Polymer Nanocomposite Coatings for CO2 Pipeline Corrosion Control: A Comprehensive Review

Authors

  • Jerome Oloto Faculty of Engineering and Applied Science, 3737 Wascana Parkway, University of Regina, Regina, SK, Canada
  • Simbarashe Kapfudzaruwa Faculty of Engineering and Applied Science, 3737 Wascana Parkway, University of Regina, Regina, SK, Canada
  • S.D. Jacob Muthu Faculty of Engineering and Applied Science, 3737 Wascana Parkway, University of Regina, Regina, SK, Canada

DOI:

https://doi.org/10.6000/1929-5995.2025.14.08

Keywords:

Polymer, Polymer nanocomposite, Coating methods, Corrosion Control, CO2 with impurities

Abstract

Carbon dioxide (CO2) is the most significant greenhouse gas, accounting for 77% of global warming and is produced by the combustion of fossil fuels in industries. Carbon capture, storage and utilization (CCUS) is a possible pathway in achieving the emission reduction target set by the Canadian government in 2050. The transportation of the captured CO2 to storage is a critical factor in the CCUS process, which is frequently hindered by corrosion. The impurities in CO2 lead to corrosion risks, which are generally addressed using inhibitors, corrosion-resistant alloys, and polymer coatings in the oil and gas sector. However, CO2 corrosion is more complex than CO2 sweet corrosion. It is difficult to obtain a single inhibitor capable of mitigating CO2 corrosion in pipelines, and corrosion-resistant alloys are too expensive to be used throughout all sections of the pipeline. Polymers are employed as coatings. For gaseous and supercritical CO2, which leads to defects in the coatings, such as blisters and porosity. As a result, researchers have focused on using nanocomposite coatings to control CO2 corrosion. This review paper focused on the interactions of CO2 with impurities on polymer and polymer nanocomposites. In particular, the most commonly used clay and graphene polymer nanocomposites coatings and their interactions with CO2 were discussed. Further, the transport properties of CO2 through polymers and polymer nanocomposites and the interaction mechanism were analyzed. The paper concludes with the processing methods used for the polymer and polymer nanocomposite coatings.

References

Porter RT, Fairweather M, Pourkashanian M, Woolley RM. The range and level of impurities in CO2 streams from different carbon capture sources. International Journal of Greenhouse Gas Control 2015; 36: 161-74. DOI: https://doi.org/10.1016/j.ijggc.2015.02.016

Songolzadeh M, Soleimani M, Takht Ravanchi M, Songolzadeh R. Carbon dioxide separation from flue gases: a technological review emphasizing reduction in greenhouse gas emissions. The Scientific World Journal 2014; 2014(1): 828131. DOI: https://doi.org/10.1155/2014/828131

Onyebuchi VE, Kolios A, Hanak DP, Biliyok C, Manovic V. A systematic review of key challenges of CO2 transport via pipelines. Renewable and Sustainable Energy Reviews 2018; 81: 2563-83. DOI: https://doi.org/10.1016/j.rser.2017.06.064

Cavenati S, Grande CA, Rodrigues AE. Removal of carbon dioxide from natural gas by vacuum pressure swing adsorption. Energy & fuels 2006; 20(6): 2648-59. DOI: https://doi.org/10.1021/ef060119e

David J. Economic evaluation of leading technology options for sequestration of carbon dioxide (Doctoral dissertation, Massachusetts Institute of Technology), 2000.

Helwani Z, Wiheeb AD, Kim J, Othman MR. Improved carbon dioxide capture using metal reinforced hydrotalcite under wet conditions. International journal of greenhouse gas control 2012; 7: 127-36. DOI: https://doi.org/10.1016/j.ijggc.2012.01.007

Lin LY, Bai H. Continuous generation of mesoporous silica particles via the use of sodium metasilicate precursor and their potential for CO2 capture. Microporous and Mesoporous Materials 2010; 136(1-3): 25-32. DOI: https://doi.org/10.1016/j.micromeso.2010.07.012

D'Alessandro DM, Smit B, Long JR. Carbon dioxide capture: prospects for new materials. Angewandte Chemie International Edition 2010; 49(35): 6058-82. DOI: https://doi.org/10.1002/anie.201000431

Halseid M, Dugstad A, Morland B. Corrosion and bulk phase reactions in CO2 transport pipelines with impurities: review of recent published studies. Energy Procedia 2014; 63: 2557-69. DOI: https://doi.org/10.1016/j.egypro.2014.11.278

