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Abstract: Mechanical characterization of polymeric biomaterial scaffolds is essential to allow biomaterials that interface 

with tissues and tissue engineered constructs to be developed with appropriate mechanical strength. However, the 
fragility of these materials makes their mechanical characterization in a quantitative manner highly challenging. Here we 
report an overview of testing techniques for the characterization of mechanical properties of films, membranes, 

hydrogels and fibers commonly used as scaffolds in tissue engineering applications. 
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INTRODUCTION 

Polymeric biomaterials used in tissue engineering 

fabrication are either synthetic or naturally derived. 

There is also a vast group of semi synthetic materials 

that are combinations of synthetic with natural 

polymers. In some cases inorganic materials are 

present as well. To tailor special needs, besides 

chemical combinations, the blending of two or more 

polymers allows to develop new biomaterials that 

exhibit combinations of properties that could not be 

obtained from individual polymers [1, 2]. 

The most common families of synthetic polymers 

are polyesters, polyanhydrides, and polycarbonates. 

Synthetic polymers offer several notable advantages 

over natural-origin polymers. A major advantage of 

synthetic polymers is that they can be tailored to suit 

specific functions and thus exhibit controllable 

properties. Furthermore, since many synthetic 

polymers undergo hydrolytic degradation, a scaffold’s 

degradation rate should not vary significantly between 

hosts. A significant disadvantage for using synthetic 

polymers is that some degrade into unfavorable 

products, often acids. At high concentrations of these 

degradation products, local acidity may increase, 

resulting in adverse responses such as inflammation or 

fibrous encapsulation. Other polymeric biomaterials are 

natural polymers. The most common families of natural 

polymers are polypeptides and polysaccharides. 

Coming from natural sources, they usually are  
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biocompatible and enzymatically biodegradable. The 

main advantage for using natural polymers is that they 

contain bio-functional moieties that aid the cell 

processes inherent to tissue engineering. However, 

there may be some disadvantages because depending 

upon the application; the previously mentioned 

enzymatic degradation may inhibit the very same 

processes that the bio-functional moieties promote. 

Furthermore, the rate of this degradation may not be 

easily controlled. Since the enzymatic activity varies 

between hosts, so will the degradation rate, therefore it 

may be difficult to determine the lifespan of natural 

polymers in vivo. Additionally, natural polymers are 

often weak in terms of mechanical strength (elastic 

modulus < 1 kPa) but cross-linking these polymers 

have shown to enhance their structural stability. Since 

many tissues undergo mechanical stresses and strains, 

the mechanical properties of polymeric biomaterials, 

synthetic or not, should be considered [1]. 

Tissue engineering is a multidisciplinary science 

that combines fundamental principles from materials 

engineering and molecular biology to fabricate living 

replacement parts for the body [3]. Scaffolds are the 

most common application for polymeric biomaterials in 

tissue engineering. The scaffold is a three-dimensional 

substrate that serves as a template for tissue 

regeneration [2]. Therefore an ideal scaffold has a 

three-dimensional and well defined microstructure with 

an interconnected pore network, possess mechanical 

properties similar to those of natural tissues, that is 

biocompatible and bio-resorbable in a convenient way 

[4]. The importance of mechanical properties of the 

biomaterials in polymeric scaffolds is that they are 

meant to sustain tissue meanwhile it regenerates. The 
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scaffold must provide, in related terms, depending 

upon the application, sufficient initial mechanical 

strength and stiffness to substitute for the mechanical 

function of the diseased or damaged tissue that it aims 

at repairing or regenerating. Scaffolds may not 

necessarily be required to provide complete 

mechanical equivalence to healthy tissue, but stiffness 

and strength should be sufficient to at least support and 

transmit forces to the host tissue site in the context [5]. 

In general, biomaterial polymeric scaffolds are in 

contact with biological fluids. It should be prevented 

any type of infection and immune response, blood 

clotting and other biological responses that could affect 

the properties of the fluid and, therefore, the patient. 

For this reason, it is important to know both host and 

material response for a certain biomaterial. The host 

response is usually related to inflammation, fibrosis, 

coagulation and hemolysis. The material response 

focuses on fracture, wear, corrosion, dissolution, 

swelling and leaching. As a consequence of swelling, 

the elastic limit of a material can be reduced leading to 

static fatigue or crazing [6]. 

