Comprehensive Characterization of Raw and Oxalic Acid Treated Ripen Cellulosic Biofiber from Areca Catechu Inflorescence as Substitute for Harmful Synthetic Products

Authors

  • Srinivas Arabilachi Department of Mechanical Engineering, Dr. T Thimmaiah Institute of Technology, KGF-563120, Visveswaraya Technological University - Belagavi, Karnataka, India and Department of Mechanical Engineering, UBDT College of Engineering, Davangere-577004, Visveswaraya Technological University – Belagavi, Karnataka, India
  • Sreenivasa Challakere Govindappa Department of Mechanical Engineering, UBDT College of Engineering, Davangere-577004, Visveswaraya Technological University – Belagavi, Karnataka, India
  • Bharath Kurki Nagaraj Department of Mechanical Engineering, GM Institute of Technology, Davangere-577006, Visveswaraya Technological University – Belagavi, Karnataka, India and Department of Engineering Design, GM University, Davangere-577006, Karnataka, India
  • Brailson Mansingh Bright Department of Mechanical Engineering, Sri Ramakrishna Engineering College, Coimbatore - 641022, Tamilnadu, India
  • Joseph Selvi Binoj Institute of Mechanical Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai-602105, Tamilnadu, India https://orcid.org/0000-0002-7222-4463

DOI:

https://doi.org/10.6000/1929-5995.2025.14.04

Keywords:

Oxalic acid treatment, Optimization, Pollution Management, Sustainability

Abstract

The inherent characteristics of natural fibers include a low density and a high strength-to-weight ratio, making them promising candidates for lightweight applications. The mechanical features of these strands are prejudiced by their chemical compositions and the cross-sectional area being the most variable factor affecting strength. In this research, strands were obtained by processing the ripen inflorescence of Areca tree and subjected to treatment with an oxalic acid (C2H2O4) solution to enhance their properties. The extracted fibers underwent examination for chemical, physical, mechanical, and morphological properties. The study findings indicate that fibers treated with a 4 wt.% C2H2O4 solution for 60 min exhibit superior properties. The strands segregated from the ripen inflorescence of areca tree treated with 4 wt.% C2H2O4 solution for 60 min exhibited a rise in cellulose proportion by 26.7%, tensile strength by 13.5%, crystallinity index by 16.6%, thermal endurance by 6.3% and appreciable surface roughness compared to the untreated fibers as viewed through Scanning Electron Microscope (SEM). The Fourier Transform Infrared (FTIR) analysis endorsed the observations of chemical analysis. The characterization of areca inflorescence fibers in this study highlights significant advantages for the advancement of composite materials.

References

Alsubari S, Zuhri MYM, Sapuan SM, Ishak MR, Ilyas RA, Asyraf MRM. Potential of natural fiber reinforced polymer composites in sandwich structures: A review on its mechanical properties. Polymers 2021; 13: 1-20. DOI: https://doi.org/10.3390/polym13030423

Karimah A, Ridho MR, Munawar SS, Adi DS, Damayanti R, Subiyanto B, Fatriasari W, Fudholi A. A review on natural fibers for development of eco-friendly bio-composite: characteristics, and utilizations. J Mater Res Technol 2021; 13: 2442-2458. DOI: https://doi.org/10.1016/j.jmrt.2021.06.014

Vigneshwaran S, Sundarakannan R, John KM, Joel Johnson RD, Prasath KA, Ajith S, Arumugaprabu V, Uthayakumar M. Recent advancement in the natural fiber polymer composites: A comprehensive review. J Clean Prod 2020; 277: 124109. DOI: https://doi.org/10.1016/j.jclepro.2020.124109

Asim M, Paridah MT, Chandrasekar M, Shahroze RM, Jawaid M, Nasir M, Siakeng R. Thermal stability of natural fibers and their polymer composites. Iran Polym J 2020; 29: 625-648. DOI: https://doi.org/10.1007/s13726-020-00824-6

