs offered flexibility and
BNNSs provided directional heat conductive routes
[22]. On inclusion of 30 wt. % BNNSs, the in-plane TC
value of garnered composite film attained 6.4 W m™’
K™ at 25 °C and maintained at 55 W m™' K" under
100 °C (Figure 15) [22].

Hence, the all-inorganic films demonstrated
outstanding flexibility, fire retardant ability and low
coefficient of thermal expansion, thereby exhibiting
great prospects as thermally conducting materials
utilized in harsh environment [22].

14. FR OF AGNWS@PANI@PU
NANOARCHITECTURES

FOAMS

Due to ultra-fast evolvement of 5G technology,
modified coatings possessing both elevated F-R
effectiveness and EMI have become critically
essential, while conventionally ineffective strategies
have garnered challenges. Thus, in a work, an
ecobenign and multifunctionalized
nanometric/micrometric decoration made by bio-
substrate phytic acid (PA) induced polymerization and
self-assemblage of polyaniline (PANI) nanoparticulates
and dip-decoration of silver microwires (AgNWs) [23].
Here, FR efficiency is induced into PANI to attain PA
F-R while simultaneously enhancing PANI electrical
conductivity. Subsequently, decorated PU foam
display elevated F-R because PA synergism garnered
from PA@PANI, with capability of self-extinguishing
immediately after ignition during the UL-94 vertical
burning test, demonstrates elevated limiting oxygen
index (LOI) value of 34.8%, while exhibiting a 50.7%
minimal pHRR in comparison with pristine PU foam
(Figure 16) [23].

TPUIXPIYT

TPUIXPIyT
TSR:

Integration of excellent fire safety and good electromagnetic shielding efficiency

LOM: 29%
UL-84: V-0

58.4%
dacline

THR:
58.0%
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EMI SE:
213dB

COTY:
75.8%
decline

Figure 14: FR and EMI feature of TPU@PA-APP@Ti3C.Tx-SCS nanoarchitectures [21].
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Figure 16: FR of AgNWs@PANI@PU foams nanoarchitectures [23].

15. FR OF SMPU@MXENE NWS NANOARCHITEC-
TURE

Conventional fire warning sensors are sensitive to
fire incident or elevated temperature while ignoring
electrical safety. Hence, it is essential to fabricate an
effective instantaneous fire warning sensor possessing
circuit safety on exposure to fire scenario. Thus, in a
work, a FR paper possessing thermos-sensitive fire-
alarm responses as well as self-cutting performance is
postulated [24]. Here, shape memory thermoplastic
polyurethane (SMPU) and MXene is fabricatedthrough
facile electro-spinning along with vacuum filtering
steps, capable of been utilized as early fire alarm
induced by the shape memory disposition of SMPU
[24]. Results showed that SMPU@MXene paper

offered a stabilized detecting signal and automatic
early fire warning sensitivity when the ambient
temperature is beyond transition temperature of
SMPU. In comparison with SMPU paper,
SMPU@MXene paper exhibited superior F-R with a
fast self-extinguishing behavior, along with 66.0% and
49.8% minimization in pHRR and THR, respectively.
Therefore, this work offers a new pathway for
construction of early detection fire-alarm sensors and
fire-protection applications [24].

16. PEO@LITFSI@QLLTO-NWS POLYMERIC NANO-
ARCHITECTURAL ELECTROLYTES

Herein, rapid ionic conductor Li0.33La0.557TiO3
(LLTO) nanowires having elevated ionic conductivity

Ao il | .
Ultra-fast fire warning e

Figure 17: FR of TizC2Tx MXene@AgNWs@ANFs [28].
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were constructed via electro-spinning with subsequent
elevated temperature calcination. LLTO NWs was
used in filling poly (ethylene oxide) (PEO) matrix as
reinforcement and the novel PEO@LITFSI@LLTO-
NWs polymeric nanoarchitectural electrolytes were
constructed via inexpensive solution casting technique
[25]. The results revealed that LLTO NWs inclusion
could effectively enhance the ionic conductivity,
electrochemical stability window, transference number,
and compatibility with lithium metal of polymeric
nanoarchitecture electrolytes. The maximum ionic
conductivities of nanocomposite electrolytes reinforced
with 5wt.% LLTO NWs at ambient temperature and
60 °C were 5.53 x 10-5Scm ™" and 3.63x 10-4Scm ™',
respectively. FR of the materials was achieved. [25].