Common devices used as scaffolds are 

membranes, hydrogels and injectable materials. 

Usually, membranes are considered physical barriers 

designed to allow permeation of specific substances. 

When the membranes are made of biopolymeric 

materials for tissue engineering applications, their 

three-dimensional structure is profited to enhance 

tissue growth and regeneration. The membranes could 

be networks with physical or chemical crosslinks where 

the porosity, hydrophilicity, water permeation, and 

elastic properties are tuned for applications such as 

wound dressings or healing patches and scaffolds for 

guided bone regeneration. They are useful for repair in 

sites where limited mechanical loading exists [6-8]. 

Another scaffold device is the hydrogel. Hydrogels are 

three-dimensional networks formed from hydrophilic 

homopolymers or copolymers crosslinked to form 

insoluble polymer matrices. These polymers, generally 

used above their glass transition temperature, are 

typically soft and elastic due to their thermodynamic 

compatibility with water and have found use in many 

biomedical applications. Hydrogels are attractive 

scaffolding materials because their mechanical 

properties can be tailored to mimic those of natural 

tissues. The utility of hydrogels as scaffolds is 

attributed to several factors, including superior 

biocompatibility that minimizes inflammation, 

thrombosis, and tissue damage, as well as high 

diffusivity and elasticity that parallels many tissues. As 

scaffolds, hydrogels are used to provide bulk and 

mechanical constitution to a tissue construct, whether 

cells are adhered to or suspended within the three-

dimensional gel framework. The mechanical properties 

of hydrogels as tissue-engineering scaffolds can have 

a profound effect on attached or encapsulated cells. 

Tailoring of the crosslinking density is commonly used 

to control the properties of polymer networks, such as 

mechanical compliance, swelling, and mesh size. 

Crosslinking density can also be used to affect cells 

encapsulated within hydrogels [9, 10]. Besides 

scaffolds made of membranes or hydrogels, injectable 

materials are versatile scaffold devices because they 

eliminate the need for surgical interventions for 

delivery, and the minimally invasive procedure of 

injection. Moreover injectable scaffolds provide the 

ability to take the shape of the cavity in which they are 

placed and can thus fill irregular defects. In order to be 

used for a load bearing tissue for example, a scaffold 

must possess sufficient mechanical integrity to support 

the tissue, particularly during the early stages of growth 

[4, 11]. 

Here we report an overview of testing techniques for 

the characterization of mechanical properties of films, 

membranes, hydrogels and fibers commonly used as 

scaffolds in tissue engineering applications. 

Furthermore, we discuss the rheological working 

equations most commonly used to evaluate mechanical 

properties relevant to tissue engineering mechanical 

tests such as uniaxial extension, compression and 

indentation. 

CHARACTERIZATION OF MECHANICAL 
PROPERTIES 

Mechanical characterization of real biological tissue 

is essential to allow biomaterials that interface with 

tissues and tissue engineered constructs to be 

developed with appropriate mechanical strength. 

However, the fragility and viscoelasticity of these 

materials make their mechanical characterization in a 

quantitative manner highly challenging. Meanwhile the 

Mechanical properties of polymeric biomaterials have 

been under investigation to design and to control their 

performance in tissue engineering applications. The 

viscoelastic and mechanical properties of these 

biomaterials play an important role in their performance 

and durability and ultimately dictate whether the 

applications are successful or not. Therefore, there has 

been a great development of techniques for 

mechanically characterizing these biomaterials. Good 

reviews on determination of mechanical properties of 
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scaffolds and description of classical mechanical tests 

for soft polymeric biomaterials such us hydrogels are 

available [2, 12]. Table 1 shows an overview of 

published studies on polymeric scaffolds for tissue 

engineering where the characterization of mechanical 

properties is one of the concerns. The biomaterials 

mentioned are classified as natural and synthetic; they 

also represent the main component of the scaffolds 

when in the formulation there is more than one 

component. The devices are classified as films (F), 

membranes (M), hydrogels (H), and fibers (Fb). The 

standard mechanical tests presented are uniaxial 

tension (UT), compression (CP), indentation (IN), and 

dynamic mechanical (DM). 

