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Giesekus Constitutive Model for Thermoviscoelastic Fluids based on
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Abstract: This paper presents derivation of Giesekus constitutive model in Eulerian description based on ordered rate
constitutive theories for thermoviscoelastic fluids for compressible and incompressible cases in contra-, co-variant and
Jaumann bases. The ordered rate constitutive theories for thermoviscoelastic fluids of orders (m, n) consider convected
time derivative of order m of the deviatoric Cauchy stress tensor in a chosen basis (i.e. co-, contra-variant or Jaumann)
as dependent variable in the development of constitutive theories for the stress tensor. Its argument tensors consist of
density, temperature, convected time derivatives of the deviatoric Cauchy stress tensor of up to order m — 1 and convected
time derivative of up to order n of the conjugate strain tensor. In addition, constitutive theory for the heat vector compatible
with the constitutive theory for the deviatoric stress tensor is also presented in co-, contra-variant and Jaumann bases. Itis
shown that the Giesekus constitutive model is a subset of the rate constitutive theory of orders m = n = 1. Itis also shown
that the deviatoric Cauchy stress tensor (contra-, co-variant or Jaumann basis) naturally results as dependent variable in
the constitutive theory, and that currently used Giesekus constitutive model in deviatoric polymer Cauchy stress tensor is
not derivable based on axioms and principles of the constitutive theory in continuum mechanics. Numerical studies are
presented for fully developed flow between parallel plates for a dense polymeric liquid using the Giesekus constitutive
model derived in this paper as well as currently used model.

Keywords: Contravariant, covariant, Jaumann, upper convective, lower convective, least squares

1 INTRODUCTION

The polymeric fluids can be classified in two broad
categories: dilute polymeric fluids and dense polymeric
fluids or polymer melts. Compressibility in polymeric
fluids is only important at very high pressures. Gen-
erally, polymeric fluids are treated as incompressible,
hence it is appropriate to say polymeric liquids. Dilute
polymeric fluids are primarily much like Newtonian fluids
but with some elastic effects, i.e. behavior is dominated
by viscous effects. In such fluids, solvent viscosity is
dominant, i.e. much higher than polymer viscosity. Poly-
mer melts are dense polymeric fluids whose behavior is
dominated by elastic effects. In such fluids the polymer
viscosity is much higher than the solvent viscosity. Poly-
meric fluids are of significant industrial importance. The
first attempt to derive constitutive equations for polymers
appears to have been due to Maxwell [1]. Later these
were generalized to remove the small displacement as-
sumption [2, 3]. Maxwell constitutive model is a linear
viscoelastic model. Using Maxwell model as a basis,
the Jeffreys model is obtained by adding time derivative
of the symmetric part of the velocity gradient tensor [2].
Generalization of the Maxwell model is obtained by su-
perposition of a series of Maxwell models [2, 3].

It is commonly accepted [2] that linear viscoelas-
tic models have many limitations: (1) They can not
describe shear rate dependent viscosity (2) They can
not describe normal stress behavior accurately (3) They
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fail to describe small-strain phenomena if it is accom-
panied by large displacements due to rigid rotations.
These lead to the development of ‘Quasi-linear differ-
ential models’. The Oldroyd-B [4] model falls into this
category. Deficiencies of these models in describing re-
alistic physical flow phenomena in polymer melts lead
to the development of non-linear differential constitutive
models for polymeric fluids. Giesekus model [5] and PTT
model [6] fall into this category. Many other constitutive
models have been proposed for polymeric fluids (see
reference [2]). The fundamental driving principles in
the development of these models have been anisotropic
drag due to Brownian motion of polymer molecules and
their networks and the kinetic theory [2, 3].

First, we remark that polymeric fluids at a macro
scale are viewed as isotropic homogeneous continuous
media. Thus, in our view, the constitutive theory for such
fluids must be derivable using principles and axioms
of continuum mechanics. In fact, Maxwell constitutive
model has been derived in reference [7] using the theory
of generators and invariants. It is instructive to examine
the derivations of Giesekus constitutive model based
on continuum mechanics axioms and principles and as
a subset of ordered polymeric fluids as it may suggest
new possibilities for improvement in the existing models.
The thermoviscoelastic fluids have memory and hence
exhibit relaxation phenomenon. It can be shown [2] that
for fluids with relaxation phenomenon, we must at the
very least consider the first convected time derivative
of the deviatoric Cauchy stress tensor as a dependent
variable in the development of the constitutive theory.
Additionally, the deviatoric Cauchy stress tensor and the
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first convected time derivative of the conjugate strain
tensor must be considered as its argument tensors (in
addition to others). The ordered rate constitutive the-
ories presented in references [8, 9] are generalizations
of this concept. When a polymer is subjected to distur-
bance, the motion of the polymer molecules is complex
(Brownian motion [10, 11]). The origin of the develop-
ment of the currently used Giesekus constitutive model
seems to be based on Brownian motion and kinetic the-
ory [2, 3] in which the polymer deviatoric Cauchy stress
is used as a dependent variable in the constitutive the-
ory. In the work presented in this paper, we view dense
polymers (described by Giesekus model) as homoge-
neous, isotropic continuous media within the continuum
mechanics framework. The derivation of the constitutive
theories is initiated using the second law of thermody-
namics (entropy inequality). The conditions resulting
from the entropy inequality are further utilized in con-
junction with the theory of generators and invariants
(see section 5) in the development of general ordered
rate constitutive theories. It is shown that Giesekus
constitutive model is derivable from the ordered rate
constitutive theory for thermoviscoelastic fluids in which
m = 1 and n = 1, i.e. the rate constitutive theory of
order 1 in deviatoric stress and strain measures. This
approach based on entropy inequality ensures that when
this constitutive model is used in conjunction with other
conservation laws, thermodynamic equilibrium of the
deforming polymeric fluid is ensured. It is shown that
this approach necessitates that we consider deviatoric
Cauchy stress tensor (in contra- or co-variant basis or
Jaumann) as dependent variable in the development of
the constitutive theory as opposed to deviatoric Cauchy
stress based on polymer stress as used currently.

The paper presents derivations of the constitutive
theory for the stress tensor for the Giesekus constitutive
model as well as the compatible constitutive theory for
the heat vector. The derivations are presented in con-
travariant as well as covariant bases resulting in upper
convected and lower convected rate constitutive theo-
ries. Additionally, the constitutive theories are also pre-
sented using Jaumann rates. Numerical studies are pre-
sented for fully developed flow between parallel plates
for a dense polymeric liquid using the rate constitutive
model presented in this paper as well as the currently
used Giesekus constitutive model.

2 CONSIDERATIONS IN THE DEVELOPMENT OF
THE GIESEKUS CONSTITUTIVE MODEL

For any deforming matter to be in thermodynamic
equilibrium, the conservation laws (conservation of
mass, balance of momenta, conservation of energy and
the second law of thermodynamics) must be satisfied.
Since, balance of momenta and conservation of en-

ergy assume existence of a stress field and heat vector
without specific regard to the constitution of the matter,
conservation of mass, balance of momenta and conser-
vation of energy are applicable to all deforming matter.
Thus, these three conservation laws do not provide a
basis for the development of the constitutive theory for
any deforming matter. Hence, the second law of ther-
modynamics (or entropy inequality) must be considered
in the development of the constitutive theory. When
the mathematical model of deforming matter is derived
using conservation of mass, balance of momenta and
conservation of energy, and the constitutive theory is
derived using the second law of thermodynamics, the
thermodynamic equilibrium of the deforming matter is
ensured.

For thermoviscoelastic fluids, Eulerian description
is necessary for the development of the mathematical
models due to the fact that complex motion material
points in such fluids may be difficult to describe using
Lagrangian description, thus the constitutive theories for
such fluids must also be developed in Eulerian descrip-
tion. In Eulerian description we monitor the state of the
deforming matter at a fixed location in the current config-
uration, hence the material point displacements are not
known and therefore the use of strain measures in the
development of the constitutive theories yields constitu-
tive equations in which strain measures are not defined.
Thus, in Eulerian description of motion, we must con-
sider strain rates in the development of the constitutive
theories, hence the name ‘rate constitutive theories’. In
the following we present notations, definitions and var-
ious measures of the stresses, finite strains and their
convected time derivatives that are essential in the de-
velopment of rate constitutive theories for ordered ther-
moviscoelastic fluids. The rate constitutive theory of or-
der 1 in both stress and strain measures forms the ba-
sis for deriving the Giesekus constitutive model for the
stress tensor and the compatible constitutive theory for
the heat vector.

2.1 Notation

In this section we present a brief account of coor-
dinate systems, measures of stresses, strain and their
convected time derivatives of various orders, and helpful
definitions introduced in [9] but repeated here for con-
venience. Let z; and &; denote position coordinates of
a material point in the reference and current configura-
tions, respectively, in a fixed frame (z-frame)

2.1)
(2.2)

T; = xi(xy, 20, 23, 1)
r; = x;(T1. T2, T3, 1)
If {dz} = [dxy, dxo, dx3)" and {dz} = [dZ;, dTs, dEs)”

are the components of length ds and ds in the refer-
ence and current configurations, and if we neglect the
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infinitesimals of orders two and higher in both configura-
tions, then we obtain

{dz} = [J){dz} (2.3)
{da} = [J){dz} (2.4)
with
=" = W =) =11 (25)
and using Murnaghan’s notation
L e R e I

in which the columns of |.J| are covariant base vectors g,
whereas the rows of [.J| are contravariant base vectors
g'. [J] and [J] are Jacobians of deformation. The ba-
sis of [J] is reciprocal of the basis of [J]. The following
relations are useful in the sequel:

D _
E[JJ = [L][J] (2.7)
D

o= -Vl 8)
L= % (2.9)

in which - stands for the material time derivative, [L]
is the spatial velocity gradient tensor and ©; are velocity
components of a material point z; in the current configu-
ration in the x-frame.

2.2 Strain Measures

In the present work we consider Green'’s strain ten-
sor [z], in covariant basis, and Almansi strain tensor |z],
in contravariant basis, both are measures of finite strain
and have Cartesian dyads in the z-frame

5 (1 17] = [1])
5 (1= 1))

The term [J][J]" in (2.11) is the replacement for the
usual terms [J]7[.J] that occurs in the derivation of [Z].
This is necessary to ensure that [¢] and [Z] have the
same dyads in the z-frame. This difference arises due
to the fact that columns of [.J] are covariant base vec-
tors whereas contravariant base vectors are rows of [.J].
Thus in the expression for 5] = 3([7] — [J]"[J]), [J]"
must be replaced with [.J] and likewise, [./] must take the
place of [J]” so that [] and [z] have the same dyads [9)].

(Def.) (2.10)

[ N

(Def.) (2.11)

2.3 Stress Measures

Let [T9)] be the contravariant Cauchy stress tensor
(derived using contravariant basis) that corresponds to

the directions normal to the faces of the deformed tetra-
hedron in the current configuration. Let ['1_‘(“)] be the
covariant Cauchy stress tensor (derived using covariant
basis) that corresponds to a new tetrahedron such that
covariant base vectors are normal to its faces.

The stress tensors [7?)] and [7,)] are the Eulerian
measures as these correspond to the deformed tetra-
hedron in the current configuration. When considering
the development of mathematical models or constitutive
theory in the Lagrangian description, it is essential to ob-
tain the Lagrangian stress measures that correspond to
[T™] and [T|q] stress tensors. Using [T(”)], areas of
the faces of the deformed tetrahedron and a correspon-
dence rule, we can derive the second Piola-Kirchhoff
stress tensor [T'!] corresponding to the contravariant
Cauchy stress tensor [T")] whose components act on
the faces of the undeformed tetrahedron in the reference
configuration. We refer to [T1")] as the second Piola-
Kirchhoff stress tensor based on contravariant Cauchy
stress tensor [T'")]. Similarly, if we use [T|], areas
of the faces of a new tetrahedron (obtained from the
true deformed tetrahedron such that the covariant base
vectors are normal to its faces) and a new correspon-
dence rule, we can also derive another second Piola-
Kirchhoff stress tensor [T}, | whose components also act
on the faces of the undeformed tetrahedron in the ref-
erence configuration. We refer to [T},| as the second
Piola-Kirchhoff stress tensor based on covariant Cauchy
stress tensor [T|;,]. Following reference [9] we can write
(for a compressible matter)

(7)) = [T = || )TN

[Tio)) = [To))" = |71[J)" [T(0))[])

The Jaumann stress tensor [()T"] is defined as av-
erage of the contravariant and covariant Cauchy stress

tensors with the further restriction of being equal to the
contravariant and covariant Cauchy stress tensors. Thus

(Def.)
(Def.)

(2.12)
(2.13)

(OF7) = [TO] = [T;p)]  (Def.) (2.14)

and hence
(OF) = 2 (7] + [T)) (2.19)
We note that [T")] = [T{,)] only holds for infinitesi-

mal deformation in which contra- and co-variant Cauchy
stress tensors are identical. If the deformation deviates
from infinitesimal assumption, then [7'"] # [T{,)] and
hence the Jaumann stress measure becomes spurious.
(7] stress measures has been used often in the pub-
lished work specially for solid matter and in many in-
stances for finite deformation studies [12, 13], hence the
reason for including this stress measures in the present
work and subsequently the rate constitutive theory de-
velopments based on this measure of stress.
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2.4 Convected Time Derivatives of Green’s and Al-
mansi Strain Tensors and Jaumann Strain Rates

Following references [7, 9] and noting that Green’s
strain tensor is a covariant measure whereas the Al-
mansi strain tensor is a contravariant measure, both
for finite strain, we can summarize their convected time
derivatives in co- and contra-variant bases. These hold
for both compressible as well as incompressible matter.

2.4.1 Covariant Basis: Convected Time Derivatives
of Green’s Strain Tensor

) = gm_lu = U ]

D - ~ (2.18)
Dol = 5 De-nl + (L) broe-n)] + -l Z]
with £ = 2,3,... and
D
bl = 5l =D hall - @17)
bol =50+ @Y =) @18)
where [y;)] ;7 = 1.2,..., n are fundamental kinematic

tensors in the covariant basis.
show that these are objective.