17. SILICIOUS NWS FACILITATED DENDRITES
REPRESSION AND FR FOR ADVANCED LITHIUM
METAL ANODES

The ultrahigh-energy-density lithium (Li) metallic
anodes have garnered incremental interests for the
fabrication of next-generation Li batteries, however,
the safety concern and interior cycling stability
originating from intrinsically dendritic Li plating, have
highly hindered their scope of applications. Thus, in a
work, 3-D architectural assembled form the mineral
xonotlite (CagSigO47(OH),;) NWs (XNs) elevated high
specific surface area, strongly electrolyte affinity and
F-R features are fabricated for homogenizing the Li*
flux while alleviating the dendrite-induced safety
hazards [26]. This strategy offer insight into rational
designing of highly safe long-cycling Li metal batteries
[26].

18. FR OF CUNWS@GO NANOARCHITECTURES

In  a work, surfacial functionalization of
polydopamine (PDA), composites films constituting of
graphene oxide (GO) and differing mass ratio (5, 15,
25, 35 wt. %) of copper nanowires (CuNWs) were
fabricated via a solvent-induced assemblage
technique. PDA inclusion not only minimized GO,
CuNWs were additionally protected from oxidation
[27]. 1-D CuNWs, as heat-bridge underwent
inculcation within 2-D GO nanosheets to fabricate
interconnected thermal conduction architecture. This
architecture can offer an effectual heat conductive
pathway. The CuNWs@GO-PDA film as a result of
char forming capability of PDA, and GO architecture,
demonstrated outstanding F-R. Micro combustion
calorimeter tests reveal drastic minimization of 80.9%
pHRR rate in comparison with pristine GO [27].

19. FR OF ARAMID NANOFIBERS/MXENE/SILVER
NANOWIRES AEROGEL FIBER

Fire combative fabrics are critical equipments
capable of offering safety personnel from all manner of

heat hazards while preventing burn induced injuries for
firefighting personnel. Nevertheless, it remains
challenging to construct elevated fire fighting clothing
exhibiting automatic fire alarm responsivity prior
protective clothing malfunctioning in extreme fire
situations. Hence, in a work, a self-propelled wearable
automatic fire warning e-textle (MAA e-textile)
facilitated by TisC,Tx MXene@silver nanowires
(AgNWs)@aramid nanofibers (ANFs) aerogel fiber
(TisCoTx MXene@AgNWs@ANFs), was constructed
via wet spinning approach [28]. The garnered self-
powered fire warning MAA e-textile was integrated
within firefighting fabric to attain a vast temperature
range sensing at 100-400 °C relying on a linear
relationship between thermoelectric voltage as well as
temperature because of thermoelectric feature of
MXene, capable of alerting firefighters for timely
evacuation prior damage of the protective clothing
(Figure 17) [28].

20. FR OF GRAPHENE@SILVERNWS@PDMS
NANOARCHITECTURES

The backfilling of polymeric matrices within
preformed three-dimensional (3-D) conducting filler
architecture is a herculean approach for the
development of highly conductive  polymeric
composites (CPCs). Therefore, in a work, the selection
of complementary graphene oxides (GOs), good water
dispersibility (~15mg/mL) and silver nanowires
(AgNWs), outstanding conductivity (~106 S/cm) as
fundamental blocks, highly conductive (12.1 S/cm) and
robust 3-D reduced GOs (r-GOs)@AgNWs bi-
continuous conductive skeletons (GACSs) underwent
successful construction via freezing of partially r-
GOs@AgNWs hydrogel strategy capable ofpore size
increment, pore-wall thickness and homogeneity of
GACSs. The emergent PDMS@r-GOs@AgNWs
composite (PGAC) possessing low filler inclusion of
0.76 wt.% demonstrated superior conductivity of
10.6 S/cm, absorption-dominated electromagnetic
interference shielding efficiency (EMI SE, 34.1 dB) and
high-level specific SE (SSE, total SE divided by filler
loading and thickness) up to 22.43 dB/unit wt.%/mm
(most common values of 0.66—12.5 dB/unit wt %/mm).
At same vein, PGACs demonstrated outstanding
compression feature, thermal stability and F-R (Figure
18) [29].