Silva G, Kim S, Aguilar R, Nakamatsu J. Natural fibers as reinforcement additives for geopolymers - A review of potential eco-friendly applications to the construction industry. Sustain Mater Technol 2020; 23: e00132. DOI: https://doi.org/10.1016/j.susmat.2019.e00132

Jiratti T, Vijay R, Vinod A, Techawinyutham L, Srisuk R, Yorseng K, Sanjay MR, Siengchin S. Lignocellulose sustainable composites from agro-waste Asparagus bean stem fiber for polymer casting applications: Effect of fiber treatment. Int J Biol Macromol 2024; 278: 134884. DOI: https://doi.org/10.1016/j.ijbiomac.2024.134884

Andrea VL, Panagiota R, Nathalie M, Gérard M, Alain D. Oxidation treatments to convert paper-grade Eucalyptus kraft pulp into micro fibrillated cellulose. Carbohydr Polym 2022; 296: 119946. DOI: https://doi.org/10.1016/j.carbpol.2022.119946

Brailson Mansingh B, Binoj JS, Quan Z, Eugene WWL, Amornsakchai T, Hassan SA, Kheng LG. Characterization and Performance of Additive Manufactured Novel bio-waste Polylactic acid eco-friendly Composites. J Polym Environ 2023; 31: 2306-2320. DOI: https://doi.org/10.1007/s10924-023-02758-5

Haradhan K, Kazuharu H, Chun-Won K. Ammonium persulfate treatment on carbohydrate polymers and lignin of wood improved sound absorption capacity. Int J Biol Macromol 2022; 205: 626-637. DOI: https://doi.org/10.1016/j.ijbiomac.2022.02.075

Manash PM, Shishir S, Vijay P. Optimizing the oxalic acid treatment of cellulosic Himalayan nettle fibre for reinforcement in polymer composites. Carbohydr Polym 2022; 296: 119937. DOI: https://doi.org/10.1016/j.carbpol.2022.119937

Vijay R, Sathyamoorthy G, Vinod A, Lenin Singaravelu D, Sanjay MR, Siengchin S. Effective utilization of surface-processed/untreated Cardiospermum halicababum agro-waste fiber for automobile brake pads and its tribological performance. Tribol Int 2024; 197: 109776. DOI: https://doi.org/10.1016/j.triboint.2024.109776

Jiratti T, Vinod A, Vijay R, Sanjay MR, Siengchin S. Characterization of novel natural cellulose fiber from Ficus macrocarpa bark for lightweight structural composite application and its effect on chemical treatment Heliyon 2024; 10(9): e30442. DOI: https://doi.org/10.1016/j.heliyon.2024.e30442

Rajeshkumar G, Arvindh Seshadri S, Devnani GL, Sanjay MR, Siengchin S, Prakash Maran J, Al-Dhabi NA, Karuppiah P, Mariadhas VA, Sivarajasekar N, Ronaldo Anuf A. Environment friendly, renewable and sustainable poly lactic acid (PLA) based natural fiber reinforced composites - A comprehensive review. J Clean Prod 2021; 310: 127483. DOI: https://doi.org/10.1016/j.jclepro.2021.127483

Binoj JS, Jaafar M, Brailson Mansingh B, Bharathiraja G. Extraction and characterization of novel cellulosic biofiber from peduncle of Areca catechu L. biowaste for sustainable biocomposites. Biomass Conv Bioref 2024; 14: 20359-20367. DOI: https://doi.org/10.1007/s13399-023-04081-4

Khalid MY, Al Rashid A, Arif ZU, Ahmed W, Arshad H, Zaidi AA. Natural fiber reinforced composites: Sustainable materials for emerging applications. Results Eng 2021; 11: 100263. DOI: https://doi.org/10.1016/j.rineng.2021.100263

Bharath KN, Binoj JS, Brailson Mansingh B, Manjunath GB, Raghu GV, Siengchin S, Sanjay MR. Effect of stacking sequence and interfacial analysis of biomass sheep wool/glass fiber reinforced epoxy biocomposites. Biomass Conv Bioref 2024; 14: 17533-17542. DOI: https://doi.org/10.1007/s13399-023-03918-2