It is straight forward to

2.4.2 Contravariant Basis: Convected Time Deriva-
tives of Almansi Strain Tensor

[A,,lkl] — Bhlk—ll] —

Hlei®i

[L)[y*=Y] -

(2.19)

» iy

~ (k)
[/ ] Dt

oTLCA b

| )

8] = Ty

() = 5
(Z)+ L") = (D]

l)]_

(2.20)

(2.21)

Ivl'—'\_,

where [y\9] ;= 1,2,..., n are fundamental kinematic
tensors in the contravariant basis. These are also objec-
tive.

2.4.3 Jaumann Strain Rates

The strain rates conjugate to the Jaumann stress
rates of various orders can be derived using the follow-

ing:

(D97] = W] = [y s k=1.2,...  (Def) (2.22)
and hence
(7] = ([ ®N + [vw) k=1,2,... (2.23)

Substituting for [v*)] and [y(;,] from (2.16) and (2.19)
in (2.283) and using (2.22) and (2.23) we obtain the fol-
lowing:

D[(k—l)

(97 = T [+ ) ][]+ (5D 17] (224)

with £ =2,3...and

(D7) = ) = b = 3£+ [LI7) = D] (2:25)

B =

(D] 55 =1,2,..., n are the Jaumann strain rates
compatlble with the Jaumann stress rates. The Jaumann
strain rates are objective. [IV] is the skew symmetric part
of [L], i.e. [W] = L([L] - [L]")

Contra-
Incom-

2.5 Convected Time Derivatives of Co-,
variant and Jaumann Stress Tensors:
pressible Matter

In this section we summarize the convected time
derivatives of co- and contra-variant Cauchy stress ten-
sors and Jaumann stress tensor for incompressible mat-
ter [9] in which |.J| = 1 simplifies the convected time
derivative expressions.

2.5.1 Covariant Basis: Convected Time Derivatives
of Covariant Cauchy Stress Tensor

If [T;)]:5=1.2,..., n are the convected time deriva-
tives of orders j=12,..., n of the covariant Cauchy
stress tensor [1|)] in the covariant basis and if [77;]
o= 12,00, n are the material derivatives of orders
j=1,2,..., n of the second Piola-Kirchhoff stress ten-
sor [T'")], then following reference [9] we can write

(Ti] = D 2 Tmn] = D1 T l1)
) ) - ) ) (2.26)
[T = E[T(A-—n] + (L) [Ti-n)] + [Tw-)[L]
in which k = 1,2,.... It can be easily shown that [7};)] ;

i=12,..., n are objective.
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2.5.2 Contravariant Basis: Convected Time Deriva-
tives of Contravariant Cauchy Stress Tensor

If (7] ; 5 = 1,2,..., n are the convected time
derivatives of orders j = 1.2.....n of the contravari-
ant Cauchy stress tensor [7(”)] in the contravariant basis
and if [TV]] ;5 =1,2,..., n are the material derivatives
of orders j = 1,2,..., n of the second Piola-Kirchhoff
stress tensor [T}y, then following reference [9] we can
write

[T") = [T[H]] Mgt

D (227
(9] = D7) — [EJF*-D] - [F*-V)[L]"
in which & = 1,2,.... Tensors [TV)] ; j = 1,2,..., n are

also objective.

2.5.3 Jaumann Stress Rates

In order to define the Jaumann stress rates, i.e. the
convected time derivatives of the Jaumann stress ten-
sor, we use the same definitions as used for defining the
Jaumann stress tensor, i.e. we assume

(M) = [TW) = [Tp)] s k=1,2,... (Def) (2.28)
and hence
(OT) = LW + [T)) 5 k=12... (229)

Substituting for [7*)] and [7{;,] from (2.26) and
(2.27) in (2.29), using (2.28) and assuming the veloc-
ity field to be the same in [T*)] and [T{;,] definitions (i.e.
same [L]), we obtain

(1) =2 (5 (4] + [T
g([ ) - [L)7) [+ 7) (2:30)

~ (07 (S(10) - [(0)7))
with & = 1,2,.... Using (2.29) in (2.30) we can obtain

the following recursive relations

(M7= T'H*DT7[W] (2.31)

2 (k=1) A _yis[(k=1)
(DT

in which & 1,2,....
are the convected time denvatlves of orders 1,2, ... of
the Jaumann stress tensor [(V)7*/]. The definition (2.31)
also requires the deformation to be infinitesimal (not fi-
nite) for which case the assumption of the same velocity
field, i.e. same [L] also holds in the definitions of [7(*)]
and [T, essential to derive (2.31). We can show that
(DT7]; j =1.2,...,n are objective.

The first convected time derivative of the Jaumann
stress has been used extensively [2], hence we give it a
notation similar to upper convected and lower convected
rates in the following. If we denote the Jaumann stress
tensor by [77], i.e.

(O] = [T7] (2.32)
. .ID - D
(OT/)= 2T )= o [T~ [W)T7 )+ [17]7] (2.33)

then we may drop the superscript 7 for [T7] as ,)) (T
would indeed imply the Jaumann rate of the Jaumann
stress tensor. Thus

D

D) = o r) - W)T) + [T (234

o D[] defines the Jaumann stress rate, i.e. first con-
vected time derivative of the Jaumann stress tensor 7).

Contra-
Com-

2.6 Convected Time Derivatives of Co-,
variant and Jaumann Stress Tensors:
pressible Matter

In this section we summarize the convected time
derivatives of co- and contra-variant Cauchy stress ten-
sors and Jaumann stress tensor for compressible mat-
ter [9]. In case of compressible matter |.J| # 1, hence
the convected time derivative expression contains addi-
tional terms compared to the incompressible case.

2.6.1 Covariant Basis: Convected Time Derivatives
of Covariant Cauchy Stress Tensor

If [T(;] 55 =1.2,.... n are the convected time deriva-
tives of orders j = 1,2,..., n of the covariant Cauchy
stress tensor [T}g] in the covariant basis and if [7;]
o= 1.2, n are the material derivatives of orders
j=12..... n of the second Piola-Kirchhoff stress ten-
sor [Tjy)], then we can write

- D T
[Tig] = 5 Tk—n] = 1) (T )]
i D . =T 7 7 = (2.35
(Tiy) = g (Fox-v) + (B Tpry] + T )(E] B2
+ [T Jtr([L])
in which k = 1,2,.... It can be easily shown that tensors

(T;y] ;4 = 1,2,....n are objective.

2.6.2 Contravariant Basis: Convected Time Deriva-
tives of Contravariant Cauchy Stress Tensor

If [T7)] ; j = 1,2.....n are the convected time
derivatives of orders j = 1,2...., n of the contravari-
ant Cauchy stress tensor [7")] in the contravariant ba-
sis and if [TV)] ; j = 1.2,....n are are the material
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derivatives of orders j = 1.2, ..., n of the second Piola-
Kirchhoff stress tensor [7')], then we can write

() = D [rt=1] = )OI

(T09) = 2 [P*=D] — [Z][T*-D] — [F¢-D)E)" (2-36)
+ (70 Dr((E)

inwhich k = 1,2,.... Tensors [TV)] ; j =1,2,..., n are

also objective.

2.6.3 Jaumann Stress Rates

As in the case of incompressible matter, here also we
assume the following

(W) = [TW] = [Tyy] s k=1,2,... (Def) (2.37)
and hence
(M) = %([T(“] + [Tw)) k=12... (2.38)

Substituting for [7®)] and [T{;,] from (2.35) and
(2.36) in (2.38), using (2.37) and assuming the veloc-
ity field to be the same in [7*)] and [T, definitions (i.e.

same [L]), (following the same procedure as used for in-
compressible case) we can derive the following:
D
(k )Tl (k=1) “ (k— l)T
(7] =, (40T = (W)= 239)
W“WWHP‘MWW

in which & = 1,2,.... Using the notations used for in-
compressible case, the first convected time derivative of
the Jaumann stress tensor, i.e. the Jaumann stress rate,
for compressible matter can be written as

J
£m=§m—mmwmmummw

= (2.40)

in which 7 [T] is the Jaumann stress rate of the Jau-
mann stress tensor [T for compressible matter. [()7]
j=1,2..., n are the convected time derivatives of or-
ders 1,2,..., n of the Jaumann stress tensor [()7/] and
are objective.

3 ENTROPY INEQUALITY: DEPENDENT VARIABLES
IN THE CONSTITUTIVE THEORY AND THEIR AR-
GUMENT TENSORS

3.1 Entropy Inequality

As mentioned earlier, the entropy inequality must
provide the basis for deriving the constitutive theories
for any deforming matter that is in thermodynamic equi-
librium. We could consider entropy inequality in either

Lagrangian or Eulerian description, the conclusions re-
main unaffected due to the fact that all measures ap-
pearing in the entropy inequality are transformable from
one description to another through [.J] or [.J]. We con-
sider entropy inequality in Lagrangian description [7,9].

— ot Ji <0 (3.1)

0P o0 qigi

R (Tt +n W) 0
in which p is material density in the reference configu-
ration, ® is Helmholtz free energy density, 7 is entropy
density, ¢ is temperature, o* is first Piola-Kirchhoff stress
tensor, q is the heat vector and g is temperature gradi-
ent (all in Lagrangian description, i.e. functions of =; and
t). Since o* can be transformed to any other desired
measure, in the following discussion we simply use o for
stress.

From the balance of momenta and the first law of
thermodynamics we note that the stress tensor and the
heat vector are obviously related to the constitution of
the matter and hence must be considered as depen-
dent variables in the constitutive theories. In (3.1) we
note the appearance of ¢ and 7 as additional dependent
variables. Thus, based on conservation laws, the stress
tensor, heat vector, Helmholtz free energy density and
the entropy density must be considered as dependent
variables in the development of the constitutive theory.
We note that (3.1) contains material derivative of the
Helmholtz free energy density. Thus it is necessary to
determine the arguments of ® and likewise the argu-
ments of the entropy density 7, stress tensor and heat
vector in the entropy inequality. Let o, g, ® and 5 and
(0g, (0)g, & and 7 be the dependent variables in the con-
stitutive theory in Lagrangian and Eulerian descriptions
(more specific definitions and choices will be considered
in the later sections).

Based on the principles of equipresence [7] we con-
sider all possible measures of deformation as arguments
of these dependent variables. The Jacobian of deforma-
tion [J] is fundamental in the kinematics of deformation
for the matter and hence must be an argument in each of
the four dependent variables. Since we are considering

fluids and rate theories, [.J] (time or material derivative of
[.J]) must be an argument as well [9]. Temperature is ob-
viously an argument. In addition to these three, we also
consider g, the temperature gradient, as an argument.
Thus we have

o=o(J], [.}].0.9)
a=q([J].[]].0.9)
® = &([J].[J].0.9)
n=n([J].[J).0.9)

If in (3.2) the independent variables are (z;,t), then
these are in Lagrangian or material description in which

(3.2)
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case o may represent first Piola-Kirchhoff stress, or sec-
ond Piola-Kirchhoff stress. On the other hand, if the in-
dependent variables are (z;,t), then these are in Eule-
rian or spatial description in which case o may represent
contra- or co-variant Cauchy stress tensor or Jaumann
stress tensor. Since we have arguments of ¢, we can
consider a more detailed form of entropy inequality (3.1)
by using
ob - 9P oP - od - 0P

90 g+ i+ i 25 @
o = aag st gt gt B9

Substituting (3.3) in (3.1)

oP - 0P - ob - 0D . 00
H»( %.],]‘.—FT()‘F _)—.(/,'+l],—)
0Ji O ix a0 Jg; ot (3.4)
qi9i x 7
+ T —opJik <0
or
OD - 0P <I>
e (( + l/)9+/3,
0Tk ! o0 (3.5)
od . qi9i
—— =0 )ik =<0
("’» OJir ”") TS

In order for (3.5) to hold for arbitrary (but admissible) [.7],
6 and g, the following must hold:

p 22 _y N 2 _, (3.6)
0J i, 0J i

P 33" 0 = 3;1’ =0 (37)
(% + r;) = % +n=0 (3.8)

(,3, ()()qu ot )],A + ’1'9‘” <0 (3.9)

Equations (3.6) - (3.9) are fundamental relations from
the second law of thermodynamics.
Remarks:

(1) Equations (3.6) imply that ¢ is not a function of [.}].

(2) Equations (3.7) imply that ® is not a function of g
either.

(3) Based on (3.8), 77 is not a dependent variable in the
constitutive theory as n = —(’)—,’, hence 7 is deter-
ministic from .

(4) The inequality in equation (3.9) is essential in the
form it is stated. For example

0P igi
n (;T —o0,; =0 and 49
. 'L.

are inappropriate due to the fact that these imply
that [0*] is not a function of [.J] (since ® is not a

<0

function of [.}]) which is contrary to (3.2). We note
that (3.9) in its stated form is unable to provide us
further details regarding the derivation of the con-
stitutive theory for [0*] and q.

In order to alleviate the situation discussed in remark
(4), we consider decomposition of [¢*] into equilibrium
stress [.0*| and deviatoric stress [,0*]

[0%] = [e0"] + [a0™] (3.10)
in which we have the following:
[eo™] = [ca™([7],0],0.0)] (3.11)
[a0] = [ac™([J), []), 6.9)] (3.12)
[a0] = [ac™([]].]0],0,0)] =0 (3.13)

that is, [.o*] is not a function of [.}] and g, and [40*] van-

ishes when [J] and g are zero. Substituting from (3.10)
into (3.9) gives

(.)(I) * . (1[ (]l
R - <
(/1)) O.J:), eOki 'I{Tlu) Jir + _() 0 (314)
or
(‘)(I) * 7 * 7 qigi
o —or ) Jip —a0 i+ 2 < .
(/1)) (‘)']ik € U}.-:) ]lk dO i ]ll. + 0 s 0 (3 15)

Since @ is not a function of [J] and neither is o7,
((3.11)), hence .o}, must be derivable from

. od ar ﬂ
eOgi = /(), (‘)Jik or [,.O’ ] - /(), ()[,]] (316)
Using (8.16), the inequality (3.15) reduces to
— a0 T + ’OJ’ <0 (3.17)

If we assume (as done routinely to derive Fourier heat

conduction law [7])
(11 (/l

ya <0 (3.18)
then (3.17) is satisfied if the following holds
aohidie >0 (3.19)

Equation (3.19) requires that work expanded due to
40" must be positive. Thus (3.10) can be written as

5= o () 1.0 (3.20)
o = d([J],0) (3.21)
a=q([J).[J).0.9) (3.22)

We note that when [.}] is an argument of the depen-
dent variables in the constitutive theory: (i) the entropy
inequality requires stress decomposition into equilibrium
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stress and deviatoric stress (ii) based on the conditions
resulting from the entropy inequality, i.e. (3.20), the
equilibrium stress is deterministic from the Helmholtz
free energy density, but the constitutive theory for the
deviatoric stress is not. Thus, in case of the rate consti-
tutive theory, the entropy inequality does not provide any
further mechanism for the development of the constitu-
tive theory beyond (3.20) - (3.22).