Pipitone G, Bolland O. Power generation with CO2 capture: Technology for CO2 purification. International journal of greenhouse gas control 2009; 3(5): 528-34. DOI: https://doi.org/10.1016/j.ijggc.2009.03.001

McCoy ST, Rubin ES. An engineering-economic model of pipeline transport of CO2 with application to carbon capture and storage. International journal of greenhouse gas control 2008; 2(2): 219-29. DOI: https://doi.org/10.1016/S1750-5836(07)00119-3

Witkowski A, Majkut M, Rulik S. Analysis of pipeline transportation systems for carbon dioxide sequestration. Archives of thermodynamics 2014; 35(1): 117-40. DOI: https://doi.org/10.2478/aoter-2014-0008

De Visser E, Hendriks C, Barrio M, Mølnvik MJ, de Koeijer G, Liljemark S, Le Gallo Y. Dynamis CO2 quality recommendations. International journal of greenhouse gas control 2008; 2(4): 478-84. DOI: https://doi.org/10.1016/j.ijggc.2008.04.006

Long A, Di X, Sun R, Sun X. Influencing factors of supercritical CO 2 transportation pipeline parameters. Oil & Gas Storage and Transportation 2013; 32(1): 15-9.

Wang H, Chen J, Li Q. A review of pipeline transportation technology of carbon dioxide. InIOP conference series: earth and environmental science 2019; 310(3): 032033). IOP Publishing. DOI: https://doi.org/10.1088/1755-1315/310/3/032033

Edwards RW, Celia MA. Infrastructure to enable deployment of carbon capture, utilization, and storage in the United States. Proceedings of the National Academy of Sciences 2018; 115(38): E8815-24. DOI: https://doi.org/10.1073/pnas.1806504115

Oei PY, Herold J, Mendelevitch R. Modeling a carbon capture, transport, and storage infrastructure for Europe. Environmental Modeling & Assessment 2014; 19: 515-31. DOI: https://doi.org/10.1007/s10666-014-9409-3

Young RJ, Lovell PA. Introduction to polymers. CRC press; 2011. DOI: https://doi.org/10.1201/9781439894156

Ansaloni L, Alcock B, Peters TA. Effects of CO2 on polymeric materials in the CO2 transport chain: A review. International journal of greenhouse gas control 2020; 94: 102930. DOI: https://doi.org/10.1016/j.ijggc.2019.102930

Takajo T, Takahara A, Kichikawa T. Surface modification of engineering plastics through swelling in supercritical carbon dioxide. Polymer journal 2008; 40(8): 716-24. DOI: https://doi.org/10.1295/polymj.PJ2007212

Jiménez A, Thompson GL, Matthews MA, Davis TA, Crocker K, Lyons JS, Trapotsis A. Compatibility of medical-grade polymers with dense CO2. The Journal of supercritical fluids 2007; 42(3): 366-72. DOI: https://doi.org/10.1016/j.supflu.2007.05.002

Sawan SP, Shieh YT, Su JH. Evaluation of the interactions between supercritical carbon dioxide and polymeric materials. Los Alamos, New Mexico: Los Alamos National Laboratory; 1994.

Sawan SP, Shieh YT, Su JH, Manivannan G, Spall WD. Evaluation of supercritical fluid interactions with polymeric materials. InSupercritical Fluid Cleaning 1998; pp. 121-161. William Andrew Publishing. DOI: https://doi.org/10.1016/B978-081551416-9.50008-2

Doroudiani S, Park CB, Kortschot MT. Effect of the crystallinity and morphology on the microcellular foam structure of semicrystalline polymers. Polymer Engineering & Science 1996; 36(21): 2645-62. DOI: https://doi.org/10.1002/pen.10664

Michaels AS, Bixler HJ. Solubility of gases in polyethylene. Journal of Polymer Science 1961; 50(154): 393-412. DOI: https://doi.org/10.1002/pol.1961.1205015411

Shieh YT, Su JH, Manivannan G, Lee PH, Sawan SP, Dale Spall W. Interaction of supercritical carbon dioxide with polymers. II. Amorphous polymers. Journal of applied polymer science 1996; 59(4): 707-17. DOI: https://doi.org/10.1002/(SICI)1097-4628(19960124)59:4<707::AID-APP16>3.3.CO;2-D