Some examples of the most common mechanical 

tests for biopolymeric scaffolds are discussed next. For 

large-scale samples, the simplest measurement that 

yields the elastic modulus of a specimen is the uniaxial 

strain test, in which the sample is grasped at two ends 

and pulled while axial strain and stress are 

simultaneously measured. In order to minimize end 

effects, the sample is often necked down to a lateral 

dimension in the central section, smaller than the ends, 

Table 1: Mechanical Testing of Biopolymeric Scaffolds 

Biomaterial Device UT CP IN D 

Natural      

Agarose  F     

 M   [13]  

 H [14-17] [14, 15] [18] [15] 

Alginate F   [13]  

 M  [19] [18]  

 H [16, 20]   [21] 

Hyaluronic acid F     

Chitosan F [16, 22-32] [22, 31, 33, 34]  [30] 

 M [35-37] [38]  [38, 39] 

 H [16, 22, 23, 40-44] [22, 43-46]  [28, 42, 46-48] 

Collagen F [30-32, 49-52] [22]  [30, 53] 

 M [54-57]   [55, 58] 

 H [59-63] [64]  [29, 53, 63, 65-68] 

Gelatin F [22, 37, 54] [22]   

Silk Fb [50]    

 F [69, 70]    

 H [71] [72]  [73] 

Synthetic      

Poly(l-lactic acid) M [25, 74]   [74] 

Poly(caprolactone) M [75-89] [81, 90-97]   

 H [98-100] [101, 102]  [103, 104] 

Poly(vinyl alcohol) H [105-107] [108]   

Poly(ethylene glycol)/ 
Polyethylene oxide 

H    [29, 39, 109-113] 

Polyurethane F    [114] 

 M [115]    

Silicon F   [116]  

 M   [117]  

Polyester M   [118]  

Devices: film (F), membrane (M), hydrogel (H), fiber (Fb). 
Mechanical tests: uniaxial tension (UT), compression (CP), indentation (IN), dynamic-mechanical (DM). 
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and the strain is measured directly in the necked 

region. Because stresses in both directions 

perpendicular to the axial of the specimen are zero, the 

elastic modulus E is determined by the ratio of stress to 

strain. Poisson’s ratio v can be determined from the 

change of thickness of the specimen in the direction 

perpendicular to the applied stress. If the sample is 

anisotropic, additional uniaxial tests in the other two 

coordinate directions can be used. Alternatively, 

stresses can be applied in two (biaxial) or three 

(triaxial) dimensions simultaneously. These tests yield 

more information about the material, but do so at the 

cost of greater complexity [119].  

The tensile properties of scaffolds made of chitosan 

films were tested with an Instron model 4502 at room 

temperature [41]. The freeze-dried samples were cut 

into strips of width 10 mm. Sand paper was attached to 

both sides of the grips to prevent the samples from 

breaking and the samples were mounted into the grip. 

The sample was thoroughly hydrated by spraying with 

0.1 M PBS solution while mounted on the grip.  

Sarasam et al. [38] studied chitosan membranes 

blended with poly(caprolactone) to explore changes in 

fatigue due to the blending process. The membranes 

were tested under wet 37 C conditions using an 

Instron testing machine under uniaxial cyclical loading. 

Sample preparation required good control of 

environmental conditions. The membranes were cut 

into 50 mm x 10 mm size strips, neutralized with 1 N 

NaOH, washed with water, and hydrated with 

phosphate buffer saline (PBS). A custom built chamber 

surrounding the grips with constant circulation of PBS 

maintained at 37 °C provided constant hydrating 

conditions [120].  

Huang et al. [17] determined the capacity of 

chondrocyte- and mesenchymal stem cell (MSC)-laden 

agarose hydrogel constructs to achieve native tissue 

tensile properties (modulus, ultimate strain, and 

toughness) when cultured in a chemically defined 

medium supplemented with transforming growth factor-

beta3 (TGF-b3). To evaluate tensile properties, the 

authors used a typical Instron Microtester to apply 

uniaxial tension to the samples. Since they are soft and 

slippery strips, they had to be seated into 120 grit 

sandpaper-coated grips at 25 C and moistened with 

PBS during the test. 