Derivation of Fourier heat conduction law for q is
straight forward based on (3.18) [7]. A more general
derivation based on the theory of generators and invari-
ants is presented in a subsequent section.

3.2 Further Considerations on Argument Tensors

We note that in the Eulerian description, transforma-
tion of its reference frame by a unimodular (orthogonal)
matrix cannot be detected by its subsequent thermome-
chanical deformation. Thus if z-frame changes to 2’'-
frame via

{2'} = [R){x} (3.23)
[J') = [J][R)" (3.24)

Then, based on the principle of frame invariance
O([J].0)=([J].0)=a([J][R]".0) (3.25)

must hold and likewise, the principle of frame invariance
must also hold for the stress tensor and heat vector. But
this is only possible if Helmholtz free energy density @,
the stress tensor and heat vector depend upon the in-
variants 1, II;, Il; of [J]. Thus, dependence of the
variables in the constitutive theory on [.J] must be re-
placed with their dependence on 1, I, and ;. Fur-
thermore, we note that [.J] = [L][J], [D] = (L] + [L]")
and (W] = 1([L] — [L]"), therefore

(L] =[D]+[W] and [J] = ([D]+[W])[J] (3.26)
Thus, dependence on [.}] can be replaced by the de-
pendence on 1, II;, Il;, [D] and [W]. But [W] is pure
rotation and hence dependence on [IW] can be elimi-
nated. Thus, we can conclude that Helmholtz free en-
ergy density must have dependence on I, II;, Il ; and
6, and the deviatoric Cauchy stress tensor and heat vec-
tor must have dependence on I, I;, Il ;, [D], 6 and g.
The dependence of Helmholtz free energy density, devi-
atoric Cauchy stress tensor and heat vector on 1, I,
Iy, though it satisfies the axiom of frame invariance, it
is still not so useful due to the fact that [./] and hence I,
Iy, Il ; are not deterministic in the Eulerian description.

(1) Thus dependence on I, II;, Il ; must be replaced
by some other related measures that are obtain-
able or defined in the Eulerian description. We

note the following from conservation of mass
my = @

14
in which p is density in the reference configura-
tion (hence, constant). Thus dependence on I ;
can be replaced with dependence on 1/p or simply
p in the arguments of the Helmholtz free energy
density, deviatoric Cauchy stress tensor and heat
vector. I; and II; still remain arguments of the
Helmholtz free energy density, deviatoric Cauchy
stress tensor and heat vector but can not be con-
sidered in the development of the constitutive the-
ory for the deviatoric Cauchy stress tensor and
heat vector due to the fact that 7, and I, are de-
pendent on the components of [.J] which are not
deterministic (or obtainable) in the Eulerian de-
scription as the material particle displacements are
not known in the Eulerian description. Thus, we
conclude that the deviatoric Cauchy stress tensor
and heat vector have density p, symmetric part of
the velocity gradient tensor [D], temperature ¢ and
temperature gradient g as their argument tensors
in the Eulerian description.

p=\Jp=1M,;p  or (3.27)

(2) In the Eulerian description we have three choices:
contravariant basis, covariant basis and the Jau-
mann rates, and hence contravariant Cauchy
stress tensor (5], covariant Cauchy stress tensor
[0(0)] and the Jaumann stress tensor [(V5”] (see
references [8,9]) are obvious choices for measures
of stress in the constitutive theory.

(3) Recalling the derivations of the convected time
derivatives of the Green'’s strain tensor in the co-
variant basis, we note that [D] is the convected
time derivative of order one of the Green’s strain
in the covariant basis, i.e.

(3.28)

[v(1)] is a fundamental kinematic tensor in covari-
ant basis based on Green’s strain tensor, a covari-
ant measure of finite strain.

(4) Likewise if we consider the convected time deriva-
tives of the Almansi strain tensor in contravariant
basis, we note that [D] is also the convected time
derivative of order one of the Almansi strain in con-
travariant basis, i.e.

[D] =[] (3.29)

[vV] is a fundamental kinematic tensor in con-
travariant basis derived using the Almansi strain
tensor, a contravariant measure of finite strain.

(5) We have also shown that

(W] = ™) = )l = (D] (3.30)
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That is, the first convected time derivative of the
Jaumann strain is also a fundamental kinematic
tensor. [(V)4”/] is obviously objective.

(6) We have seen that the convected time derivatives
of order higher than one of the Green’s strain ten-
sor, the Almansi strain tensor as well as higher or-
der Jaumann strain rates can be derived in covari-
ant, contravariant and the Jaumann bases which
are fundamental kinematic tensors of various or-
ders in the respective bases. Thus we have

(Y9 ji=12,..., n (3.31)
7)) : ji=12,..., n (3.32)
(4] j=1,2,..., n (8.33)

Hence, instead of considering [D] or [yV)] or [y(1)]
as argument tensor in the constitutive theory, we
can generalize the choice by replacing [D] with
Y955 = 1,2,..., noryypl:i=12.... n or
D] 55 = 1,2,..., n depending upon whether
the basis is contra- or co-variant or we are consid-
ering the Jaumann rates.

(7) From the Maxwell model, Giesekus model,
Oldroyd-B model etc. we note that these models
contain convected time derivatives of orders one
and zero of the stress tensor. Thus these must be
derivable by considering the first convected time
derivative of the deviatoric Cauchy stress tensor
as a dependent variable in the constitutive theory
in which the convected time derivative of order zero
of the deviatoric Cauchy stress tensor is an argu-
ment tensor (see later sections). In the work pre-
sented here we generalize this concept and con-
sider the convected time derivative of order ‘m’ of
the chosen deviatoric Cauchy stress tensor (co- or
contra-variant basis or Jaumann) as a dependent
variable in the constitutive theory with convected
time derivatives of up to order ‘m — 1’ of the same
deviatoric stress tensor as its arguments in addi-
tion to the other argument tensors.

(8) Thus, we need to consider constitutive theories for
([a0™], @, ®), ((aF(m)) @(0)> ®) and (™45,
("g”’, ®) in contravariant, covariant and Jaumann
bases.

(9) Remarks (7) and (8) help us in finalizing the depen-
dent variables and their argument tensors in the
three bases. In order to make the following pre-
sentation and subsequent derivations of rate con-
stitutive theories for the deviatoric stress and heat
vector compact, we introduce the following nota-
tions:

Let [(Ma] ; k = 0,1,..., m, Vg and (V)] ; j =
1,2,..., n be the Cauchy stress tensor rates, heat

vector and the corresponding convected time deriva-
tives of the strain tensor in the chosen basis, and let
(5] = [“L&] + [")a] be the decomposition of the
Cauchy stress tensor into equilibrium stress and the
deviatoric stress.

By choosing [(Ma] ; k = 0,1,..., m, (Vg and (V)] ;
i=12..., nas ([6™] ;k=0,1,..., m, ¢ and [y7)]
s i=12,..., n) or ([og] ; k = 0,1,.... m, g and
vyl 53 =1,2,..., n)or([(Ma'] ;k=0,1...., m, Vg’
and [D47] ;5 =1,2,..., n) we can easily obtain various
details of rate theories in contravariant basis, covariant
basis and using Jaumann rates.

4 CONSTITUTIVE THEORY FOR THE EQUILIBRIUM
STRESS TENSOR

In order to present the derivation of the constitutive
theory for the equilibrium stress tensor [(°)5 |, we must
consider a specific choice of basis (due to the fact that
[c0*] in (3.16) must be transfered to the basis of choice).

4.1 Compressible Matter

Consider contravariant basis, i.e. we want to derive
a constitutive theory for [.7'")]. We begin with (3.16) re-
sulting from the entropy inequality

oP(p.0)

T (4.1)

o) =
and use
[0 P) = 7] oo " [])" (4.2)

Following the derivations presented in reference [7]
we obtain
o] = p(p. 0)[1] (4.3)

From (4.3) we note that [.5'?] is independent of the
basis, i.e.

(6] = [a(0)) = [267] = p(p.O)[1] (4.4)

in which p(p. 0) is thermodynamic pressure defined by
the equation of state and is deterministic from the defor-
mation field. If we assume compressive pressure to be
positive, then (. #) in (4.4) can be replaced by —j(. ).

4.2 Incompressible Matter

For incompressible matter p = p = constant which

implies that |.J| = 1 and hence & = ®(#) and there-
fore —,’[l,I = 0in (4.1). Thus, for incompressible matter,

[cc*] can not be determined using the derivation used for
compressible case. The incompressibility condition

tr((D)) = tr((L]) = tr((J][J] ") = J(J )i =0 (4.5)
must be enforced. Based on (4.5) we can add

pJik(J Vi = p(0)Jir(J i = 0 (4.6)
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to the entropy inequality to derive equilibrium stress
[.a'?] for incompressible matter. In (4.6), p(6) is an arbi-
trary Lagrange multiplier. Following [7] we can obtain (in
contravariant basis)

(] = p(9)[1] (4.7)

p(0) is mechanical pressure. j(f) is not deterministic

from the deformation field. If we define the compres-

sive pressure to be positive, then j(f) in (4.7) can be

replaced by —p(f). In this case also, we note that the
equilibrium stress is independent of the basis, i.e.

7] = Low] = (%o’ =p@)1)  (48)

5 CONSIDERATIONS IN THE CONSTITUTIVE THE-
ORIES FOR DEVIATORIC CAUCHY STRESS TEN-
SOR AND HEAT VECTOR: COMPRESSIBLE MAT-
TER

We make some remarks in the following that are
helpful in understanding the approach used in the
present work. This is followed by definitions of depen-
dent variables and their argument tensors.

5.1 Remarks
(1) [Da] ;5 =1,2,..., n are fundamental symmetric
kinematic tensors of rank two and g is a tensor of
rank one. [*)o] ; k = 0.1,...,m are symmetric
tensors of rank two and p, ¢ are tensors of rank
zero.

(2 (DA];i=1,2,..., n, (*ha]; k=0,1,..., m and g
have their own generators and invariants but also
there exist combined generators and invariants be-
tween them.

(3) In the case of homogeneous isotropic compress-
ible matter, the equilibrium stress is completely
deterministic from the entropy inequality once we
define Helmholtz free energy density in terms of
the invariants of the chosen strain measure. This
yields thermodynamic pressure j(p.0). In the case
of incompressible matter, the equilibrium stress is
also derived from the entropy inequality in conjunc-
tion with incompressibility constraint, however, the
equilibrium stress is not a function of the Helmholtz
free energy density and thus it is not deterministic
from the deformation field [7]. Furthermore, the
second law of thermodynamics only restricts the
work expanded due to the deviatoric stress to be
positive but provides no mechanism for determin-
ing the constitutive theory for the deviatoric stress.

(4) The theory of generators and invariants [14, 15]
provides a continuum mechanics foundation to
derive constitutive equations for the deviatoric

Cauchy stress tensor and heat vector. In this ap-
proach we determine the combined generators of
the argument tensors of the dependent variable in
the constitutive theory that form integrity or minimal
basis. The dependent variables in the constitutive
theory are expressed as a linear combination of
the combined generators of the argument tensors.
In the constitutive theory presented here we con-
sider ["),5], (Vg and ® as dependent variables in
the constitutive theory.

(@) p(z.t),0(z,t), [Fha(z,t)] ;k=0,1,..., m—1,
Dz, )] ;5 =1,2,..., n and g(z, t) are con-
sidered as argument tensors of [("),5].

(b) We also consider p(z,t), 0(z.t), [(Fho(z,t)] ;

and g(z,t) as argument tensors of the heat
vector (Vq.

Thus, in case of [")5], a symmetric tensor of rank
two, we need combined generators of the tensors
[*)5] s k= 0,1,..., m—1,[Dy] ;5 =12..., n
and g that are symmetric tensors of rank two in
addition to the combined invariants of the same ar-
gument tensors. Whereas ("q is a tensor of rank
one, hence in this case we need combined genera-
tors of the tensors [*)5] ; k = 0,1,..., m—1, [()4]
j=1,2,..., n and g that are tensors of rank one.
We express [("),5] and (") q as a linear combination
of the combined generators of their argument ten-
sors. The coefficients used in the linear combina-
tion are functions of p, # and the combined invari-
ants of the argument tensors and are determined
using Taylor series expansion of each coefficient
about a known configuration.

(5) Based on (4), the key element in the theory of gen-
erators and invariants is the determination of the
minimal basis, i.e. integrity, using the combined
generators of the argument tensors and of course,
determination of the combined invariants. For ex-
ample, if we consider [T°([S])], where [T'] and [S]
are symmetric tensors of rank two, which obey the
invariance

[T((RSIRIT)] = [RI[T(SDIR]" (5.1)

then the tensor 7] has the following form:

[T] = ao[I] + a1[S] + a2[S)? (5.2)
where o, o, and a» are functions of the invariants
of 5], i.e.

is = tr([S])
iis = tr([S]?) (5.3)

iiis = tr([S]?)
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called principal invariants, or the invariants I, I Compressible Thermoviscoelastic Fluids:
and I, from the characteristic equation of [S]. The )
tensors (1], [S], [S]? are generators of the tensor P =P(pz.t). O(z.1)) (5.4)
[T] and form the minimal basis. (5] = [©o(p@.1) . 6@.1)] + [h7] (5.5)
(™) ] (e (p(.t), (%) (. I)]: k=0,1...., m — 1,
(Dy(,t)]): 5 =1,2,..., 0. t) ., g(z.1))]
(6) If the arguments of [77] consist of more than one (5.6)
tensor (could be of different rank), then a linear (0) (M@, )] k=0,1....,m—1,

combination like (5.2) would contain all combined
generators (of the same rank as [77) of the argu-
ment tensors of (7' and likewise the coefficients
in the linear combination would be functions of
the argument tensors of rank zero and the com-
bined invariants of the argument tensors of rank
one and two. For details on the combined gen-
erators and invariants for various combinations of
the argument tensors of various ranks see refer-
ences [14,15].