Bos A, Pünt IG, Wessling M, Strathmann H. CO2-induced plasticization phenomena in glassy polymers. Journal of membrane science 1999; 155(1): 67-78. DOI: https://doi.org/10.1016/S0376-7388(98)00299-3

Shieh YT, Su JH, Manivannan G, Lee PH, Sawan SP, Dale Spall W. Interaction of supercritical carbon dioxide with polymers. I. Crystalline polymers. Journal of applied polymer science 1996; 59(4): 695-705. DOI: https://doi.org/10.1002/(SICI)1097-4628(19960124)59:4<695::AID-APP15>3.3.CO;2-T

Olsen CH, Augestad M, Helland I, Moldestad BM, Eikeland MS. Diffusion of CO2 through polymer membranes. WIT Trans. Ecol. Environ. 2020; 245: 211-22. DOI: https://doi.org/10.2495/EID200201

Briscoe BJ, Savvas T, Kelly CT. “Explosive decompression failure” of rubbers: a review of the origins of pneumatic stress induced rupture in elastomers. Rubber chemistry and technology 1994; 67(3): 384-416. DOI: https://doi.org/10.5254/1.3538683

Davies OM, Arnold JC, Sulley S. The mechanical properties of elastomers in high-pressure CO2. Journal of materials science 1999; 34: 417-22. DOI: https://doi.org/10.1023/A:1004442614090

Paul S, Shepherd R, Woollin P. Selection of materials for high pressure CO2 transport. InThe Third International Forum on the Transportation of CO2 by Pipeline, paper 2012; 19: 1-16.

Dubois J, Grau E, Tassaing T, Dumon M. On the CO2 sorption and swelling of elastomers by supercritical CO2 as studied by in situ high pressure FTIR microscopy. The Journal of Supercritical Fluids 2018; 131: 150-6. DOI: https://doi.org/10.1016/j.supflu.2017.09.003

Lainé E, Grandidier JC, Benoit G, Omnès B, Destaing F. Effects of sorption and desorption of CO2 on the thermomechanical experimental behavior of HNBR and FKM O-rings-Influence of nanofiller-reinforced rubber. Polymer Testing 2019; 75: 298-311. DOI: https://doi.org/10.1016/j.polymertesting.2019.02.010

Abas AZ, Mohammed Nor A, Suhor MF, Mat SA. Non-metallic materials in supercritical CO2 systems. InOffshore Technology Conference Asia 2014; pp. OTC-24963. OTC. DOI: https://doi.org/10.2118/24963-MS

Kim SW, Sohn JS, Kim HK, Ryu Y, Cha SW. Effects of gas adsorption on the mechanical properties of amorphous polymer. Polymers 2019; 11(5): 817. DOI: https://doi.org/10.3390/polym11050817

Bierwagen G, Huang Y. Development of Protective Coatings for Co-Sequestration Processes and Pipelines. North Dakota State Univ., Fargo, ND (United States); 2011. DOI: https://doi.org/10.2172/1053783

Zakaria M, Sauri AS, Abas AZ, Mat S, Suhor MF, M Nor A, Kamarudin R. Assessment of Coatings in High pCO2 Environment for Pipeline Internal Coating Application. InOffshore Technology Conference Asia 2014; pp. OTC-25062. OTC. DOI: https://doi.org/10.4043/25062-MS

Md Sauri AS, Zakaria M. Assessment of Internal Tubular Coating System for High CO2 Application. InICPER 2020: Proceedings of the 7th International Conference on Production, Energy and Reliability 2022; pp. 919-925. Singapore: Springer Nature Singapore. DOI: https://doi.org/10.1007/978-981-19-1939-8_68

Zhang X, Zevenbergen JF, Spruijt MP, Borys M. Corrosion of pipe steel in CO2 containing impurities and possible solutions. Energy Procedia 2013; 37: 3147-59. DOI: https://doi.org/10.1016/j.egypro.2013.06.201

Carrera MC, Erdmann E, Destéfanis HA. Barrier properties and structural study of nanocomposite of HDPE/montmorillonite modified with polyvinylalcohol. Journal of Chemistry 2013; 2013(1): 679567. DOI: https://doi.org/10.1155/2013/679567

Cussler EL, Hughes SE, Ward III WJ, Aris R. Barrier membranes. Journal of membrane science 1988; 38(2): 161-74.