For cryogels made of poly(vinylalcohol) tested by 

Pazos et al. [107], the softness and slippage of the 

sample specimens were a problem when using 

traditional clamps for uniaxial test. They came up with 

an original solution: the samples were attached with 

curved needles and 2-0 polyester braided sutures at 

two insertion points so gel samples slid during 

stretching was avoided. The strain imposed to the 

sample was recorded with a video-extensometer by 

following the displacement of four markers plotted with 

dye on the sample surface before the test. 

These tests are most often used to measure the 

properties of a material in tension. However, the 

compressive characteristics of the scaffolds are also 

often of interest, especially in materials such which are 

to be subjected to compressive loads in vivo. For this 

purpose, specimens are generally cut into the shape of 

a short cylinder and compressed between two platens. 

In the case of swollen samples, the platens may be 

permeable to allow water to escape as the sample is 

compressed, thereby obtaining information on the 

permeability of the sample from the time-dependent 

compression following the application of a load. Both 

confined and unconfined compression tests are useful. 

The advantage of confined compression, in which the 

sample is placed in a rigid cylindrical chamber, typically 

with no permeable side walls, is that the stress strain, 

and flow of water are purely axial and the results can 

be more easily interpreted [119]. 

Scott et al. [116] developed an indentation method 

of characterizing freestanding silicon films with finite-

sized indenters that turned out to be versatile, since it 

can be applied to tests with large ranges in stiffness. 

Using finite-sized indenters they achieved greater 

control over imposed strain, they found that to be highly 

advantageous when testing very thin films. The test 

was particularly useful to characterizing soft materials 

that present gripping and strain-instrumentation 

challenges, such as elastomers and biological 

materials. The test arrangement is a circular film with 

fixed outer edge that is indented by finite-sized 

spheres. The applied displacement and resulting load 

are the measured quantities that allow determination of 

mechanical properties from load–deflection 

relationships. 

As an example of measurement of the adhesive 

indentation behaviors is the work by Ju et al. [117] 

where they presented the characterization of a square 

of silicone rubber membrane deformed by a finely 

polished flat-ended cylinder (or indenter) under a small 

deformation (ca. 10% in strain). An apparatus was 

constructed to allow simultaneously measurements of 

the indenter displacement and the applied force. A 
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number of interesting phenomena such as the “jump-

into-contact” and the “pull-off” between the membrane 

and the moving cylinder were observed and the 

loading-unloading force displacement curves 

(compliance) were measured. Upon loading when the 

indenter-membrane gap decreased, the membrane 

jumped into contact with the indenter surface. During 

unloading, a negative tensile force was needed to 

separate the indenter from the membrane. The 

resultant measured force is a sum of contributions from 

the interfacial forces and the mechanical reaction of the 

elastic medium. The former has an origin in van der 

Waals and electrostatic interactions, while the latter is 

mainly governed by bulk mechanical properties such as 

the Young’s modulus and Poisson’s ratio of the 

membrane materials. With this kind of test, the “jump-

into-contact” and “pull-off” events that are well known in 

colloid and surface science can be evaluated for soft 

membranes common in tissue engineering. 

Ahearne et al. [18] present an indentation method 

for characterizing the viscoelastic properties of alginate 

and agarose hydrogel based constructs, which are 

often used as a model system of soft biological tissues. 

A sensitive long working distance microscope was 

used for measuring the time-dependent deformation of 

the thin circular hydrogel membranes under a constant 

load. The deformation of the constructs was measured 

laterally. This is a convenient technique for soft tissue 

engineering that allows measuring mechanical 

properties of hydrogels in a non-destructive, online and 

real time fashion. 

MECHANICAL ANALYSIS 

The mechanical behavior of polymeric biomaterial 

scaffolds for tissue engineering applications is best 

understood using the theories of rubber elasticity. 

These theories are based on time-independent and 

time-dependent recovery of the chain orientation and 

structure, respectively. By using theories to describe 

the mechanical behavior, it is possible to analyze the 

polymeric structure. It is also possible, and sometimes 

necessary, to use theories to extrapolate mechanical 

properties to conditions in which the material may be 

used. In many instances it is not possible to test the 

scaffolds under the exact conditions in which the 

device is used. For these applications it is of particular 

importance to use theories to extrapolate properties to 

these conditions [12]. 