(7) Based on the remarks presented above, we now
have a basis for deriving constitutive theory for the
deviatoric stress tensor as well as the heat vec-
tor. Details of the constitutive theory are presented
using [%)a] 5 k = 0,1,..., m, (Vg and [V)4] ;
ji=12,..., n and p, 0 as argument tensors of the
dependent variables. These can be made basis
specific by appropriate choices of the stress rates
and strain rates.

5.2 Dependent Variables and their Argument Ten-
sors

Let (*ho ] ; k = 0,1,..., m, (Vg and [V)y ] ;
i=12..., n be the convected time derivatives of the
deviatoric Cauchy stress tensor, heat vector and the
corresponding convected time derivatives of the strain
tensor in the chosen basis. Let p, § and g be the density,
temperature and temperature gradient, all in the current
configuration.

We consider [(")5 ], ("\q and ¢ as dependent vari-
ables in the constitutive theory. [*)a ] ; k =0.1,..., m—
1, [('%] i=12..., n, p, 0 and g are argument tensors
of [")5 ] and (" q. The argument tensors of ® for com-
pressible case are p and 6 and for incompressible case,
only @ is the argument tensor of ®. Thus, we have the
following for the compressible and incompressible ther-
moviscoelastic fluids considered here.

Oz, 1), gz, 1))

(5.7)

- oP(p(x.t), O(a,
(o ]” = p(a) 22 S'[’.,'(L_,)ﬁ"’ ) (5.8)
where p(x) = p. Using (5.4) - (5.8), we present de-

velopments of the rate constitutive theories of various
orders. By choosing [*)a ] ; k = 0,1,..., m, (Vg and

D] =12..., nas (%] ;k=01,..., m, q'*
and [y9];i=1,2,..., n)or (o) k=0,1,..., m, qo)
and [y ;j = 1.2,....n) or (M&7] ; k = 0,1.....m,

(g’ and [D47] ;5 =1,2,..., n) in (5.4) - (5.8) and fol-
lowing the derivations presented in the subsequent sec-
tions, we can obtain rate theories in contravariant basis,
covariant basis and using Jaumann rates.

Incompressible Thermoviscoelastic Fluids:

If the matter is incompressible, then p = p =
constant, hence p drops out of all quantities in (5.4) -
(5.8). However p = p = constant implies that |J| = 1,
hence for this case we have & = ®(f(z.t)) and there-
fore (.j’[f',’] = 0. Thus [.c*] can not be derived using (5.8)
if the matter is incompressible. For incompressible ther-
moviscoelastic fluids (5.4) - (5.8) reduces to

o =o(0(z,t)) (5.9)

(V] = [0 (0, f))] + [%ho ] (5.10)
[("1}[0] — [ m) e [(" z,t)]; k=0,1,..., m—1,
Dy, t)];5=1,2,..., n, 0(@.t), g@.t))]
(5.11)

g = (U)(I( (*ho(@.t)]): k=0,1,..., m—1,

(D@, t)]:j=1.2....n, 0(z.t), g(@.1))
(5.12)
IP(0(z, 1))

Su@o =" (5.13)

The constitutive theories for [")5 | and (" q are de-
rived using (5.6) and (5.7) or (5.11) and (5.12), and can
be converted to contravariant basis, covariant basis or
Jaumann rate by replacing [")a |, (") ], (g and [(V)4]
v o= 1,2, n with the appropriate measures in the
chosen basis. In the following sections we consider de-
tails of the development of rate constitutive theories for
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deviatoric Cauchy stress and heat vector for both com-
pressible as well as incompressible thermoviscoelastic
fluids.

6 RATE CONSTITUTIVE THEORY OF ORDERS ‘M’
AND ‘N’ FOR THE DEVIATORIC CAUCHY STRESS
TENSOR AND THE HEAT VECTOR: COMPRESS-
IBLE THERMOVISCOELASTIC FLUIDS

Consider a deforming volume of compressible ther-
moviscoelastic fluid in the current configuration. We de-
rive the rate constitutive theory of orders ‘m’ and ‘n’ for
the deviatoric Cauchy stress tensor [(?}5] and heat vec-
tor ("'q using ((5.6) and (5.7))

[('",)16’] :{('”:)I&(/j ‘ [ ,10‘] (6.1)

g =Og(p, [*)a];: k=0,1,..., m—1,

6.2
(a];i=12,....n, 0, g) ¢

6.1 Constitutive Theory of Orders (m,n) for ("),

Let [°G] ;i = 1,2,...,] N be the combined gener-
ators (of [")]) of the argument tensors [*)5] ; k =
0.1,..., m—1,[W4];i=12..., n and g that are sym-
metric tensors of rank two, and let 9717 ; j = 1,2,.... M
be the combined invariants of the same argument ten-
sors. Then, we can express ()] as a linear combi-
nation of the generators [7G'] ;i = 1,2,..., N and the
identity tensor (/] in the current configuration.

("45] = “a[1] + E 7GT (6.3)
The coefficients “a’ ; i = 0,1,..., N in (6.3) are func-
tions of density p, temperature ¢ and the combined in-
variants %[’ ; j = 1,2,..., M in the current configura-
tion. To determine the material coefficients from “a’

i =0,1,...,N in (6.3) which are defined in the current
configuration, we consider the Taylor series expansion
ofeach %a’ ;i =0,1....,] N about a known configuration
Qinfand 7 ;j =1.2,....] M and retain only up to

linear terms in 6 and the invariants.

d(a’)

(10 17) (,, L-

%’ —”n'L, + Z (1717),)

()(”() 0|
a0

(6.4)

‘(()—@):i:ﬂ.l ..... N

“a'l,, (j",”“,,)L) i o= 1,2,...,] M and %2 )2
= 0,1,..., N are functions of p,, (},, and
Ny 3§ = 1,2,...,] M whereas in (64) %t =
po s Oy . (91 ),,:J' = 1,2,....] M, 6,90 =

i .N. When (6. 4) is substltuted

in (6.3), we obtain the final form of the most general rate
constitutive theory of orders (m,n) for [")a] for com-
pressible thermoviscoelastic fluids. Details are given the
following. Substituting from (6.4) into (6.3)

. - Moo P
[(”2 = ( “”' + Z (l()'IJ) ( ! l” - (l l))ﬂ)
(%’ _
N : M (‘)(aa,i) (65)
o i 4o Ti _ (qo i
;( “ —I+J§, (')('I”Li)L( U= ("))
)| N
T 0- )[ ¢l

Collecting coefficients (only those defined in the
known configuration 2) of (1], * I/[1], [7G"], * I’[7G"],
(6 —6,)[°G" and (6 — 6,,)[1] in (6.5) and defining

M -)(n“()) )
—0) — 0 _ C qrrIJ
o =" - Xy (e €8
and the material coefficients
- d(%aY) )
a; = o 1)), i=12... M
) M (‘)(ﬂni) ’
”1),‘ =% - e —— 1,2,...,1 N
b= Rawe ),
a(%at) | . o
TCii=———11=1,2,...,1 N:j=1,2,...,] \
Cij (‘)(dall) N ! 1 J 1 1 (67)
og, = 20 —1,2,....N
00 o
d(°aV)
((\Im)x_z - ()0 A
Equation (6.5) can be written as
M )
[('"315'] — 5()'(][1] + Z”qu”lj [I]
2 =
N
Z i C]+ZIZ” G107 GY (6.8)
i=1 i=1j=1
N _
g (~ [”C]_ ”lm)” - u [I]

(r”|_{_) is the initial stress in the known configuration (2.

Thus, this constitutive theory for [),5] requires determi-
nation of (M + N +(M)(N)+ N +1) material coefficients.
The material coefficients defined in (6.7) are functions of
Doy 0,, and (“17), ; j = 1,2,....] M in the known con-
figuration 2. This constitutive theory uses integrity, i.e.
complete basis.
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6.2 Constitutive Theory of Orders (m,n) for (") q

Let {¢G"} ;i = 1,2,..., N be the combined gen-
erators (of ("’q) of the argument tensors [*)5] ; k =
0.1,..., m—1,[Uq];5i=12,..., n and g that are ten-
sors of rank one. The combined invariants of these ar-
gument tensors obwously remain the same as for [("")7],
ie. 190 =1,2,...,] M. Then we can express (Vg as

a linear combmatuon of {1G"} ;i=1,2,...,] N in the cur-
rent configuration.
N ) )
{Vg) = -3 W'{"G"} (6.9)

i=1

The absence of unit vector in (6.9) as a generator
is due to the fact that uniform temperature field does
not contribute to ("'q. The negative sign in (6.9) is be-
cause a positive (") q in the direction of the exterior unit
normal to the surface of the volume of matter results
in heat removal from the volume of matter. The coef-
ficients %' ;i = 1,2,.... N are functions of p, 6 and
Wl =1,2,..., M in the current configuration To de—
termine the material coefficients from %'
(in the current configuration) in (6.9), we conS|ger Taylor
series expansion of each %' ;i = 1,2,..., N about a
known configuration 2 in # and 9°[7 ; j = 1,2.....M
and retain only up to linear terms in # and the invariants.

Mo9(%t)

It =% | + Z G0 (qﬂl‘i - ('l”lj)g)
oy “ (6.10)
d\ oy ~ ~ ~
= 0—0,):1=1,2,...,N
o0 ‘,,( ) 5 ¢
“o’l,, (;;‘,;*,) L, iJ =12 . Mand %50 ;i =
1,2,....N are functions of p,, 0. and ('I”IJ)_, yJ o=
1,2,...,] M whereas %' = % (/),_, Oy, (10)0:) =
1,2,...,M, 0,90 =1,2,....M) ;i=12..N

in (6.10). When (6.10) is substituted in (6.9), we obtain
the final expression for the most general rate constitutive
theory of orders (m.,n) for (*)q for compressible thermo-
viscoelastic fluids. Details are presented in the following.
Substituting from (6.10) into (6.9)

_ M H(q
(1) == ('), +35 X (- (7))
':‘)I(/ ) . N ©10
I . .
— 0—0, G
5|, 0~ )€

Collecting coefficients (only those defined in the
known configuration £2) of {7G'}, 7 1/{?G'} and (0 —
0,){7G"} in (6.11) and defining the following material co-

efficients.

) M ()(q“i) v ~
iy, ="' — : =1,2,..., N
9 « o ng (‘)((lﬂlj) .

d(1a") ) . ~ .
9o, . = =12 N:j=1.2 ]
Cij 2@ D), i=1,2,...,] N:ij=12,...,] M (6.12)
ag, = 202 i=1,2,....,N

a0 |,

Equation (6.11) can be written as

N

{Way =- Z bi{1G"} — Z

=1 i=1j=

2

II( llﬂ’]l{qu}
: (6.13)

(0 - 0,){"C"}

M;.

=1

Thus, this constitutive theory for (0)g requires (N +
(\)( ) )matenal coefficients. The material coeffi-
cients deflned in (6.12) are functions of p,,, 0, and (17 09),
i i=1,2,...,1 M in the known configuration 2. Just like
theory for the deviatoric Cauchy stress tensor, this con-
stitutive theory is also based on integrity, i.e. complete
basis.

6.3 Remarks

1. In sections 6.1 - 6.2 we have presented rate con-
stitutive theories of orders (m,n) for the devia-
toric Cauchy stress tensor and heat vector using
[()5] and ("'q as dependent variables with [(*),5]
vk=0,1,..., m — 1 stress rate tensors and [(/)4] ;
j =1,2,..., n strain rate tensors as their argument
tensors, in addition to p, # and g. Hence, these de-
velopments are independent of the basis.

2. By replacing [*)&] ; k= 0.1,..., m, (Vg and [V)4]
i i =1.2,..., n with the appropriate correspond-
ing measures in the chosen basis, we can readily
obtain the rate theories of orders (m, n) for the de-
viatoric Cauchy stress tensor and the heat vector
in the basis of choice. More specifically we use the
following measures:

h(,i )]
v

[('i)'?"l]

Contravariant basis: ;0] . q©

Covariant basis: [40w)) » Qo)

Jaumann basis: S B

3. Since the tensor g is independent of the choice
of basis, the combined generators and the com-
bined invariants used in sections 6.1 - 6.2 only
need to be redefined using the convected rates
Y95 =1,2,..., n, (vl i=12,..., n, [47]
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6.2 Constitutive Theory of Orders (m,n) for ("'q

Let {*G'} ; i = 1.2.....N be the combined gen-
erators (of ("\q) of the argument tensors [*)5] ; k =
0,1,..., m—1, D] ;5=12,..., n and g that are ten-
sors of rank one. The combined invariants of these ar-
gument tensors obviously remain the same as for |5,
ie. 1917 ;5 =1,2,...,1 M. Then we can express (V)g as
a linear combination of {/G"} ;i =1,2,..., N in the cur-
rent configuration.

N

{Va) = -3 %a'{'C"y

i=

(6.9)

The absence of unit vector in (6.9) as a generator
is due to the fact that uniform temperature field does
not contribute to (")q. The negative sign in (6.9) is be-
cause a positive (" q in the direction of the exterior unit
normal to the surface of the volume of matter results
in heat removal from the volume of matter. The coef-

ficients %’ ; i = 1,2,...,N are functions of p, 0 and
“liig=1,2,..., \[ in the current configuration To de-
termine the material coefficients from % ;i = 1,2,.... N

(in the current configuration) in (6.9), we cons@er Taylor
series expansion of each %’ ;i = 1,2,..., N about a
known configuration 2 in @ and 9°17 ; j = 1,2,....M
and retain only up to linear terms in ¢ and the invariants.