Anne Kavitha S, Krishna Priya R, Krishna Prakash A, Siva A, Maureira-Carsalade N, Roco-Videla A. Investigation on Properties of Raw and Oxalic acid Treated Novel Cellulosic Root Fibres of Zea Mays for Polymeric Composites Polymers 2023; 15: 1802-1823. DOI: https://doi.org/10.3390/polym15071802

Michaela Olisha SL, Emmanuel Victor DB, Julius LL, Jr. Oxalic acid-enzymatic treatment of Bambusa blumeana textile fibers for natural fiber-based textile material production. Ind Crop Prod 2023; 194: 116268. DOI: https://doi.org/10.1016/j.indcrop.2023.116268

Maguteeswaran R, Prathap P, Satheeshkumar S, Madhu S. Effect of oxalic acid treatment on novel natural fiber extracted from the stem of Lankaran acacia for polymer composite applications. Biomass Conv Bioref 2024; 14: 8091-8101. DOI: https://doi.org/10.1007/s13399-023-04189-7

Vijay R, Vinod A, James Dhilip JD, Sundarrajan D, Sanjay MR, Siengchin S. Influence of alkali-treated and raw Zanthoxylum acanthopodium fibers on the mechanical, water resistance, and morphological behavior of polymeric composites for lightweight applications. Biomass Conv Bioref 2024; 14: 24345-24357. DOI: https://doi.org/10.1007/s13399-023-04240-7

Juvvi SNR, Melvin VD, Kumaran P. Comprehensive characterization of raw and oxalic acid (C2H2O4) treated natural fibers from Symphirema involucratum stem. Int J Biol Macromol 2021; 186: 886-896. DOI: https://doi.org/10.1016/j.ijbiomac.2021.07.061

Baskara Sethupathi P, Sundaram M, Palani V, Vijay R, James Dhilip JD, Anish K. Characterization of silane treated and untreated Citrullus lanatus fibers based eco-friendly automotive brake friction composites. J Nat Fibers 2022; 19(16): 13273-13287. DOI: https://doi.org/10.1080/15440478.2022.2089431

Vijay R, Sathyamoorthy G, Vinod A, Lenin Singaravelu D, Sanjay MR, Siengchin S. Sustainable characterization of brake pads using raw/silane‐treated Mimosa pudica fibers for automobile applications. Polym Compos 2024; 45(11): 10204-10219. DOI: https://doi.org/10.1002/pc.28467

Li M, Pu Y, Thomas VM, Yoo CG, Ozcan S, Deng Y, Nelson K, Ragauskas AJ. Recent advancements of plant-based natural fiber-reinforced composites and their applications. Compos B Eng 2020; 200: 108254. DOI: https://doi.org/10.1016/j.compositesb.2020.108254

Hariharan G, Krishnamachary PC, Binoj JS, Brailson Mansingh B. Influence of SiC Nanoparticles Reinforcement in Areca/Tamarind Hybrid Biopolymer Composites: Thermo-mechanical, Tribological and Morphological Features. J Bionic Eng 2023; 20: 1723-1736. DOI: https://doi.org/10.1007/s42235-023-00341-1

Binoj JS, Jaafar M, Brailson Mansingh B, Koya Pulikkal A. Comprehensive investigation of Areca catechu tree peduncle biofiber reinforced biocomposites: influence of fiber loading and surface modification. Biomass Conv Bioref 2024; 14: 23001-23013. DOI: https://doi.org/10.1007/s13399-023-04182-0

Brailson Mansingh B, Binoj JS, Minther Singh AAM, Francis Britto AS. Influence of SiC nanoparticles on properties of alkali-treated areca fruit husk fiber/hybrid polymer composites. J Appl Polym Sci 2023; 140(10): e53591. DOI: https://doi.org/10.1002/app.53591