Van Westing EP, Ferrari GM, De Wit JH. The determination of coating performance using electrochemical impedance spectroscopy. Electrochimica acta 1994; 39(7): 899-910. DOI: https://doi.org/10.1016/0013-4686(94)85104-2

Liu M, Jia Z, Jia D, Zhou C. Recent advance in research on halloysite nanotubes-polymer nanocomposite. Progress in polymer science 2014; 39(8): 1498-525. DOI: https://doi.org/10.1016/j.progpolymsci.2014.04.004

Introzzi L, Blomfeldt TO, Trabattoni S, Tavazzi S, Santo N, Schiraldi A, Piergiovanni L, Farris S. Ultrasound-assisted pullulan/montmorillonite bionanocomposite coating with high oxygen barrier properties. Langmuir 2012; 28(30): 11206-14. DOI: https://doi.org/10.1021/la301781n

Dunkerley E, Schmidt D. Effects of composition, orientation and temperature on the O2 permeability of model polymer/clay nanocomposites. Macromolecules 2010; 43(24): 10536-44. DOI: https://doi.org/10.1021/ma1018846

Nyflött Å, Moons E, Bonnerup C, Carlsson G, Järnström L, Lestelius M. The influence of clay orientation and crystallinity on oxygen permeation in dispersion barrier coatings. Applied Clay Science 2016; 126: 17-24. DOI: https://doi.org/10.1016/j.clay.2016.02.029

Bhunia K, Dhawan S, Sablani SS. Modeling the Oxygen Diffusion of Nanocomposite‐based Food Packaging Films. Journal of food science 2012; 77(7): N29-38. DOI: https://doi.org/10.1111/j.1750-3841.2012.02768.x

Mittal V. Modelling and prediction of barrier properties of polymer layered silicate nanocomposites. Polymers and Polymer Composites 2013; 21(8): 509-18. DOI: https://doi.org/10.1177/096739111302100804

Loryuenyong V, Saewong C, Aranchaiya C, Buasri A. The improvement in mechanical and barrier properties of poly (vinyl alcohol)/graphene oxide packaging films. Packaging Technology and Science 2015; 28(11): 939-47. DOI: https://doi.org/10.1002/pts.2149

Noshirvani N, Ghanbarzadeh B, Fasihi H, Almasi H. Starch–PVA nanocomposite film incorporated with cellulose nanocrystals and MMT: a comparative study. International Journal of Food Engineering 2016; 12(1): 37-48. DOI: https://doi.org/10.1515/ijfe-2015-0145

Cairns MJ, Mesic B, Johnston JH, Herzog MB. Use of spherical silica particles to improve the barrier performance of coated paper. Nordic Pulp & Paper Research Journal 2019; 34(3): 334-42. DOI: https://doi.org/10.1515/npprj-2018-0066

Cairns MJ, Mesic B, Johnston JH, Hill SJ, Kirby N. Tetraethylorthosilicate-containing barrier dispersion coatings—Mechanism of action. Progress in Organic Coatings 2020; 139: 105443. DOI: https://doi.org/10.1016/j.porgcoat.2019.105443

Chen B, Evans JR, Greenwell HC, Boulet P, Coveney PV, Bowden AA, Whiting A. A critical appraisal of polymer–clay nanocomposites. Chemical Society Reviews 2008; 37(3): 568-94. DOI: https://doi.org/10.1039/B702653F

Ray SS, Okamoto M. Polymer/layered silicate nanocomposites: a review from preparation to processing. Progress in polymer science 2003; 28(11): 1539-641. DOI: https://doi.org/10.1016/j.progpolymsci.2003.08.002

Bharadwaj RK. Modeling the barrier properties of polymer-layered silicate nanocomposites. Macromolecules 2001; 34(26): 9189-92. DOI: https://doi.org/10.1021/ma010780b

Dai CF, Li PR, Yeh JM. Comparative studies for the effect of intercalating agent on the physical properties of epoxy resin-clay based nanocomposite materials. European Polymer Journal 2008; 44(8): 2439-47. DOI: https://doi.org/10.1016/j.eurpolymj.2008.06.015

Yeh JM, Chin CP, Chang S. Enhanced corrosion protection coatings prepared from soluble electronically conductive polypyrrole‐clay nanocomposite materials. Journal of Applied Polymer Science 2003; 88(14): 3264-72. DOI: https://doi.org/10.1002/app.12146