M ()("n Y

Int = ICaa) ("”l‘i —-(r )a)
» (6.10)
‘(.‘i) 6—0,);i=12..N
a0 |,
Wi, meeh] v i=12...,Mand 252| ;i=
1,2,..., N are functions of Doy ¢9E and (7717), ; j =
1,2,..., M whereas %' = %'(p, . O, , (117)s:]

1,2,..., M, 0,90;j =1,2,....M) ;i = 1,2,....N
in (6.10). When (6.10) is substituted in (6.9), we obtain
the final expression for the most general rate constitutive
theory of orders (m,n) for (*)q for compressible thermo-
viscoelastic fluids. Details are presented in the following.
Substituting from (6.10) into (6.9)

5~ (1], +3 20, (0
())q} Z( | {) q”[] ( (9 ]J )
_)(/ ) H (6.11)
(% )
— 0—0,)){1G"
%kf JMQ}

Collecting coefficients (only those defined in the
known configuration 2) of {¢G"}, " 17{G"} and (0 —
0,){?G"} in (6.11) and defining the following material co-

efficients.

Mo 9(1at)
=017 17) |,

1p; = 'l“lL —

d(9at) . .
e = . i=1,2,....N;j=1,2....,]
il_l i)(,’ﬂl‘l) . l ]' J l 1(612)
ag, = 20 1,2,....N

a0

12
Equation (6.11) can be written as
N

N
(Og) = = SI{IGT} - 3 36,7 P {IGT)

=1 i=1j=1

N _
= 2 di(0 -
i=1

(6.13)

L){1G"}

Thus, this constitutive theory for (V'q requires (N +
(N)(M) + N) material coefficients. The material coeffi-
cients defined in (6.12) are functions of 4, f,, and (7 I7),,
;J =1,2,..., M in the known configuration (2. Just like
theory for the deviatoric Cauchy stress tensor, this con-
stitutive theory is also based on integrity, i.e. complete
basis.

6.3 Remarks

1. In sections 6.1 - 6.2 we have presented rate con-
stitutive theories of orders (m,n) for the devia-
toric Cauchy stress tensor and heat vector using
[(m)5] and (Vg as dependent variables with [(*),5]
s k=0,1,..., m — 1 stress rate tensors and [/)4] ;
j =12,..., n strain rate tensors as their argument
tensors, in addition to g, # and g. Hence, these de-
velopments are independent of the basis.

2. By replacmg [ ol k=0,1,..., m, ("'g and [V)4]
= 1,2,...,n with the appropriate correspond-
ing measures in the chosen basis, we can readily
obtain the rate theories of orders (m,n) for the de-
viatoric Cauchy stress tensor and the heat vector
in the basis of choice. More specifically we use the
following measures:
9]

Contravariant basis: [,¢*)] . ¢

Covariant basis: ()

[(.i),). J]

Q(U)

®e’). Vg’

[aG (k)]

Jaumann basis:

3. Since the tensor g is independent of the choice
of basis, the combined generators and the com-
bined invariants used in sections 6.1 - 6.2 only
need to be redefined using the convected rates
Y9 5=12,..., n, [yplii=12,..., n, (D7)
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in which the coefficients %’ ; i = 1,2,..., 7 are func-
tions of p, # and ““[7:j = 1.2...., 16 in the current
conflguratlon To determlne the material coefficients
from %' ;i = 1,2,..., 7 (in the current configuration)
in (7.5), we consider Taylor series expansion of each %’
ji=1,2,..., 7 about the known configuration (2 in ¢ and
"”1' =12, 16 and retain only up to linear terms
in @ and the invariants.

16 (% )
Gyt —1,
o (\l + Z fl”]l)

("ﬂlj )g)

( qo I/ _

7.6
( (”(1 3 (7.6)

00

0—6,);i=

2

We note that ‘|, ,;',,)

I( % L.
‘(l,,} )],, ;i = 1,2,...,7 are functions of p,, 6,

(10), 55 =1,2,..., 16 but %’ = % (p, O, (1173 § =
1,2,..., 16,0,907;5=1,2,..., 16) ;1,2,...., 7in (7.6).

By substituting (7.6) in (7.5) and following the de-
tails presented in section 6.2, we obtain the general
form of the rate constitutive theory for the heat vector
(0)g of orders 1 (m = 1, n = 1) for compressible ther-
moviscoelastic fluids. This constitutive theory contains
(16 + 7+ (7)(16) + 7+ 1) material coefficients. As in the
case of [1)], this theory also contains too many ma-

terial coefficients. The simplifications of this theory are
considered in the following sections.

7.1 Further Assumptions and Simplifications

In order to derive Giesekus model from the rate con-
stitutive theory of orders m = 1 and n = 1 for the devi-
atoric Cauchy stress tensor and the constitutive theory
for the heat vector, we make further assumptions in (7.1)
and (7.2). We assume that [!),5] does not depend on g
hence we can eliminate g as an argument tensor from
(7.1). We also assume that the heat vector only depend
upon g, pand @ in (7.2), thus we can eliminate [(")5] and
[(D~] from the arguments of the heat vector in (7.2).

(o) = [Maa(p . [%ha] ,

g ="4g(p.0.g)

(Y], 0)] (7.7)

7.1.1 Constitutive Theory for [')5]

The development of the constitutive theory in this
case requires: (1) combined generators of [(*s5] and
(V4] (both symmetric tensors of rank two) that are also
symmetric tensors of rank two due to the fact that [(!)5]
is a symmetric tensor of rank two (2) combined invariants
of the tensors [(*)5] and [(V)4]. The combined genera-
tors and the invariants are listed in Tables 1 and 2.

Table 1: Combined generators for [')5] : m=1, n=1; first order rate theory

Arguments Generators

(1) none (1]

(2) one atatime ( including (1) )
(o] 7G'=( %] 5 6% =[]’
(] FG =10y 5 @)=

(3) two atatime (including (1) and (2) )

(@] . (@]

6] = [U)[(V5] + (V][ %o]
76 = [oP(V3] + (D)o ?
G = (][9] + (D[]
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Remarks:

1. We note that the invariants listed in table 2 under
(2) marked (a) need not be included due to the fact
that

tr([“4a] (V4] + [M4][4a))
+Hr([(©4a] (V] — (V][ 4a]) =
2tr([“ha][(VA])

which is same as “I” (except for the factor 2 which
is of no consequence).

. In many published works (a) are also included in
the list of invariants in addition to %717 which is
redundant.

Using the generators in Table 1 we can express [!)]
as a linear combination of [/] and the combined genera-
tors [°G'] ;i =1,2,..., 7. Thus, we can write the follow-
ing in the current configuration.

(“ha] = “a’[I] + X' [7G) (7.9)
i=1

The coefficients o’ ; i = 0.1,..., 7 are functions of
the combined invariants 717 ; 10, density p

and temperature 0. The matenal coefficients are deter-
mined from %’ ;i = 0,1...., 7 by using Taylor series

expansion for each “a’ about the known configuration 2
and only retaining up to linear terms in the combined in-
variants ? I’ and temperature 6.

10 9(° .
ol =l + £ 00 (0= 1)
ow') “ (7.10)
« o
vl R/ =0.1,....7
a0 g( ) 5 i !

We note that ‘|, ()("‘,‘,))] cio=1,2,..., 10 and
0‘:)—‘,;"|“ i =0,1,....7 are functions of ,, 6, and (°17),
;7= 12,...,10 but %o’ = % (py , Oy, ("1)aij =
1.2,..., 10,0,70:j =1,2,..., 10) ;i =0,1,..., 7in
(7.10)

By substituting (7.10) in (7.9), we obtain the rate con-
stitutive theory for [(1),5] based on the argument tensors
in (7.7). We note that this expression for [(!)5] contains
all the combined generators and invariants of the argu-
ment tensors listed in Tables 1 and 2 and is a non-linear
relationship in [°)a] and [()+] but it is a first order rate
theory (m =1and n = 1).

This rate theory still contains many material coeffi-
cients but its further simplifications form the basis for
Giesekus constitutive model.

Table 2: Combined invariants for [\',5] : m=1, n=1; first order rate theory

Arguments Invariants
(1) oneatatime
[(“ha] It =tr((0]) L =t([("%a]?)
ﬂ!:{ — tr([(“,)[a']' )
(9] I =t(D) 5 7L = ()
ol(i — tr([(l),\;].'i)
(2) two atatime ( including (1))
(o] (V] LT =1([4a])[(V]) 5 L% = te([(“ha]?[(VA])
71 = (O[O 1 = tr((©hal?(V2]?)
7L =1r([“4] (V] + (V][ “ha])
@of= tr([“’?:ﬂ][“)v] (N[ O 7))
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7.1.2 Constitutive Theory for (") q

Consider (7.8) for the heat vector ("\q. In this case,
the generators of ("'q that are tensors of rank one are
given by g only. Also, in this case the only invariant is
7] = g-g. Thus, we can write the following in the current
configuration.

g = -9 g (7.11)

The coefficient % in (7.11) is a function of p, # and
4] in the current configuration, i.e. p, f# and 71. To deter-
mine the material coefficient from % in (7.11) related to
the current configuration, we consider Taylor series ex-
pansion of % about a known configuration 2 in § and 71
and retain only up to linear terms in ¢ and the invariant.

q — 4 ()(41(1) Ao — (.60 ()('In) 0 o (}
a="al, + D) r!(g 9-9-90)+— (0—%)
. (7.12)
“l, ;Ezl; |, and 252)| “are functions of 4, 6, and

(g - g)., however %o = % (p, . 0, ., (g-9)..0.g-g)in
(7.12). Substituting from (7.12) into (7.11)
g — _a)| & %) | S - ~_i)('ltl') 0—0
q L9~ 5a1)), (9°9-(9-9).)9-—; £( )9
(7.13)

We note that if there is a uniform temperature change
between the known and current configurations, then g =
0 and hence ("’q must be zero. This condition is satis-

fied by (7.13). If we define k, = ‘| , 'k, = 57|, and
2k, = 209)|then
Vg =—k,g-"k,(9-9-(9-9).)9—>k.(0-0,)g (7.14)
We note that k, = k(p . O (9-9)) ke =
"e(po . O, . (g 9)) and %k, = %k(ps, O, . (G- 9)a)-

(7.14) is the most general form of the constitutive equa-
tion for the heat vector (*’q based on (7.8). If we neglect
infinitesimals of order two and higher in the components
of g as well as the product of (6 — 6,,) with g, then (7.14)
reduces to

(U)q = _}‘ng (715)

or {Vg} =k, {3} = —ka[l] {g} = ~[K] {5} (7.16)

in which k is thermal conductivity and [K| is the diagonal
thermal conductivity matrix. We note that

k, = A'(/),_, , (;g

. (g-9)) (7.17)

Equations (7.16) is the standard Fourier heat con-
duction law with variable thermal conductivity. Based
on 7.17, the thermal conductivity can be a function of
density, temperature and the first invariant of g, i.e. g - g.
Thus, we can use experimental and/or empirical data for
thermal conductivity as a function of density, tempera-
ture and g - g during the evolution, keeping in mind that

7.17 only holds for the known configuration 2 where as
(0)g and g in (7.16) are in the current configuration. This
is obviously a consequence of Taylor series expansion
of (®)g about the known configuration 2. Power law,
Sutherland law [2, 16] are examples of temperature de-
pendent thermal conductivities.

In currently published works [2, 16] the thermal con-
ductivity is generally expressed as a function of the un-
known deformation or state in the current configuration,
i.e. instead of k, defined by 7.17, it is replaced by

k=k(p.0.g-9) (7.18)
This obviously makes & a function of unknown p, 6
and g - g in the current configuration. When the current
and known configurations are in close proximity of each
other in terms of deformation field, replacing & in (7.16)
using 7.18 may be justified, but it is not supported by the
derivation of the constitutive theory presented here.

We note that this constitutive theory ((7.14) and
(7.16)) for ("q is independent of the basis, i.e.

~ _(0)aJ _ =

(“)Q = (I(“) =4q0) = 'q9 =9 (7.19)

7.2 Giesekus Constitutive Model for Deviatoric

Cauchy Stress Tensor

The general derivation presented for the constitu-
tive theory of order one (m = 1, n = 1) for deviatoric
Cauchy stress in section 7.1 forms the basis for deriv-
ing the Giesekus constitutive model used for polymer
melts (dense polymers). Giesekus constitutive model is
a non-linear viscoelastic model. In the derivation of the
Giesekus constitutive model, we begin by considering
the combined generators of [(?)] and [V)4] only up to
quadratics. Therefore (7.9) reduces

[(1,),0] =%"[I] + “
3[(0)

a1[@)] + 0?0
+ % ,a] + %t [(V4)?
+%02( ][] + (O] %)

(7.20)

We further neglect the last two generators in (7.20)

(4] = “a’[1]+ % [“45] + 7a? (V4] + %a*[ha]* (7.21)

The coefficients %a’ ;i = 0,1,...,: 3 depend upon p, 6
and the combined invariants of [()5] and [(V)4], i.e. 17
i =1,2,..., 10, in the current configuration. These are
listed in Table 2. To determine the material coefficients
from?’ ;i =0,1,..., 3in (7.21), we consider Taylor se-
ries expansions of “a’ ;i = 0,1,...,3 about the known
configuration 2infand 717 ; j = 1,2,..., 10 and retain
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only up to linear terms in ¢ and the invariants.

(70 = ("))

S10(719)),

0 j)' a (7.22)

C (8} I I

- 0 — i =0,1...., 3
g |00

The coefficients “a’,, 555/, ;= 1,2,...,10 and
2Ce)| 1i=0,1,...,3are functions of 5, 0, and (°17),
si=12,..., 10, however “a’ = %' (p, , 0, , ("17)01j =
1,2,..., 10.0.”11"' 1,2,..., ),120.1 ..... 3in
(7.22). If we let “a’,; = ;;;;;,; ©j = 1,2,....10, then

(7.22) can be written as

) ) 10 . . .
o =a(11|£ + E](”“"J- )|£( ”lll - (”lJ )ﬂ)
(7.23)

(0 —6,) i=0,1,..., 3

Substituting from (7.23) in (7.21), we obtain the most
general expression for the constitutive theory for [(1)5]
based on the choice of generators in (7.21) and invari-
ants 717 ;i =1,2,..., 10 listed in Table 2.