Saikrishnan G, Yoganjaneyulu G, Jegan Mohan SR, Vijay R, James Dhilip JD. Influence of stacking sequence on the mechanical and water absorption characteristics of areca sheath-palm leaf sheath fibers reinforced epoxy composites J Nat Fibers 2022; 19(5): 1670-1680. DOI: https://doi.org/10.1080/15440478.2020.1787921

Hanan UA, Hassan SA, Wahit MU, Binoj JS, Brailson Mansingh B, Kheng LG. Experimentation, optimization, and predictive analysis of compressive behavior of montmorillonite nano-clay/unsaturated polyester composites. Polym Compos 2023; 44: 241-251. DOI: https://doi.org/10.1002/pc.27041

Anish K, Vijay R, Lenin Singaravelu D, Sanjay MR, Siengchin S, Jawaid M, Alamry KA, Asiri AM. Extraction and characterization of cellulose fibers from the stem of momordica charantia. J Nat Fibers 2022; 19(6): 2232-2242. DOI: https://doi.org/10.1080/15440478.2020.1807442

Keya KN, Kona NA, Koly FA, Maraz KM, Islam MN, Khan RA. Natural fiber reinforced polymer composites: history, types, advantages, and applications. Mater Eng Res 2019; 1: 69-87. DOI: https://doi.org/10.25082/MER.2019.02.006

Balla VK, Kate KH, Satyavolu J, Singh P, Tadimeti JGD. Additive manufacturing of natural fiber reinforced polymer composites: Processing and prospects. Compos B Eng 2019; 174: 106956. DOI: https://doi.org/10.1016/j.compositesb.2019.106956

Mazzanti V, Pariante R, Bonanno A, Ruiz de Ballesteros O, Mollica F, Filippone G. Reinforcing mechanisms of natural fibers in green composites: Role of fibers morphology in a PLA/hemp model system. Compos Sci Technol 2019; 180: 51-59. DOI: https://doi.org/10.1016/j.compscitech.2019.05.015

Sarikaya E, Çallioğlu H, Demirel H. Production of epoxy composites reinforced by different natural fibers and their mechanical properties. Compos B Eng 2019; 167: 461-466. DOI: https://doi.org/10.1016/j.compositesb.2019.03.020

Dao C, Beibei W, Yuxia C, Shengcheng Z, Chenxin W, Runmin X, Junkui G, Yan L, Lanlan S, Yong G. Characterization of potential cellulose fiber from Luffa vine: A study on physicochemical and structural properties Int J Biol Macromol 2020; 164: 2247-2257. DOI: https://doi.org/10.1016/j.ijbiomac.2020.08.098

Vijay R, James Dhilip JD, Gowtham S, Harikrishnan SBMA, Chandru B, Amarnath M, Anish K. Characterization of natural cellulose fiber from the barks of vachellia farnesiana. J Nat Fibers 2022; 19(4): 1343-1352.

Brailson Mansingh B, Binoj JS, Abu Hassan S, Eugene Wong WL, Suryanto H, Shengjie L, Lim Goh K. Feasibility study on thermo-mechanical performance of 3D printed and annealed coir fiber powder/polylactic acid eco-friendly biocomposites. Polym Compos 2024; 45(7): 6512-6524. DOI: https://doi.org/10.1002/pc.28214

Francis Britto AS, Rajesh Prabha N, Brailson Mansingh B, David R, Minther Singh AAM, Binoj JS. Extraction and chara-cterization of Dypsis lutescens peduncle fiber: agro-waste to probable reinforcement in biocomposites—a sustainable approach. Biomass Conv Bioref 2025; 15: 2275-2284. DOI: https://doi.org/10.1007/s13399-023-04950-y

Brailson Mansingh B, Binoj JS, Siengchin S, Sanjay MR. Influence of surface treatment on properties of Cocos nucifera L. Var typica fiber reinforced polymer composites. J Appl Polym Sci 2023; 140: e53345. DOI: https://doi.org/10.1002/app.53345