Olad A, Rashidzadeh A, Amini M. Preparation of polypyrrole nanocomposites with organophilic and hydrophilic montmorillonite and investigation of their corrosion protection on iron. Advances in polymer technology 2013; 32(2). DOI: https://doi.org/10.1002/adv.21337

Tomić MD, Dunjić B, Likić V, Bajat J, Rogan J, Djonlagić J. The use of nanoclay in preparation of epoxy anticorrosive coatings. Progress in organic coatings 2014; 77(2): 518-27. DOI: https://doi.org/10.1016/j.porgcoat.2013.11.017

Piromruen P, Kongparakul S, Prasassarakich P. Synthesis of polyaniline/montmorillonite nanocomposites with an enhanced anticorrosive performance. Progress in Organic Coatings 2014; 77(3): 691-700. DOI: https://doi.org/10.1016/j.porgcoat.2013.12.007

Chang KC, Chen ST, Lin HF, Lin CY, Huang HH, Yeh JM, Yu YH. Effect of clay on the corrosion protection efficiency of PMMA/Na+-MMT clay nanocomposite coatings evaluated by electrochemical measurements. European Polymer Journal 2008; 44(1): 13-23. DOI: https://doi.org/10.1016/j.eurpolymj.2007.10.011

Raju A, Lakshmi V, Prataap RV, Resmi VG, Rajan TP, Pavithran C, Prasad VS, Mohan S. Adduct modified nano-clay mineral dispersed polystyrene nanocomposites as advanced corrosion resistance coatings for aluminum alloys. Applied Clay Science 2016; 126: 81-8. DOI: https://doi.org/10.1016/j.clay.2016.03.005

Huang HY, Huang TC, Yeh TC, Tsai CY, Lai CL, Tsai MH, Yeh JM, Chou YC. Advanced anticorrosive materials prepared from amine-capped aniline trimer-based electroactive polyimide-clay nanocomposite materials with synergistic effects of redox catalytic capability and gas barrier properties. Polymer 2011; 52(11): 2391-400. DOI: https://doi.org/10.1016/j.polymer.2011.03.030

Sugama T. Polyphenylenesulfied/montomorillonite clay nanocomposite coatings: Their efficacy in protecting steel against corrosion. Materials Letters 2006; 60(21-22): 2700-6. DOI: https://doi.org/10.1016/j.matlet.2006.01.111

Hu J, Gan M, Ma L, Li Z, Yan J, Zhang J. Synthesis and anticorrosive properties of polymer–clay nanocomposites via chemical grafting of polyaniline onto Zn-Al layered double hydroxides. Surface and Coatings Technology 2014; 240: 55-62. DOI: https://doi.org/10.1016/j.surfcoat.2013.12.012

Manninen AR, Naguib HE, Nawaby AV, Day M. CO2 sorption and diffusion in polymethyl methacrylate–clay nanocomposites. Polymer Engineering & Science 2005; 45(7): 904-14. DOI: https://doi.org/10.1002/pen.20350

Guo Z, Lee LJ, Tomasko DL. CO2 permeability of polystyrene nanocomposites and nanocomposite foams. Industrial & engineering chemistry research 2008; 47(23): 9636-43. DOI: https://doi.org/10.1021/ie8000088

Hu D, Chen J, Sun S, Liu T, Zhao L. Solubility and diffusivity of CO2 in isotactic polypropylene/nanomontmorillonite composites in melt and solid states. Industrial & Engineering Chemistry Research 2014; 53(7): 2673-83. DOI: https://doi.org/10.1021/ie403580x

Yoo BM, Shin HJ, Yoon HW, Park HB. Graphene and graphene oxide and their uses in barrier polymers. Journal of Applied Polymer Science 2014; 131(1). DOI: https://doi.org/10.1002/app.39628

Ouyang X, Huang W, Cabrera E, Castro J, Lee LJ. Graphene-graphene oxide-graphene hybrid nanopapers with superior mechanical, gas barrier and electrical properties. Aip Advances 2015; 5(1). DOI: https://doi.org/10.1063/1.4906795

Roilo D. Gas transport properties and free volume structure of polymer nanocomposite membranes. Doctoral Thesis, University of Trento, Department of Physics, 2017.