10 ) .
[(]21(7] ( (l”l£ + Zl(a(lﬂ.j )|£( ”L" - (”,1;1)11)
J=

()(”(I(]) _ _
+ 5,0 —0,) ) 1)+
(”alLI + gl(ﬂﬂl j )|,_( - (”ll)u)
(()01) (0-8,))(*hol+
2 (7.24)
(a2], + X (o], (P = (L))
D(%
((i)(; ),_1(0 )+
(aa:il2 + gl(”aﬂ‘j )|¥( nl_i _ (”.Iqi)u)
)| = 5\ 10
a5 | 0= 0))[Chol?

2

7.2.1 Further Assumptions and Simplifications

We further make the following assumptions to derive
the Giesekus model, which is a non-linear viscoelastic
model.

(i) We delete the terms containing products of the
generators [(V)4], [()y5] and [(?)7]? with the invari-
ants 717 ;5 =1,2,..., 10 in the current configura-
tion.

(i) We also delete the terms containing the prod-
ucts of the generators [(V)4], [(*)5] and [(*);5]* with
(0 — 6,,) in the current configuration. This gives

[“316']=( (ll +Z (°a® y |{ (nl_i _ (”l‘i)s_;)

d(°aY)
0 2 & )[1]
+ (- i(”a L)) (7.25)

0
+ (”n'2|“—z (%a
- j=1
) 10
-+ (”a"L) -3 (”a".j )|”(”1’
2 o 2

2 )P (D]
)ﬁ) [(“216]2

We collect terms and define material coefficients
and others. Let

o‘b(l =rr()() |”

10
(rbl_nl _z(ﬂ“l
=1

1 _ (0.0
7b; = (“a’,; )L_2

IR

=
' . 0 . o 1 (7.26)
oh —on?2 L_)_Zl( )| ("L)e
i=
. 10 3
W =), — 3 (0t )|, L),
2 j=1 -

Then we can write

10 ) N
(ha] = 7°[1] + ;”b_}”l"[ll +76?[ha)+
- (7.27)

. 0
7B05] + o6 (a2 + 20| 9 g,

0

2

We note that the coefficients “b°, b} ; j =
1,2,..., 10, 70, 7B, “b* and 20 )‘(; ) , are defined

in the known conflguratlon 2 and hence are func-
tions of p,, (),) and ("), ; j = 1,2,..., 10. The
constitutive model (7.27) is quite general based on
(7.21) and the assumptions (i) and (ii).

(ii) To derive the Giesekus constitutive model, we ne-
glect all invariants in (7.27) except (based on Ta-
ble 2) 7I' = iw,, = tr([(*s5]) and 7I* = iy, =
tr([(V4]). Thus (7.27) reduces to the following:

(&) =76°[1] + “bitr([Cha]) 1] + “bitr (VA1)

_+_(rb._[(()dal+ab [ 1)7]

d(°a)
00

2

(7.28)

+”b'l[(()216]2 + n_ _g)[l]
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which can be written as [©45] + Ao [M45]) = 20,[V4] + ratr((VA))[1] + =2 o Z2a[©)5)?
1,0 'k
() + (- 1.,)[“2,a]= (- ) I (739
”b- in which )\, is called relaxation time, 1, is first viscos-
+ ( _ ){(1 ) +( )tr [u)ﬂ] 1] ity, r,, is second viscosity and (ay,, ), is thermal modu-
7h? lus. (7.34) is the Giesekus constitutive model for com-
7bj (0) = )12 (7.29) pressible thermoviscoelastic fluids in which \,, n,,
+ ( - W)"([ ao))[I] + ( oh2 )[ a] and (a,,),, are variable transport properties. If the fluid
A(7a") is incompressible, then the terms containing tr(['")+]) are
- ( 90 |, ) (6 = )] eliminated as for this case tr(['")]) = 0.

We introduce mew notations for the material coeffi-
cients to conform to the standard notations used in the
literature. Let

o b(l

(-3 o ()

(-7 = s (5

!__,”b;’
in which they are all functions of 4, 0,, (“17), ; j =
1,2,..., 10. Then (7.29) can be written as

2

=

(7.30)

) = (atm)a

(40 + o[ "5] = Tol, [1] + 200 []
+ rtr((DA) 1] + hatr(( o)) (1]

o4
+ ( a TI;)[[“}/&]Z — (atm)a(0 = 00)[1]

(7.31)

We note that each term in (7. 31) has dimension of
stress, thus the coefficient of [(?)5]> must have dimen-
sion of (1/stress) which is same as (time/dimension of
viscosity), i.e. A,/n,. We choose

n[ 1
B _ (7.32)
ah? N

a being a dimensionless parameter called mobility fac-
tor. Therefore

(23] + Ao [Mho] =
+ rotr([V4]) [1]+ ko tr([(ha)) (1]

) 1]

2501

(7.33)

+ :\’:—_ZO[(”?[(I]2 — (Qm)o(0 —

2

(iv) In the derivation of the standard Giesekus model
[2], we further assume that: (a) the initial stress
field associated with the known configuration (2,
i.e. ao|,[1], is zero (b) the stress field due to ther-
mal expansion and contraction between the cur-
rent and known configurations, i.e. the last term in
(7 33), is neglected and (c) we further assume that

Lrotr([(°)4a]) can be neglected. Thus we obtain

7.2.2 Remarks

1. The coefficients A, 1., ko, (aun). are defined in
the known configuration (2 for which deformation is
known, whereas all other quantities in (7.31) and
(7.34) are in the current configuration. This is a
consequence of Taylor series expansion of the co-
efficients about the known configuration (2.

2. Based on (7.30), \,, n,, K, etc. can be defor-
mation dependent during evolution (keeping 1. in
mind) permitting experimental and/or empirical de-
scription of \,, n,, K, etc. using their arguments
given in (7.30). Thus power law, Sutherland law
etc. for \,, n,, K, etc. dependent on p, and
0, are valid. Dependence of \,, 7., k. €tc. on
(1»' Jo 37 =1.2,..., 10 allows us to represent vari-
able shear thinning and shear thickening behaviors
during the evolution. Power law, Carreau-Yasuda
models etc. are valid based on (7.30) (contrary to
the belief that these models do not have continuum
mechanics foundation [2]).

3. By replacing (3], [©ha], [M4)) with ([4a™M)],
(@], YD), ([a0 1))y [40(0))s ) and ([(Mha”],
(@57, [((D47]) in (7.31) and (7.34), we obtain the
Giesekus model that correspond to contravariant
basis (upper convected), covariant basis (lower
convected) and Jaumann rates. It is rather obvi-
ous that when the deformation is finite, all three
rate constitutive equations will represent differ-
ent physics, upper convected case being in most
agreement with the physics of finite deformation
[17].

4. If we assume that the known and current config-
urations are in close proximity of each other, then
in (7.30) all coefficients can be expressed in terms
of their arguments in the current configuration in-
stead of in the known configuration 2 (as shown in
(7.30)). This is what is done in currently used mod-
els for variable material coefficients [2,16]. This
is obviously not supported by the derivation pre-
sented here. By replacing the known configuration
2 with the current configuration in (7.30), the mate-
rial coefficients become functions of the unknown
deformation field.
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5. The constitutive theories for the heat vector (“)q
have already been presented. Generally, Fourier
heat conduction law (section 7.1) is commonly
used in the majority of the published work.

6. It is important to note that the constitutive model
(7.34) uses the first convected time derivative of
the deviatoric Cauchy stress tensor as a depen-
dent variable in the development of the constitu-
tive theory, thus (7.34) are the constitutive equa-
tions in deviatoric Cauchy stress tensor [")5] and
its convected time derivative. This derivation is
supported by the axioms and principles of contin-
uum mechanics and the constitutive theory. In the
presently used Giesekus constitutive model, this is
not the case. We present details in the following.

7.2.3 Discussion on the Giesekus Constitutive
Model Presented in this Paper and the Model
Used Currently

We note that the entropy inequality requires decom-
position of the Cauchy stress tensor (in contra- or co-
variant or Jaumann basis) into equilibrium stress and
deviatoric stress. The constitutive theory for the equi-
librium stress using entropy inequality results in ther-
modynamic pressure p(p,#) for compressible thermo-
viscoelastic fluids and mechanical pressure j(6) for in-
compressible case. Since the entropy inequality only re-
quires the work expanded due to the deviatoric Cauchy
stress to be positive but provides no mechanism for es-
tablishing the constitutive theory for it, the theory of in-
variants and generators is used for deriving the constitu-
tive theory for it. The use of the deviatoric Cauchy stress
tensor in the Giesekus constitutive model derived here
is necessitated due to the entropy inequality. In the cur-
rently used Giesekus constitutive model for the stress
tensor, the deviatoric Cauchy stress is further decom-
posed into solvent stress and polymer stress. If we con-
sider contravariant basis, then

15 @] = (15O, + (15, (7.35)

in which s and p stand for solvent and polymer. The cur-
rently used Giesekus constitutive model has exactly the
same form as the model presented here but uses [,5")],,
instead of [;6'”] and is derived using Brownian motion
of polymer molecules and kinetic theory [2,18]. For the
solvent stress [,5'”],, Newton’s law of viscosity is as-
sumed as a constitutive theory. We note the following:

1. If we use the decomposition shown above and sub-
stitute it in the conditions resulting from the entropy
inequality we still have the same restriction that the
conversion of mechanical energy due to both sol-
vent and polymer deviatoric Cauchy stress tensors
be positive, but we have no mechanism for deriving
constitutive theories for either one of them.

Surana et al.

2. If we derive the Giesekus constitutive model us-
ing the theory of invariants and generators using
[45'")], as a dependent variable in the constitutive
theory and if we assume Newton’s law of viscosity
for [45'?)],, then of course we would obtain exactly
the same Giesekus constitutive model as used cur-
rently. The question is “Is this permissible within
the framework of the axioms of the constitutive the-
ory and principles of continuum mechanics?”.

3. Based on the axioms of the constitutive theory and
the entropy inequality, [,5'] is a fundamental de-
pendent variable in the rate constitutive theory for
thermoviscoelastic fluids and hence must be used
as dependent variable in the derivation of the rate
theory.

4. If we follow 2, i.e. if we use [,5")],, as a dependent
variable in the rate theory for Giesekus constitu-
tive model, then the constitutive theory for ;5]
must be derivable as well from the entropy inequal-
ity (and not assuming Newton'’s law of viscosity for
it). This is obviously not possible.

5. Thus, based on the work presented here, we con-
clude that the use of the deviatoric Cauchy stress
tensor (in a chosen basis) as a dependent variable
is necessary in the derivation of the Giesekus con-
stitutive model. This is consistent with the condi-
tions resulting from the entropy inequality and the
axioms of the constitutive theory based on contin-
uum mechanics. Furthermore, there is no justifi-
cation based on the entropy inequality for the de-
composition (7.35) as [47'?]. is not derivable using
the conditions resulting from the entropy inequal-
ity. The use of Newton’s law of viscosity may be a
good engineering assumption but it has no basis in
view of the entropy inequality and the axioms and
principles of the constitutive theory in continuum
mechanics.

6. It is rather obvious that the use of the Giesekus
constitutive model presented in this paper and that
used currently in the mathematical models derived
using conservation laws of deforming thermovis-
coelastic fluids will undoubtedly produce different
behaviors.

8 NUMERICAL STUDIES

In this section we consider fully developed flow of a
incompressible Giesekus fluid between parallel plates
as model problem.

We use contravariant Cauchy stress tensor and
Almansi strain tensors as conjugate measures of the
stress and strain tensors in Eulerian description. If we
decompose the contravariant Cauchy stress tensor in
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equilibrium stress and deviatoric contravariant Cauchy
stress tensor, then the equilibrium stress is mechani-
cal pressure p and the deviatoric contravariant Cauchy
stress tensor becomes a dependent variable in the con-
stitutive theory. This yields upper convected Giesekus
(UCG1) constitutive model. Numerical results are pre-
sented using the upper convected Giesekus constitutive
model derived in this paper (UCG1) as well as using the
currently used constitutive model in deviatoric polymer
stress (UCG2).

Since the description is understood to be Eulerian,
we drop over bar (~) on all quantities for simplicity of no-
tation and replace it with hat (") to emphasize that these
quantities have dimensions. Quantities without hat ()
are dimensionless. To conform to commonly used engi-
neering notations we replace z; ;i = 1,2,3 by z,y, z and
v; ;i =1,2,3byu,v,wand )5 ;i,j =1,2,3by 7j ;
i,7 = 1,2,3 in the mathematical model.

We consider an incompressible Giesekus fluid
PIB/C14 [19] with the following material coefficients (as-
sumed constant).

p=800 kg/m®
n=1.426 Pas

ns=0.002 Pa s i,=1.424 Pas

A=0.06s : a=0.15

in which 4, 7., 7, 71, A and a are density, solvent viscos-
ity, polymer viscosity, total viscosity, relaxation time and
mobility factor. For a fixed configuration and a given fluid
we can study the influence of the constitutive models on
the flow physics in at least two ways:

(i) For a fixed flow rate, the differences in the consti-
tutive equation in the two models will produce dif-
ferent Op/0x and other dependent variables in the
two cases. As the flow rate increases, the differ-
ences in dp/dx and the other dependent variables
in the two cases are expected to increase as well.

(i) In the second approach, we could choose a value
of dp/0x that is the same in both cases and com-
pute results. Both models are bound to produce
different velocity fields and hence different flow
rates. For very low values of dp/dxz we expect the
velocity field in the two cases to be not drastically
different from each other but as dp/dx increases,
the differences are expected to be significant.

Obviously, (ii) is easier as it merely requires speci-
fication of dp/0x as input and the rest of the detail of
the flow are computed. We use this approach to study
the influence of the two constitutive models (UCG1 and
UCG2) on the flow physics of fully developed flow be-
tween parallel plates (model problem 1) and fully devel-
oped flow between parallel plates using a two dimen-
sional formulation (model problem 2). It is obvious that

both model problems will be in agreement when the
same constitutive model is used.