Rubbers are materials that respond to stresses with 

nearly instantaneous and fully reversible deformation. 

General characteristics of rubber elastic behavior 

include high extensibility generated by low mechanical 

stress, complete recovery after removal of the 

deformation, and high extensibility and recovery that 

are driven by entropic rather than enthalpic changes 

[121]. 

The elasticity of a material is typically characterized 

by its stress–strain relationship, where the stress is the 

force acting per unit area and the strain is the fractional 

change in length of the specimen. In the case of 

uniaxial stress, a material might exhibit a stress–strain 

relation linear (or nearly so) for small strains, but 

becomes non-linear as strains increase above a certain 

level. The elastic, or Young’s, modulus E is defined as 

the ratio of stress to strain; it would be constant for 

small strains, but eventually would increase as the 

material experiences increasing strain. The elastic 

modulus of most biologic tissues is highly non-linear 

[119], hence the scaffolds designed for tissue 

engineering applications are to exhibit an increasing 

elastic modulus for higher strains (Figure 1).  

  

Figure 1: Schematic diagram of a typical stress-strain curve 
for an engineering plastic and a soft tissue showing fiber 
morphology changes responsible for the increment in the 
elastic modulus E. 

Being the scaffolds complex materials, it may 

happen, besides elastic deformation, that plastic 

deformation comes into play; the material experiences 

an irreversible deformation, usually at high levels of 

stress, and fails to return to its original length when the 

stress is removed. 

In the analysis of the indentation test for 

freestanding films presented by Scott et al. [116] where 



An Overview of Mechanical Tests for Polymeric Biomaterial Journal of Research Updates in Polymer Science, 2015, Vol. 4, No. 4      173 

the elasticity of the film is the primary concern, the 

relevant variables are load magnitude P, total 

deflection of indenter , freestanding span radius a, 

indenter radius R, and film thickness h; the relevant 

material properties are elastic modulus E and the 

Poisson’s ratio v. The relationship h/a allows 

determining the mechanical response of the film that is 

if the film will behave as a plate, as a membrane or will 

exhibit a behavior somewhere in between. The analysis 

for the plate regime was limited to small deformations 

to determine the elastic modulus. When modeling the 

total deflection of the indenter for the case of relatively 

soft materials the authors considered necessary to 

account for two contributions: the overall plate 

deflection of the clamped circular film and the indenter 

penetration to the plate since both deflections are 

comparable in magnitude. The total deflection of the 

indenter was then estimated by treating the system as 

two springs in series, in which case the penetration of 

the indenter and deflection of the plate superpose: 

=
9P2

16RE*
2

1/3

+
3Pa2 1 v2( )
4 Eh3

         (1) 

where E* is defined as a weighted average of 

properties of the indenter (1) and the plate (2)  

1

E*
=
1 v1
E1

+
1 v2
E2

          (2) 

On the other hand, in the analysis for the membrane 

regime, they present two theoretical models for the 

membrane regime; one corresponds to a modified 

version of the classical Schwerin solution for point 

loads, while the other explicitly deals with contact. For 

the load–deflection relationship, the modified version of 

the classical Schwerin point-load solution for 

membranes with v = 1/3 is:  

= f v( )a
P

Eah

1
3

          (3) 

where 

f (v) 1.049 0.146v 0.158v2          (4) 

For a more accurate determination of the load–

deflection relationship, the authors use the following 

equation for a membrane with a Poisson = 1/2, zero 

pre-strain, small rotations, and negligible radial 

displacements compared with downward 

displacements:  

R
=
16

9

1
3 a

R

3
4 P

EhR

1
3

         (5) 

Both equations have the same power-law 

relationship between load and displacement, but a 

different dependence on span and indenter radius.  