Klopffer MH, Flaconneche B. Transport properties of gases in polymers: bibliographic review. Oil & Gas Science and Technology 2001; 56(3): 223-44. DOI: https://doi.org/10.2516/ogst:2001021

Benjelloun-Dabaghi Z, Benali A. Mathematical modelling of the permeation of gases in polymers. Oil & Gas Science and Technology 2001; 56(3): 295-303. DOI: https://doi.org/10.2516/ogst:2001025

Flaconnèche B, Martin J, Klopffer MH. Permeability, diffusion and solubility of gases in polyethylene, polyamide 11 and poly (vinylidene fluoride). Oil & Gas Science and Technology 2001; 56(3): 261-78. DOI: https://doi.org/10.2516/ogst:2001023

Flaconnèche B, Martin J, Klopffer MH. Transport properties of gases in polymers: experimental methods. Oil & gas science and technology 2001; 56(3): 245-59. DOI: https://doi.org/10.2516/ogst:2001022

Rogers CE. Permeation of gases and vapours in polymers. InPolymer permeability 1985; pp. 11-73. Dordrecht: Springer Netherlands. DOI: https://doi.org/10.1007/978-94-009-4858-7_2

Klopffer MH, Flaconneche B, Odru P. Transport properties of gas mixtures through polyethylene. Plastics, Rubber and Composites 2007; 36(5): 184-9. DOI: https://doi.org/10.1179/174328907X191350

Tobolsky AV, Mark HF. Polymer science and materials. AV Tobolsky and HF Mark eds, Wiley-Interscience, New York, NY 1971.

Crank J. The mathematics of diffusion. Oxford university press; 1979.

Karimi M. Diffusion in polymer solids and solutions. Mass transfer in chemical engineering processes 2011; 25: 17. DOI: https://doi.org/10.5772/23436

Neogi P. Transport Phenomena in Polymer. Diffusion in polymers 1996; 32: 173.

Naylor TD. Permeation properties, Comprehensive Polymer Science, 1989; 2Pergamon Press. DOI: https://doi.org/10.1016/B978-0-08-096701-1.00057-4

Rogers CE. Permeability and chemical resistance. Engineering design for plastics 1964: 609-88.

Mulder M. Basic principles of membrane technology. Springer science & business media; 2012.

McKeen LW. Film properties of plastics and elastomers. William Andrew; 2017.

Cui Y, Kumar S, Kona BR, van Houcke D. Gas barrier properties of polymer/clay nanocomposites. Rsc Advances 2015; 5(78): 63669-90. DOI: https://doi.org/10.1039/C5RA10333A

Picard E, Vermogen A, Gérard JF, Espuche E. Barrier properties of nylon 6-montmorillonite nanocomposite membranes prepared by melt blending: Influence of the clay content and dispersion state: Consequences on modelling. Journal of Membrane Science 2007; 292(1-2): 133-44. DOI: https://doi.org/10.1016/j.memsci.2007.01.030

Maxwell JC. A treatise on electricity and magnetism. Clarendon press; 1873.

Tu Z, Mao J, Mao J, Jiang H. A novel determination of the minimal size of a probabilistic representative volume element for fiber-reinforced composites’ thermal analysis. Thermal Science 2018; 22(6 Part A): 2551-64. DOI: https://doi.org/10.2298/TSCI160430222T

Nielsen LE. Models for the permeability of filled polymer systems. Journal of Macromolecular Science—Chemistry 1967; 1(5): 929-42. DOI: https://doi.org/10.1080/10601326708053745

Cussler EL, Hughes SE, Ward III WJ, Aris R. Barrier membranes. Journal of membrane science 1988; 38(2): 161-74. DOI: https://doi.org/10.1016/S0376-7388(00)80877-7

Duncan TV. Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. Journal of colloid and interface science 2011; 363(1): 1-24. DOI: https://doi.org/10.1016/j.jcis.2011.07.017

Nazari MH, Zhang Y, Mahmoodi A, Xu G, Yu J, Wu J, Shi X. Nanocomposite organic coatings for corrosion protection of metals: A review of recent advances. Progress in Organic Coatings 2022; 162: 106573. DOI: https://doi.org/10.1016/j.porgcoat.2021.106573

Nguyen-Tri P, Nguyen TA, Carriere P, Ngo Xuan C. Nanocomposite coatings: preparation, characterization, properties, and applications. International Journal of Corrosion 2018; 2018(1): 4749501. DOI: https://doi.org/10.1155/2018/4749501

Sanchez C, Belleville P, Popall M, Nicole L. Applications of advanced hybrid organic–inorganic nanomaterials: from laboratory to market. Chemical Society Reviews 2011; 40(2): 696-753. DOI: https://doi.org/10.1039/c0cs00136h