8.1 Model Problem 1:
tween Parallel Plates

Fully Developed Flow Be-

Figure 1 shows a schematic using dimensionless
quantities. The plates are separated by a distance 2H.
The origin of the zy-coordinate is located at the center
of the plates and the positive z-direction is the direction
of the flow. The flow is pressure driven, i.e. dp/dx (neg-
ative) is specified. The mathematical model describing
the flow physics (for incompressible case with isother-
mal flow assumption) consists of z- and y-momentum
equations and the constitutive equations. The continuity
equation in this case is satisfied identically.

Ay

B

BCs at B:

u=0,p=0

Flow direction

A :
Y -
BCsatA:  Ju _
dy
Tey =0 (UCGI)

center line

r{'v 0 (UCG2)
Figure 1: Schematic of 1-D fully developed flow between par-
allel plates (half domain)

We begin with all quantities with their usual dimen-
sions (units) in the development of the mathematical
model and then non-dimensionalize them using the fol-
lowing. The quantities with the subscript zero are the
reference quantities.

T ] Ul s p
r=—,Y=—,N=—,Ns=—, Mp=—
Ly Ly o o ! Mo

b .

N R R )

V= — —_

LU=

, U= .1
0 Uq U Po 0 (8.1)

)= =

poug ; Ch. kinetic energy
or

Ch. viscous stress

) :T —
Po=To oo

14(]

in which 4, © are velocities in the z- and y-direction, p is
mechanical pressure and 7 is deviatoric stress tensor, all
in the current configuration.i We choose the larger of the
two for py (and 7p). This results in dimensionless form of
the mathematical model given in the following:
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Momentum Equations:

In the absence of body forces

( Po ) ap ( 70 >(‘)T_.-,, _ (8.2)

poud/ Ox pous/ Oy ’
0, Y Yy

()50 - () G2 =0 83

poug/ Jy pous/ Oy

Giesekus Constitutive Model:

We consider the upper convected Giesekus constitu-
tive model derived in this paper (UCG1) and the upper
convected Giesekus constitutive model used currently
(UCG2).

UCGT:

In this model, the first convected time derivative of
T, the deviatoric contravariant Cauchy stress tensor, is
a dependent variable in the constitutive theory. Dimen-
sionless form of the constitutive model is given by

du  De ( LuT()) ((Ta)*+(72)?) =0

Tow —2DeT,, -«
70 1 \ugno
De ( L()T(] ) 9 9
Tyy — 00— (Tu)- + (Tey)) = 0
yy ll “()’][) ( vy ( ./) )

(8.4)

ou De (L()T()

- a=
n \NuopTo

uUpto Ju

II(L()TU) dy
Equations (8.2) - (8.4) constitute the complete mathe-
matical model in dependent variables u, p, 7., 7,, and

7., for fully developed flow between parallel plates when
using UCG1.

)ﬂ-y(ﬂ.r + T.‘/!I) =

ucGa:

This constitutive model is used currently [2]. In
this model 7 is decomposed into solvent and polymer
stresses.

(8.5)

T=17"+71"

The Newton’s law of viscosity is assumed as a con-
stitutive model for 7*. 77, and 7, are zero for this model
problem and we only have 73, in the constitute model for

Ty
solvent stress.

. woo ou
ey = s =— 8.6
T.l y (L[)T()‘)’]A ()y ( )
and hence, from (8.5)
Tox = Tog 3 Tyy = Tyy
(8.7)

oo ou
Twy = TL + ( )1,,.,—
"/ o LoTo ! dy

For polymer stress 77, the dimensionless form of the
constitutive equations are given by (obtained by replac-
ing T with 77 and 7 by 7, in (8.4)) the following [2]:

p . » du De L()T() Ry
Y0y Ny \UoMo

Tl’ a De (L()ﬂ)) ((TP )2 + (T]' ).2) =0

yy Yy xy
Np \NUopTo

Ju De ¢ Ly
TP — DetP — —(l—(M)TI‘ (B, +7P) =

Ty yy i)!/ My \UoTo xy\xx "yy
wono \ Ju
(Tore) 3y
Using (8.7) in the momentum equations (8.2) and
(8.3), we can express the momentum equations in terms

of 7/, 7, and velocity gradients
0 \ Op 0 \ OTP, 1 d*u
( 10->).—1—< “-,) ."I—( o )lls._-;=(l (8.9)
pouy/ Ox poug/ Oy Lopoug dy?

po \ Ip 70 \ 97y
=) — — 5 | —— =0 .
(/)()ll('))) ()![ (/)[)ll('))) ()l] (8 10)
(8.8) - (8.10) constitute the complete mathematical
model in dependent variables u, p, 77,, 7/, and 77, for
fully developed flow between parallel plates when using
ucGa.

Solutions of the BVPs:

In this section we consider solutions of the BVPs de-
scribed by (8.2) - (8.4) for UCG1 and (8.8) - (8.10) for
UCG2. Since dp/dzx is constant (specified), from (8.2)
we can determine 7., by integrating with respect to y
and using the boundary condition 7., = 0 at y = 0 (due

to symmetry) )
— (%P
= (2)r @11

A theoretical solution for the remaining dependent
variables is not readily possible due to the complexity of
the constitutive equations in both boundary value prob-
lems (UCG1 and UCG2), hence we consider their nu-
merical solutions using finite element processes based
on the residual functional (least squares finite element
method). The local approximations are considered in
higher order spaces H"*7(Q¢) in which Q¢ is the spa-
tial domain of a typical element ‘¢’ of the discretiza-
tion. The resulting non-linear algebraic equations from
the least squares process are solved using Newton’s
linear method. The computational processes in this
approach are unconditionally stable and permit higher
order global differentiability local approximations. See
reference [20—22] for details of local approximations
and the least squares process for non-linear PDEs and
higher order spaces. In the computations of the numeri-
cal solutions we choose

po=p==800 kg/m*
Uy = 0.5 m/s

no=n=1.426 Pas
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which gives
H=1 Po = To = pous = 200 Pa
L A
Re=P2020%. _ 08006, De="220 —9.45
o 0

or De = Ayan/Lo = 18.897641,,... A good discretiza-
tion of the spatial domain 0 < y < 1 is important in
ensuring satisfactory convergence of the Newton’s lin-
ear method for the system of non-linear algebraic equa-
tions and good accuracy of computed solutions. With
progressively increasing dp/dx, we expect development
of a constant velocity core at the center of the flow. This
suggests the use of a highly biased finer discretization
towards the walls. A two element graded mesh with ele-
ment length of 0.2 and 0.8 starting from the wall (see Fig-
ure 2) is used in and local approximations are p-version
(3-node elements) in higher order spaces.

0.8 0.2

B

\

Figure 2: Graded mesh discretization using two 3-node p-
version elements

~— A three node p-version (' element

Initial p-convergence studies with this discretization
suggest p = 9 with & = 2, local approximations of class
C'(9Q2), to be sufficient for good accuracy of results.
For this choice of mesh, p-level (p = 9) and order of
the space (k = 2), the residual or least squares func-
tional values remain O(10~%) - O(10~2?) indicating that
the PDEs are satisfied very accurately (in the pointwise
sense for UCG1 as the integrals are Riemann, and not
strictly in the pointwise sense for UCG2 since the in-
tegrals are Lebesgue) when local approximations for
U, P, Teas Tyy and 7., are of class C'(Q%). Newton's
linear method used for solving the non-linear algebraic
equations converges in less than 10 iterations for all nu-
merical studies presented here. In the numerical studies
we begin with dp/dx = —0.1 for which a converged so-
lution is obtained and then progressively increase it up
to dp/odxr = —0.275 using a continuation procedure in
which converged solutions at lower dp/dz are used as
initial (or starting) solution in the Newton'’s linear method.

Figure 3 shows graphs of velocity u versus y for
different values of dp/dx for both UCG1 and UCG2.
Graphs of velocity gradient du/dy versus y for different
values of dp/dx are shown in Figure 4. For dp/dx val-
ues up to —0.2, the results from both UCG1 and UCG2
are in good agreement (Figures 3 and 4). Beyond dp/dx:
values of —0.2, the results from the two BVPs begin to

deviate. Higher values of dp/dx result in larger devia-
tions between the two models. At dp/dx = —0.275, U
at y = 0 from UCG1 is more than twice of u,,,,. at y =0
from UCG2. This of course implies drastically different
flow rates resulting from the two models for the same
pressure gradient.

i) p=9

dplox values:

ucGl: -0.1
.2 e

0.8 4

-0.25
-0.265 ~==+==+
0,275 i wsnneee

ucG2: -0

0.6 4

0.2 ——
-0.25
-0.265 ——
-0.275 ——

Distance, y

04 4

0.2 4

0 02505075 1 125 1.5 1.75 2 22525275 3 32535375 4

Velocity. u

Figure 3: Velocity u versus distance y

0.8 1
@) p=9

dplox values:

0.6 4

'T ucGl: -0/
2 20,2 seeeeees
] 025
Z <0.265 e
2 04 0,275 svesveer
ucG2: -0l
0.2 ——
025
-0.265
0.2 1 0275 —

-30 -28 -26 -24 -22 20 -18 -16 -14 -12 -10 8 6 4 -2 0

Velocity gradient, duldy

Figure 4: Velocity gradient du/dy versus distance y

Figures 5 - 7 show plots of 7., 7,, and 7,, versus
y for both UCG1 and UCG2. For dp/dx values beyond
—0.2 we observe progressively increasing deviations be-
tween solutions obtained from the two BVPs for 7., and
Tyy. FOr dp/Ox = —0.275, 7., and 7, from UCG1 are
roughly more than twice of those from UCG2. Com-
puted 7., from the numerical solutions of both BVPs are
in perfect agreement with the theoretical solution (8.11)
for all values of dp/dx as 7., only depends upon dp/dx
which is same in both models. The residual () values of
O(107%) or lower and the use of C''(Q2%) ensure that the
computed solutions satisfy the GDEs accurately.



Giesekus Constitutive Model for Thermoviscoelastic Fluids

Journal of Research Updates in Polymer Science, 2013 Vol. 2, No. 4 255

Distance, y

Distance, y

Distance, y

0.8
@) p=9
dpldx values:

0.6 ucGlt: -0

0.4 -0.27:
UucG2: -0

Stress, T,

Figure 5: Stress component 7., versus distance y

0.8 - ,
Q)

dpldx values:

UCcGl1: -0.1
0.2
-0.25
-0.265
0.4 0,275 weemeeen
ucG2: -0

0.6

02 ——
025 ——

5 ] 0,265 ——
02 0275 ——

0 T T
-0.12 -0.11 -0.1

T T T T T T T T T 1
-0.09 -0.08 -0.07 -0.06 -0.05 -0.04 -0.03 -0.02 -0.01 0
Stress, T,

Figure 6: Stress component 7, versus distance y

0.8
)

dplox values:

061 ycar: -0

0.4 -0.275

-0.2
-0.25
02 -0.265
: -0.275

0 T T T T
-0.4 -0.35 -0.3 -0.25 -0.2 -0.15 -0.1 -0.05 0

Stress, T,

T T T \

Figure 7: Stress component 7., versus distance y

8.2 Model Problem 2: Fully Developed Flow Be-
tween Parallel Plates using 2D Formulation

In this numerical study we consider the same model
problem as considered for model problem 1, i.e. fully
developed flow between parallel plates but we use 2D
mathematical model. The purpose of this study is to
show performance of full mathematical model and to
demonstrate that for fully developed flow between par-
allel plates, this full model produces precisely same re-
sults as degenerate model used in section 8.1. Figure
8 shows a schematic using dimensionless quantities in
which ABCD is the computational domain. Origin of
the coordinate system z,y is located at A. Positive z-
direction is the direction of the flow.

-

Flow direction

center line Y 1

~

-
u

- e UG
9y =Tv=0 (01’,__‘ 0 for UCG2 )
BCs on AB, BC, CD and AD:

ap . o O, Oy Oy ar,
»__p w0y (o 278

v=0 ; . 7 o—
ox dr  Or ox dr  Ox

0 for UCG2 )

Figure 8: Schematic of 2-D fully developed flow between par-
allel plates (half domain)

In this case, the mathematical model describing the
flow physics (for incompressible case with isothermal
flow assumption) consists of continuity equation, x- and
y-momentum equations and the constitutive equations.
We begin with all quantities with their usual dimensions
(units) in the development of the mathematical model
and then non-dimensionalize them using (8.1) in which
i, v are velocities in the z- and y-direction, p is mechan-
ical pressure and 7 is deviatoric stress tensor, all in the
current configuration. We choose the larger of the two
for po (and 7p). This results in the following dimension-
less form of the mathematical model:

Continuity Equation:

Momentum Equations:

(8.12)

In the absence of body fdrces
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p(u,(:ﬁ+ ()ll) +( Po )(')1)

Jx dy 00 u(, dx

) rr ) Ty
() (2 O

poug dx dy

v ov po \ Op

) ()

p(u or Ay poui/ dy
B ( T()z) (f)‘T_,.” N i)‘r,,,,) —0

Poug or dy

Giesekus Constitutive Model:

(8.13)

We consider the upper convected Giesekus constitu-
tive model derived in this paper (UCG1) and the upper
convected Giesekus constitutive model used currently
(UCG2).

UCGT:

In this model, the first convected time derivative of
T, the deviatoric contravariant Cauchy stress tensor, is
a dependent variable in the constitutive theory. Dimen-
sionless form of the constitutive model is given by

D ( OTrn + Oy du ()u)
Tex e\u v — &Tey 5~ — &Tax
Ox Ay oy Ox
De L()T() ) o 5 UpTo Ju
—— Tex “+ Ty )= 27 ( )_
7 ( oo ((7aa)+ (7)) =21 Loto/ 0z
or, ar v Jv
4D ( Ty L oDy _9p o _)
Tyy T DU " TV, T gy T HTwg,
D(’( L()T() ) 5 UpTo al'
— Tyy)” +(Tay =2 ( )‘_ 8.14
n \uomo (( yy) ( /) ) i Loto /0y ( )
T, 07y du  Jdv
T D ( - R Ty =
Tay + € O e dy ’(()1 ()_1/)

. .(')l' ()11) v & ( Lo7o

T ox Tyy dy ¢ 1 \upno
_ UpTo ﬂ ﬁ
- "(L()T()) ((‘)l] + (‘)])
Equations (8.12) - (8.14) constitute the complete math-
ematical model in dependent variables u, v, p, 7.4, Tyy

and ., for two dimensional steady flow using the con-
stitutive model UCGH.