Wenbin X, Hanpeng W, Wei W, Fubin H, Zihan B. Macro-Micro Damage and Failure Behavior of Creep Gas-Bearing Coal Subjected to Drop Hammer Impact. Nat Resour Res 2024; 33: 707-725. DOI: https://doi.org/10.1007/s11053-023-10302-4

Ji D, Zhao H, Vanapalli SK. Damage evolution and failure mechanism of coal sample induced by impact loading under different constraints. Nat Resour Res 2023; 32: 619-647. DOI: https://doi.org/10.1007/s11053-022-10156-2

Thooyavan Y, Kumaraswamidhas LA, Edwin Raj RD, Binoj JS, Brailson Mansingh B, Francis Britto AS, Alamry A. Modelling and Characterization of Basalt/Vinyl Ester/SiC Micro- and Nano-hybrid Biocomposites Properties Using Novel ANN-GA Approach. J Bionic Eng 2024; 21: 938-952. DOI: https://doi.org/10.1007/s42235-024-00482-x

Merve ST, Emine O, Hüseyin I, Emircan O, Hüseyin U, Mustafa Ş. Characterization of chemically treated waste wood fiber and its potential application in cementitious composites. Cem Concr Compos 2023; 137: 104938. DOI: https://doi.org/10.1016/j.cemconcomp.2023.104938

Samant L, Alka G, Jessen M, Seiko J, Sabu T. Effect of surface treatment on flax fiber reinforced natural rubber green composite. J Appl Polym Sci 2023; 140: e53651. DOI: https://doi.org/10.1002/app.53651

Shanmugasundaram N, Rajendran I, Ramkumar T. Characterization of untreated and oxalic acid treated new cellulosic fiber from an Areca palm leaf stalk as potential reinforcement in polymer composites. Carbohydr Polym 2018; 195: 566-575. DOI: https://doi.org/10.1016/j.carbpol.2018.04.127

Jaya Sheeba KR, Jagadeesh KA, Jeyaprakash D, Anne KS, Sutha S, Sundaram A, Manoharan V, Moonyong L, Krishna Priya R. Physico-chemical and extraction properties on oxalic acid-treated Acacia pennata fiber. Environ Res 2023; 233: 116415. DOI: https://doi.org/10.1016/j.envres.2023.116415

Tamil Moli L, Mohamed Thariq HS, Qumrul A, Mohammad J, Jesuarockiam N, Md Ain Umaira S, Lee Seng H. Characterization of oxalic acid treated new cellulosic fibre from Cyrtostachys renda. J Mater Res Technol 2020; 9: 3537-3546. DOI: https://doi.org/10.1016/j.jmrt.2020.01.091

Ganapathy T, Senthamaraikannan P, Murugeswari K, Arivazhagan S, Santhoshkumar M. Suitability Evaluation of Raw and Oxalic acid-Treated Cannonball Fibers as Reinforcement in Polymer Composites. Waste Biomass Valorization 2024; 15: 5125-5136. DOI: https://doi.org/10.1007/s12649-024-02514-3

Ganapathy T, Sathiskumar R, Senthamaraikannan P, Saravanakumar SS, Anish K. Characterization of raw and oxalic acid treated new natural cellulosic fibres extracted from the aerial roots of banyan tree. Int J Biol Macromol 2019; 138: 573-581. DOI: https://doi.org/10.1016/j.ijbiomac.2019.07.136

Beschi Selvan SL, Francis Britto AS, Brailson Mansingh B, Binoj JS. Extensive characterization of optimally treated Licuala grandis leaf sheath fiber for possible bio-reinforcement in polymer composites. J Appl Polym Sci 2024; 141(45): e56195. DOI: https://doi.org/10.1002/app.56195

Ponnusamy DA, Gajendiran H, Brailson Mansingh B, Binoj JS. Diffractional, spectroscopical, morphological, and thermal analysis of pretreated/enzyme modified cellulosic Cocos nucifera L. peduncle fiber. Biomass Conv Bioref 2025; 15: 3115-3126. DOI: https://doi.org/10.1007/s13399-023-05076-x