For extremely soft samples, an adhesive indentation 

test is preferred. A theoretical analysis using linear 

elasticity was presented by Ju et al. [117] to fit the load-

displacement curve (compliance) originated in an 

adhesive indentation test and thus estimated the 

Young’s modulus of a micro-fabricated silicone rubber 

membrane. In the analysis it is considered that when 

an external force F is applied to a clamped square film 

via a cylindrical punch, the membrane deforms to a 

central deflection w0. Since the diameter of the 

cylindrical punch is small compared to the film 

dimension a, the indentation force is appropriately 

approximated to a central point force. A simple elastic 

model based on pure bending of a square plate 

clamped at the edges gives as a result that at 

equilibrium, the linear constitutive relation is given by  

w0 =
Fa2            (6) 

where  is the numerical factor depending on the 

membrane geometry, loading type (e.g. central load), 

and support configuration (e.g. clamped edges). The 

parameter  is the bending rigidity defined by the 

authors to be  

=
Eh3

12 1 2( )
           (7) 

with E and the elastic modulus and the Poisson’s ratio, 

respectively. Their analysis is valid only for small-strain 

deformation whereby stretching stress is negligible. 

To determine the elastic modulus of fully swollen 

hydrogels, Ahearne et al. [18] present one application 

of the large deformation theory based on Mooney–

Rivlin elasticity. The authors have already determined 

that fully swollen hydrogels exhibit rubber like 

characteristics and that their mechanical behaviors can 

be characterized using Mooney–Rivlin equations. The 

application of the model basically consist of describing 

the deformation of a membrane by monitoring the 

central displacement  due to the weight w of a ball of 

radius R to find the Young’s modulus E of the 

membrane of thickness h and radius a.  
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6w

EhR
= 0.075

R

2

+ 0.78
R

         (8) 

This equation has been developed for a ball and a 

sample with the dimensional characteristics of a/R = 5 

and /R  1.7. This model also assumes that for the 

membrane the ratio h/a is small and the deformation is 

large, hence stretching dominates over bending. 

Illustrating another example for the application of 

the Mooney-Rivlin equations, Susilo et al. [57] worked 

on a three dimensional model of a collagen fibril matrix 

this time undergoing uniaxial tensile stress. They run 

simulations based on a unit cell model where fibrils 

were arranged to simulate an extra cellular matrix 

testing both the general case of Mooney-Rivlin 

equations presented by Ahearne et al. [18] and the 

particular case of constitutive equations for neo-

Hookean materials where the higher order terms could 

be neglected. 

Since hydrogel scaffolds for tissue engineering are 

typically water-swollen to maintain proliferating cells, it 

is necessary to account for the rubber elasticity and 

swelling phenomena simultaneously [9]. Peppas and 

Merrill [122] modified the original theories for polymer 

elasticity developed by Flory [123] to account for 

hydrogels tested in the presence of a solvent. The 

applied stress  as a function of elongation  is given by 

=
RT

Mc

1
2Mc

MN

1
2

v2,s
v2,r

1/3

        (9) 

where  is the polymer density, R is the universal 

gas constant, T is absolute temperature; relevant 
parameters to polymer structure are the average 

molecular weight between crosslinks Mc  and the 

number average molecular weight MN ; experimental 

values are the swollen polymer volume fractions 2,i. 

This equation works well for small deformation test. If 
predictions at higher elongations are required, the 
Mooney-Rivlin equation modified to better describe the 
behavior of swollen hydrogels presented by Anseth et 
al. [12] is recommended 

s = 2C1vr

1/3 1
2 + 2C2vr

5/3 1
1
3       (10) 

where C1 and C2 are fitting constants. 

CLOSING REMARKS 

 Generally, a biomaterial polymeric scaffold for 

tissue engineering applications should have sufficient 

mechanical strength to maintain integrity until the new 

tissue regenerates, maintain the space for cell 

ingrowths and nutrient transport in vitro and support 

physiological loadings in vivo. The scaffold should 

match its mechanical properties to that of the native 

tissue to both prevent stress shielding and give the 

cells proper mechanical cues as the ones they normally 

receive in their native environment. Although there are 

plenty of works on mechanical characterization of 

biopolymeric materials and tissue engineering devices, 

really few reports are on modeling the performance of 

such devices for a bottom-up design. However, what 

there are missing appropriate enough models that 

relate the scaffold structure and material properties, to 

their mechanical behavior. The establishment of these 

relationships will provide the foundation to develop 

better polymeric systems to help design suitable 

customized scaffolds. 
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