) Tay (T_,~_,- + 'r_,,,,)

ucGga:

This constitutive model is used currently [2]. As in
model problem 1, here also, 7 is decomposed into sol-
vent and polymer stresses.

T=1"+7" (8.15)

and the Newton’s law of viscosity is assumed as a con-
stitutive theory for 7*.

8 = 9('lt()7]() ),] @
e - Lo7o " Ox

Ty =2 ( le((),Z: )7""3_; (8.16)
. Y ou v
Tey = (%)u(d—u + E)
and hence, from (8.15)
wo? Jdu
2220
Tyy =T_.l,’y+ 2(%)’#3—; (8.17)

ro=7P + ('U(ﬂln>, ((')u N (‘)U)
S LoTo be Jdy Ox

For polymer stress 77, the dimensionless form of the
constitutive equations are given by (obtained by replac-
ing T with 77 and 7 by 7,, in (8.14)) the following [2]:

or? ()7'” ou Ju
7_]: +D(( rr + :) ,1__:) P _)
dw ()1/ Tay dy e
De L()T()) 9 UpTo du
—a—(—— +(7 =21,( )—
I]I, ( Il()l]() (( ) ( * 'I) ) ]I L()T() (').'I'
arP or? v dv
TP -+-D(%(11 Y f oYY _9pP Z_ _97P )
v oz Ay s Y Dy
De L()T()) 9 9 upto ov
- — 7P ) 4+ (7P )°) =21 ,(—)—
Mp ( Uy (( w) "+ (72y) ) T Lo7o/ 0y
arP ar? du  Ov v
TP +D((1. YL - (—+—) — TP —
Y dx dy "” ( dx (')_1/) T ox
v Ju De ¢ Lo\ , ,
_Tl/l[()l ) _(1_(f)7-{u( . +Tll/u)
Y Tp \NUoTo

() (2 2)
"y Loto/ \Oy  Ox

Using (8.17) in the momentum equations (8.13), we
can express the momentum equations in terms of 77,

7}, 7%, and velocity gradients

Ju du Po \ Op 0 arr. 0Tk,
o5z +v5) * (o) 3~ (o) (5 + 3,)
0: Jy poud/ Ox pous/ \ Oz dy
B 7o ) ( 0%u ﬂ d*v ) o
(L(,p()'u(, T\ a2 + y? + dyox
) arP arP
[)(l()—l—l- ()l) + ( Po )()l) ( T()z)( Ty + ‘_1”;)
dx dy poud/ Oy Poug dx dy

M0 0% 0t D%u
—( )'I.ﬁ(2j+.—.+f)=
Lopoug dy dx?  Jyox

Equations (8.12), (8.18), (8.19) constitute the com-
plete mathematical model in dependent variables u, v,

(8.18)

(8.19)
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p, 70, 7, and 77 for two dimensional steady flow using

the constitutive model UCG2, used currently for incom-
pressible Giesekus fluids.

Solutions of the BVPs:

In this section we consider solutions of the BVPs de-
scribed by(8.12) - (8.14) for UCG1 and (8.12), (8.18),
(8.19) for UCG2. A theoretical solution for dependent
variables is not possible due to the complexity of the
constitutive equations in both boundary value problems,
hence we consider their numerical solutions using fi-
nite element processes based on the residual func-
tional (least squares finite element method) in which
the resulting non-linear algebraic equations from the
least squares process are solved using Newton'’s linear
method. The computational processes in this approach
are unconditionally stable and permit higher order global
differentiability local approximations. Details of the local
approximations and the least squares finite element pro-
cesses for non-linear PDEs and higher order spaces can
be found in references [20-25]. The local approxima-
tions are considered in higher order spaces H A'~l'(52j,‘y)
in which Q¢ is the spatial domain of a typical element ‘¢’
of the discretization. In the computations of the numeri-
cal solutions we choose

po=p==800 kg/m*
up=0.5m/s

H=Ly=3.175 mm
no=n=1.426 Pas

where H = 1, Py = 200 Pa, Re = 0.8906 and De = 9.45,
same as in model problem 1.

In this case, the rectangular domain ABCD is dis-
cretized using two 9-node p-version elements of lengths
0.2 and 0.8 (Figure 9) in the y-direction. Length AD is
chosen as 1.0 (arbitrary). The local approximations are
considered to be of equal degree for all variables. We
consider p = (p1,p2) = (9,9) with & = (k1. ko) = (2,2),
i.e. local approximations of class C'-'(Q,). For this
choice of mesh, p-level and order of space, the residual
functional values are of orders of O(10~%) - O(10719)
indicating that the PDEs are satisfied very accurately (in
the pointwise sense for UCG1 as the integrals are Rie-
mann, and not strictly in the pointwise sense for UCG2
since the integrals are Lebesgue) when the local ap-
proximations for u, v, p, 7., 7,, and 7., are of class
cH(Qs,)-

In the numerical studies we begin with dp/dxz = —0.1
for which a converged solution is obtained and then pro-
gressively increase it up to dp/dx = —0.275 using a
continuation procedure in which converged solutions at
lower dp/dx are used as initial (or starting) solution in
the Newton’s linear method. For all values of dp/dz,
the computed numerical solutions confirm that u, du/dz,
Texs Tyy @nd 7., versus y are invariant of spatial location

x along AD and are in perfect agreement with those ob-
tained in model problem 1 using fully developed flow 1D
numerical studies, hence are not repeated for sake of
brevity.

Ay

0.2 ¢ X

-

A nine node

p-version (' element

08 | x < % o

— G * © -

1.0

Figure 9: Graded mesh discretization using two 9-node p-
version elements

9 SUMMARY AND CONCLUSIONS

We have presented development of ordered rate con-
stitutive theories for compressible and incompressible
thermoviscoelastic fluids in contravariant and covariant
bases as well as using Jaumann rates. The theories
consider convected time derivatives of up to order ‘m’ of
the deviatoric Cauchy stress tensor and convected time
derivatives of up to order ‘n’ of the strain tensor in the
chosen basis. The convected time derivative of order ‘m’
of the deviatoric Cauchy stress tensor, the heat vector
(")g and Helmholtz free energy density ® are consid-
ered as dependent variables in the development of the
rate constitutive theories. The argument tensors in the
constitutive theories for the deviatoric stress tensor and
heat vector are considered to be [y/)] ; j = 1,2,..., n,
[a6™] sk =0,1,..., m — 1, density p, temperature ¢ and
temperature gradient g in the contravariant basis. In the
case of covariant basis, [y)] and [,5*)] are replaced
by [v(;)] and [45(x)] while the other arguments remain
the same. When using Jaumann rates, we use [/)~7] ;
j=12,..., nand [*)57] ; k=0,1,..., m — 1, p, 0 and
g as argument tensors. These rate constitutive theories
define ordered thermoviscoelastic fluids of orders (m. n).

Many remarks made in references [8,9] regarding en-
tropy inequality, conditions resulting from it, decomposi-



258 Journal of Research Updates in Polymer Science, 2013 Vol. 2, No. 4

Surana et al.

tion of the total stress tensor in equilibrium and deviatoric
stress tensors, rates of stress and strain tensors in vari-
ous bases, determination of equilibrium stress for incom-
pressible and compressible cases leading to mechanical
and thermodynamic pressure remain the same here as
well and hence are not repeated. As in references [8, 9],
here also, entropy inequality does not provide a mech-
anism for determining the constitutive equations for the
deviatoric stress tensor but only requires that the work
expanded due to the deviatoric stress tensor be posi-
tive. The development of the rate constitutive theories
presented in this paper are based on the theory of gen-
erators and invariants. In this approach [,5(")] and ¢'”
or (40 ()] @nd gy, or [";5/] and ("'q”’ are expressed as
a linear combination of the combined generators of the
argument tensors keeping in mind that [;'"], [45 ()]
and [")57] are symmetric tensors of rank two where
as ¢\, g, and ("'q” are tensors of rank one. Hence,
the combined generators used in the linear combinations
for [40"™)], [4G(m)] Or ["™)h5”] must also be symmetric
tensors of rank two. Whereas the combined genera-
tors used to define ¢!, g, and ("¢’ must be tensors
of rank one. Additionally we must also adhere to mini-
mal basis in these linear combinations. The coefficients
in the linear combinations are functions of 5, # and the
combined invariants of the argument tensors of rank one
and two and are determined by considering their Taylor
series expansions about a known configuration £ in the
combined invariants and /. We make the following spe-
cific remarks:

1. The general rate constitutive theories for ordered
thermoviscoelastic fluids of orders (m,n) are pre-
sented for compressible as well as incompress-
ible thermoviscoelastic fluids. The general theo-
ries are specialized for m = 1 and n = 1, i.e.
thermoviscoelastic fluids of order one in deviatoric
Cauchy stress and strain rates. In this case [,
or [45(1)) or ["ha”] contain [,a V], 'V, p, 0, g
or ["6(“)]’ [AI(])]! Ps é' g or [(“')/frl]’ [(l)’\/.l]! Ps év g
as argument tensors in contravariant and covariant
bases as well as using Jaumann rates. The paper
also presents the constitutive theory for ¢\, g,

and (")g” that contains same argument tensors as
(a0 ™M], [ao(1y] or [*ha”]. This is essential for con-
sistency of the constitutive theories between the
stress tensor and heat vector.

2. The contravariant basis yields upper convected or-
dered rate constitutive theories. Likewise, covari-
ant basis yields lower convected ordered rate con-
stitutive theories. Use of Jaumann rates yield Jau-
mann rate constitutive equations. [17] have shown
that only contravariant basis is in accordance with
the physics of deforming matter when the defor-
mation is finite. As the deformation deviates from
the infinitesimal assumption, the rate constitutive

equations based on covariant basis and others
(such as Jaumann rate equations) become pro-
gressively spurious with progressively increasing
deformation.

. It is shown that the Giesekus constitutive model is

a subset of ordered thermoviscoelastic fluids (in-
compressible) of orders m = 1 and n = 1. Deriva-
tions presented in the paper demonstrate many as-
sumptions needed in the general case of m = 1,
n = 1 to derive this non-linear viscoelastic consti-
tutive model. The derivation of Giesekus constitu-
tive model presented here is fundamental in under-
standing the assumptions employed in its deriva-
tion which eventually limit its range of applications.

. The Giesekus constitutive model as used in poly-

mer science has been derived using kinetic the-
ory [2, 3] and other theories. The derivation of
Maxwell model based on continuum mechanics
can be found in [7]. However, the derivation of
Giesekus constitutive model based on principles
and axioms of continuum mechanics as presented
in this paper is the first appearance of this work in
the published literature to our knowledge.

. It is important to note that the Giesekus constitu-

tive model derived here uses the deviatoric Cauchy
stress tensor in the development of the rate the-
ories. This is supported by the entropy inequal-
ity. The currently used Giesekus constitutive model
in published works [2], though similar in the form
compared to the model derived here, it uses devi-
atoric polymer Cauchy stress tensor in the consti-
tutive model with the additional assumptions of (i)
decomposition of deviatoric Cauchy stress tensor
in solvent and polymer stress tensors (ii) Newton’s
law of viscosity to define the constitutive theory for
the deviatoric solvent Cauchy stress tensor. These
are not supported by the principles and axioms of
continuum mechanics and in particular of the con-
stitutive theory and the derivation presented in this

paper.

. In polymer science, itis argued [26,27] that decom-

position of the deviatoric Cauchy stress in terms
of viscous (both solvent and polymer) and elastic
components and then expressing viscous stress
using Newton’s law of viscosity and thus obtaining
constitutive equations in terms of deviatoric elastic
stress is meritorious (computationally). This ap-
proach has two fundamental problems if viewed
based on the principles and axioms of continuum
mechanics for the constitutive theories. First, the
deviatoric Cauchy stress must be a dependent
variable in the constitutive theories and not the
elastic stress as evident from entropy inequality.
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This argument questions the decomposition. Sec-
ondly, use of Newton’s law of viscosity must be
derivable as opposed to simply using it as a con-
stitutive theory for the viscous stress tensor.

. All rate theories presented here permit variable

material coefficients during the deformation. Even
though the Giesekus model can only be derived
by neglecting many terms (as shown in the deriva-
tions), the dependence of the final material coef-
ficients can be maintained on any (or all) of the
desired invariants. This feature permits shear thin-
ning, shear thickening and other behaviors of vis-
cosity etc. to be incorporated in the constitutive
models derived here based on experimental and/or
empirical relations.

. Another significant point to note in the present

work is that determination of the material coeffi-
cients from the coefficients used in the linear com-
bination of the generators to express deviatoric
stress or heat vector requires use of Taylor series
expansion about the known configuration (2. This
automatically forces the material coefficients to be
defined in a known configuration 2 and not in the
current configuration. In all presently used works,
this is not the case. Variable transport properties
as well as dependence of material coefficients on
invariants are all expressed using the current con-
figuration. This may be justified when the current
and known configurations are in close proximity in
terms of deformation field but cannot be supported
by the derivation presented in this work.

. Numerical studies are presented for fully devel-

oped flow between parallel plates, and fully devel-
oped flow between parallel plates using a two di-
mensional formulation for a dense polymeric liquid
(PIB/C14) using the Giesekus constitutive model
derived in this paper as well as currently used
Giesekus constitutive model. We use contravariant
Cauchy stress tensor and Almansi strain tensors
as conjugate measures of the stress and strain
tensors in Eulerian description. This yields up-
per convected Giesekus constitutive models. Nu-
merical results are presented using the upper con-
vected Giesekus constitutive model derived in this
paper (UCG1) as well as using the currently used
constitutive model in deviatoric polymer stress
(UCG2).

. We choose a value of dp/dz that is the same

in both constitutive models and compute results.
For very low values of dp/dx the velocity fields
in the two cases are not drastically different from
each other but as dp/dz increases, both models
produced significantly different velocity fields and
hence different flow rates. Computed results from

fully developed flow between parallel plates using
studies in R' , and fully developed flow between
parallel plates using two dimensional formulation,
i.e. R? are in perfect agreement when the same
constitutive model is used.
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