Facio DS, Mosquera MJ. Simple strategy for producing superhydrophobic nanocomposite coatings in situ on a building substrate. ACS Applied Materials & Interfaces 2013; 5(15): 7517-26. DOI: https://doi.org/10.1021/am401826g

Toledano R, Mandler D. Electrochemical codeposition of thin gold nanoparticles/sol− gel nanocomposite films. Chemistry of Materials 2010; 22(13): 3943-51. DOI: https://doi.org/10.1021/cm1005295

Golgoon A, Aliofkhazrae M, Toorani M. Nanocomposite protective coatings fabricated by electrostatic spray method. Protection of Metals and Physical Chemistry of Surfaces 2018; 54: 192-221. DOI: https://doi.org/10.1134/S207020511802017X

Yang Q, Ma Y, Zhu J, Chow K, Shi K. An update on electrostatic powder coating for pharmaceuticals. Particuology 2017; 31: 1-7. DOI: https://doi.org/10.1016/j.partic.2016.10.001

Pierson HO. Handbook of chemical vapor deposition: principles, technology and applications. William Andrew; 1999. DOI: https://doi.org/10.1016/B978-081551432-9.50005-X

Bogdanovic U, Vodnik V, Mitric M, Dimitrijevic S, Skapin SD, Zunic V, Budimir M, Stoiljkovic M. Nanomaterial with high antimicrobial efficacy copper/polyaniline nanocomposite. ACS applied materials & interfaces 2015; 7(3): 1955-66. DOI: https://doi.org/10.1021/am507746m

Zhang S, Sun G, He Y, Fu R, Gu Y, Chen S. Preparation, characterization, and electrochromic properties of nanocellulose-based polyaniline nanocomposite films. ACS Applied Materials & Interfaces 2017; 9(19): 16426-34. DOI: https://doi.org/10.1021/acsami.7b02794

Shabani-Nooshabadi M, Ghoreishi SM, Jafari Y, Kashanizadeh N. Electrodeposition of polyaniline-montmorrilonite nanocomposite coatings on 316L stainless steel for corrosion prevention. Journal of Polymer Research 2014; 21: 1-0. DOI: https://doi.org/10.1007/s10965-014-0416-5

Chen F, Wan P, Xu H, Sun X. Flexible transparent supercapacitors based on hierarchical nanocomposite films. ACS applied materials & interfaces 2017; 9(21): 17865-71. DOI: https://doi.org/10.1021/acsami.7b02460

Kaboorani A, Auclair N, Riedl B, Landry V. Mechanical properties of UV-cured cellulose nanocrystal (CNC) nanocomposite coating for wood furniture. Progress in Organic Coatings 2017; 104: 91-6. DOI: https://doi.org/10.1016/j.porgcoat.2016.11.031

Villafiorita-Monteleone F, Canale C, Caputo G, Cozzoli PD, Cingolani R, Fragouli D, Athanassiou A. Controlled swapping of nanocomposite surface wettability by multilayer photopolymerization. Langmuir 2011; 27(13): 8522-9. DOI: https://doi.org/10.1021/la2017402

Hsu SH, Chang YL, Tu YC, Tsai CM, Su WF. Omniphobic low moisture permeation transparent polyacrylate/silica nanocomposite. ACS Applied Materials & Interfaces 2013; 5(8): 2991-8. DOI: https://doi.org/10.1021/am302446t

Talib RJ, Saad S, Toff MR, Hashim H. Thermal spray coating technology: A review. Solid State Sci Technol 2003; 11(1): 109-17.

Boddula R, Ahamed MI, Asiri AM, editors. Polymers Coatings: Technology and Applications. John Wiley & Sons; 2020.

Atay HY. Fabrication methods for polymer coatings. Polymer Coatings: Technology and Applications 2020; 1-20. DOI: https://doi.org/10.1002/9781119655145.ch1

Downloads

Published

2025-07-04

How to Cite

Oloto, J. ., Kapfudzaruwa, S. ., & Muthu, S. J. . (2025). Polymer Nanocomposite Coatings for CO2 Pipeline Corrosion Control: A Comprehensive Review. Journal of Research Updates in Polymer Science, 14, 71–86. https://doi.org/10.6000/1929-5995.2025.14.08

Issue

Section

Articles