Rathinavelu R, Paramathma BS. Examination of characteristic features of raw and oxalic acid-treated cellulosic plant fibers from Ventilago maderaspatana for composite reinforcement. Biomass Conv Bioref 2023; 13: 4413-4425. DOI: https://doi.org/10.1007/s13399-022-03461-6

Vijay R, Kumaran P, Pottathil S, James Dhilip JD, Yoganjaneyulu G, Saikrishnan G. Influence of Parthenium hysterophorus and Impomea pes-caprae fibers stacking sequence on the performance characteristics of epoxy composites. J Nat Fibers 2022; 19(12): 4456-4466. DOI: https://doi.org/10.1080/15440478.2020.1863292

Manivel MV, Natrayan L, Kaliappan S, Pravin PP. Grape stalk cellulose toughened plain weaved bamboo fiber-reinforced epoxy composite: load bearing and time-dependent behavior. Biomass Conv Bioref 2024; 14: 14317-14324. DOI: https://doi.org/10.1007/s13399-022-03702-8

Venugopal A, Boominathan SK. Physico-chemical, thermal and tensile properties of oxalic acid-treated Acacia concinna fiber. J Nat Fibers 2022; 19: 3093-3108. DOI: https://doi.org/10.1080/15440478.2020.1838998

Cornelia HH, Serna-Loaiza S, Irmgard W, Luisa S, Ayse Nur K, Zelaya-Lainez L, Josef F, Hinrich G, Ulrich H, Anton F, Michael H. Comparison of coupled chemical pretreatment and mechanical refining of spruce sawdust: fiber network properties and initial production of lignin-bonded biocomposites. Biomass Conv Bioref 2024; 14: 15469-15482. DOI: https://doi.org/10.1007/s13399-023-03796-8

Binoj JS, Jaafar M, Brailson Mansingh B, Raghu R. Viscoelastic and heat-resistant behavior of surface-treated areca fruit husk fiber-reinforced polymer composites. Iran Polym J 2023; 32: 841-853. DOI: https://doi.org/10.1007/s13726-023-01169-6

Senthamaraikannan P, Saravanakumar SS. Effect of Cocos nucifera shell powder on mechanical and thermal properties of Mucuna atropurpurea stem fibre-reinforced polyester composites. Biomass Conv Bioref 2023; 13: 11275-11294. DOI: https://doi.org/10.1007/s13399-022-03621-8

Baskaran PG, Kathiresan M, Pandiarajan P. Effect of oxalic acid-treatment on structural, thermal, tensile properties of Dichrostachys cinerea bark fiber and its composites. J Nat Fibers 2022; 19: 433-449. DOI: https://doi.org/10.1080/15440478.2020.1745123

Syafri E, Jamaluddin, Nasmi Herlina S, Melbi M, Putri A, Rushdan AI. Isolation and characterization of cellulose nanofibers from Agave gigantea by chemical-mechanical treatment. Int J Biol Macromol 2022; 200: 25-33. DOI: https://doi.org/10.1016/j.ijbiomac.2021.12.111

Prithiviraj M, Muralikannan R. Investigation of optimal oxalic acid-treated perotis indica plant fibers on physical, chemical, and morphological properties. J Nat Fibers 2022; 19: 2730-2743. DOI: https://doi.org/10.1080/15440478.2020.1821291

Fan L, Tianxuan H, Guoqing W, Yiju T, Meiqi Y, Lizhen Z. Mechanical Properties and Fractal Characteristics of Fractured Coal Under Different Gas Pressures. Nat Resour Res 2024; 33: 793-812. DOI: https://doi.org/10.1007/s11053-023-10305-1

Palai BK, Sarangi SK. Characterization of untreated and oxalic acidzed Eichhornia crassipes fibers and its composites. J Nat Fibers 2020; 19: 3809-3824. DOI: https://doi.org/10.1080/15440478.2020.1848729