21. SUPERIOR F-R POLYPHOSPHATE (MPP)
NWS/POLY (ETHYLENE TEREPHTHALATE) (PET)
NANOARCHITECTURES

A novel approach has been innovated for
fabricating melamine polyphosphate (MPP) NWs to
attain superior FR poly (ethylene-terephthalate) (PET),
attributable to the well-constructed nanoarchitecture,
which enabled the MPP nanowires demonstrate
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Figure 18: Features of PDMS@r-GOs@AgNWs composite (PGAC) [29].

elevated thermal stability and FR. Hence, with the
inclusion of 1 wt % MPP NWs (PET@FR1
nanoarchitecture), the LOI value sharply incremented
to 29.4% from 20.5%, thereby demonstrating self-
extinguishing disposition [30]. Furthermore, PET@FR1
nanoarchitecture passed V-0 UL-94 rating in the
vertical combustion examination. Nevertheless, PET
constituting of 5-wt. % commercial MPP powder
(PET@FRC5.0) demonstrated a LOI of 27.9% and
initiated the ignition of the absorbent cotton with fire
prone melt-droplets. Results from cone tests also
revealed that inclusion of 1-wt. % MPP nanowires
minimized PET fire hazards, for instance, 11.1% and
7.7% optimal minimization in HRR and THR ascribed
to the synergistic dilutional effect within the gaseous
phase as well as the catalytic carbonization effect in
condensed phase [30].

22. POTENTIAL APPLICATION PROSPECTS OF
NANOWIRES@POLYMERIC
NANOARCHITECTURES

Pristine polymeric matrices have often released
elevated levels of toxic gases during combustion and

this poses a great hazard to human lives. Hence, the
effectual minimization of toxic gases as well as smoke
during the process of polymeric combustion is
essentially critical to minimizing fire casualties during
real time fire scenario. Thus, a large level of
investigations have revealed that nanowire polymeric
nanoarchitectures composed of various types of
nanowires can repress the smoke released and
enhancing flame retardancy during the polymeric
nanoarchitectures combustion [32-35].

These have largely expanded their scope of
applications in segments where fire safety, thermal
stability and conductivity and so on are imperative
such as the automobile, aerospace, construction,
maritime, rail, electronics, and oil and gas industries
and so on as depicted in Figure 19 [36-148].

23. CHALLENGES AND FUTURE PERSPECTIVES

Polymeric nanoarchitectures (PNC) fabricated
using metallic NWs as reinforcement is being studied
because of their improved fire retardant, optical,
electromagnetic, electrical, mechanical and thermal

Figure 19: Prospective application segments of nanowires@polymeric nanoarchitectures.
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features. As a result of high aspect-ratio of metallic
NWs, the inclusion of miniature levels of NWs can
sharply improve the physical features of polymeric
matrices (electromagnetic shielding, conductivity,
dielectric constant, thermal conductivity, and so on.
Other essential physical features (transparency,
stretchability, and flexibility), remained almost
constant. This facilitates the development of novel
materials with synergistic physical features for usage
as transparent electrodes for solar cells, flexy
electrodes for wearable electronics, along with
elevated dielectric constant stretchable dielectrics for
elevatedly  sensitive  pressure sensors. NWs
nanoarchitectures are, also, printable with solution
processability. The macroscopic physical features of
metallic NW nanoarchitectures are function of the NWs
dimension (diameter and length), concentration (in %
weight of the composite) as well as their spatial
distribution within polymeric matrices.

24. CONCLUSION

Fire hazards induced by thermal-shock and heat
deterioration initiated by gradual thermal diffusion
within microelectronic gadgets have made it critically
imperative for these materials to display highly
effective FR and thermal insulation for multifacet
applications. Hence, the possession of elevated F-R
and outstanding electromagnetic interference (EMI)
shielding for PNC has become essential. Furthermore,
the escalated use of heat conductive PNCs composed
of nanowires in the aviation, automobile, maritime, oil
and gas segments, and so on, has made F-R of
nanowires@PNC highly imperative. In order to
mitigate or completely eliminate inherent challenges
prevalent in pristine polymeric materials attributable to
their chemical composition, nanoparticulates including
nanowires, nanoclays, carbon derivatives, and so on,
have been incorporated within polymeric matrices to
enhance their features especially FR [31-127].
Despite, the possession of properties such as low
weight, outstanding flexibility and processability, the
inherently poor flammability, as well as, elevated
temperature deterioration pose challenges to most
polymeric composites, and these flaws have restricted
their scope of application in a versatile range of
segments. Specifically, present investigation has
revealed that the inclusion of various forms of
nanowires within pristine polymeric materials has
fabricated fire safety nanowire@PNC, thereby
enlarging their scope of prospective applications for
the future.
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