Hendri H, Jamasri, Kusmono. A Preliminary Study: Influence of Oxalic acid Treatment on Physical and Mechanical Properties of Agel Leaf Fiber (Corypha gebanga). Appl Mech Mat 2016; 842: 61-66. DOI: https://doi.org/10.4028/www.scientific.net/AMM.842.61

Yao Q, Zheng C, Shang X, Yan L, Shan C, Wang W. Evolution of mechanical and acoustic emission characteristics of coal samples under different immersion heights. Nat Resour Res 2023; 32: 2273-2288. DOI: https://doi.org/10.1007/s11053-023-10242-z

Yugesh MT, Saroj KS. Characterization of raw and oxalic acid treated cellulosic Grewia Flavescens natural fiber. Int J Biol Macromol 2022; 209: 1933-1942. DOI: https://doi.org/10.1016/j.ijbiomac.2022.04.169

Maria G, Pereira-Rojas J, Villanueva I, Agüero B, Iris S, Ingrid V, Blass D, Javier H, Gleen R, Henry L, Haydn B, Juan P. Preparation and characterization of cellulose fibers from Meghatyrsus maximus: Applications in its chemical derivatives. Carbohydr Polym 2022; 296: 119918. DOI: https://doi.org/10.1016/j.carbpol.2022.119918

Vijay R, Jafrey DJD, Gowtham S, Harikrishnan S, Chandru B, Amarnath M, Anish K. Characterization of natural cellulose fiber from the barks of Vachellia farnesiana. J Nat Fibers 2022; 19: 1343-1352. DOI: https://doi.org/10.1080/15440478.2020.1764457

Sabarinathan P, Rajkumar K, Annamalai VE, Vishal K. Characterization on chemical and mechanical properties of silane treated fish tail palm fibres. Int J Biol Macromol 2020; 163: 2457-2464. DOI: https://doi.org/10.1016/j.ijbiomac.2020.09.159

Umashankaran M, Gopalakrishnan S. Effect of sodium hydroxide treatment on physico-chemical, thermal, tensile and surface morphological properties of Pongamia Pinnata L. bark fiber. J Nat Fibers 2021; 18: 2063-2076. DOI: https://doi.org/10.1080/15440478.2019.1711287

Li HQ, Feng ZJ, Zhang CP. Characterization of coal pore structure and matrix compressibility by water vapor injection. Nat Resour Res 2022; 31(5): 2869-2883. DOI: https://doi.org/10.1007/s11053-022-10109-9

Arul MMA, Ravindran D, Sundara Bharathi SR, Indran S, Suganya Priyadharshini G. Characterization of surface-modified natural cellulosic fiber extracted from the root of Ficus religiosa tree. Int J Biol Macromol 2020; 156: 997-1006. DOI: https://doi.org/10.1016/j.ijbiomac.2020.04.117

Linhu D, Xiaoshuai H, Lihua C, Yiming C, Zhe L, Jingquan H, Shuijian H, Shaohua J. Characterization of natural fiber from manau rattan (Calamus manan) as a potential reinforcement for polymer-based composites. J Bioresour 2022; 7: 190-200. DOI: https://doi.org/10.1016/j.jobab.2021.11.002

Changhao S, Qiangling Y, Shenggen C, Qiang X, Chuangkai Z, Ze X, Yinghu L, Lun Y. Fracture development Patterns and Micro-Macrostructural Fractal Characteristics of Acid-Base Coal Samples. Nat Resour Res 2024; 33: 831-865. DOI: https://doi.org/10.1007/s11053-024-10313-9

Downloads

Published

2025-06-09

How to Cite

Arabilachi, S. ., Govindappa, S. C. ., Nagaraj, B. K. ., Bright, B. M. ., & Binoj, J. S. . (2025). Comprehensive Characterization of Raw and Oxalic Acid Treated Ripen Cellulosic Biofiber from Areca Catechu Inflorescence as Substitute for Harmful Synthetic Products. Journal of Research Updates in Polymer Science, 14, 23–40. https://doi.org/10.6000/1929-5995.2025.14.04

Issue

Section

Articles