Impact of Corona Treatment on Mechanical Properties and Morphology of Hemp Fiber Reinforced in Epoxy Matrix Composite

Authors

  • Kittipong Patanapisalsin Innovation Engineering Program, Faculty of Engineering, Khon Kaen University, Khon Kaen, Thailand
  • Chanu Photiphitak Faculty of Science and Technology, Suan Dusit University, Bangkok, Thailand
  • Apichart Artnaseaw Department of Chemical engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, Thailand

DOI:

https://doi.org/10.6000/1929-5995.2025.14.10

Keywords:

Corona treatment, Mechanical properties, Composite material, Hemp fibers

Abstract

Corona treatment was applied to enhance the interfacial adhesion between hemp woven fibers and epoxy resin in fiber-reinforced composites. Using a cold pressing method with equal parts of resin and fiber (50 g each), samples were treated for 1–4 min. SEM analysis revealed that increased treatment time led to greater fiber surface roughness and reduced voids at the fiber–matrix interface, improving bonding. Tensile strength increased with treatment time, peaking at 48.68 MPa at 3 min before slightly decreasing at 4 min. The elastic modulus remained stable (304.67–312.52 MPa) up to 3 min, then dropped slightly to 302.86 MPa. Overall, corona-treated composites exhibited a 55% increase in tensile strength compared to untreated ones, confirming the treatment’s effectiveness in enhancing mechanical performance.

References

Yu Z, Li R, Peng Z, Tang Y. Carbon Fiber Reinforced Epoxy Resin Matrix Composites. Materials Science: Advanced Composite Materials 2017; 1: 1-6. DOI: https://doi.org/10.18063/msacm.v1i1.500

Chowdary MS, Raghavendra G, Ojha S, Kumar MSRN. Morphology and Mechanical Properties of Epoxy/Natural Fiber Composites. Handbook of Epoxy/Fiber Composites 2022; 745-766. DOI: https://doi.org/10.1007/978-981-19-3603-6_27

Al Mahmud MZ, Rabbi SMF, Islam MD, Hossain N. Synthesis and applications of natural fiber-reinforced epoxy composites: A comprehensive review. SPE Polymers 2024. DOI: https://doi.org/10.1002/pls2.10161

Raju A, Shanmugaraja M. Recent researches in fiber reinforced composite materials: A review. Mater Today Proc 2021; 46: 9291-9296. DOI: https://doi.org/10.1016/j.matpr.2020.02.141

Fairclough PA, Silva T, Golpour A, Patel RV, Yadav A, Winczek J. Physical, Mechanical, and Thermal Properties of Natural Fiber-Reinforced Epoxy Composites for Construction and Automotive Applications. Applied Sciences 2023; 13: 5126. DOI: https://doi.org/10.3390/app13085126

Parbin S, Waghmare NK, Singh SK, Khan S. Mechanical properties of natural fiber reinforced epoxy composites: A review. Procedia Comput Sci 2019; 152: 375-379. DOI: https://doi.org/10.1016/j.procs.2019.05.003

Jarupong J, Artnaseaw A, Sasrimuang S. Cocoon waste reinforced in epoxy matrix composite: Investigation on tensile properties and surface morphology. Engineering and Applied Science Research 2023; 50: 597-604.

Jarupong J, Sasrimuang S, Artnaseaw A. Characteristics of bulletproof plate made from silkworm cocoon waste: Hybrid silkworm cocoon waste-reinforced epoxy/UHMWPE composite. Science and Engineering of Composite Materials 2024; 31. DOI: https://doi.org/10.1515/secm-2024-0006

Khan FM, Shah AH, Wang S, Mehmood S, Wang J, Liu W, Xu X. A Comprehensive Review on Epoxy Biocomposites Based on Natural Fibers and Bio-fillers: Challenges, Recent Developments and Applications. Advanced Fiber Materials 2022; 4(4): 683-704. DOI: https://doi.org/10.1007/s42765-022-00143-w

Tasgin Y, Demircan G, Kandemir S, Acikgoz A. Mechanical, wear and thermal properties of natural fiber-reinforced epoxy composite: cotton, sisal, coir and wool fibers. J Mater Sci 2024; 59: 10844-10857. DOI: https://doi.org/10.1007/s10853-024-09810-2

Loidueanchai S, Seithtanabutara V, Artnaseaw A. Sustainable ballistic solutions for recycling silkworm cocoon waste into high-performance bulletproof materials. Green Chem Lett Rev 2024; 17. DOI: https://doi.org/10.1080/17518253.2024.2385929

Jarupong J, Artnaseaw A. Facile armour production from cocoon waste by a cold-pressing process 2024. DOI: https://doi.org/10.1680/jgrma.24.00013

Bayliss N, Schmidt BVKJ. Hydrophilic polymers: Current trends and visions for the future. Prog Polym Sci 2023; 147. DOI: https://doi.org/10.1016/j.progpolymsci.2023.101753

Palanisamy A, Salim NV, Parameswaranpillai J, Hameed N. Water Sorption and Solvent Sorption of Epoxy/Block-Copolymer and Epoxy/Thermoplastic Blends. Handbook of Epoxy Blends 2017; 1097-1111. DOI: https://doi.org/10.1007/978-3-319-40043-3_40

Nakamura S, Tsuji Y, Yoshizawa K. Role of Hydrogen-Bonding and OH−π Interactions in the Adhesion of Epoxy Resin on Hydrophilic Surfaces 2020. DOI: https://doi.org/10.1021/acsomega.0c03798

Ibe KA, Otanocha B.O. Composites of hydrophilic and hydrophobic polymers as wicking agents. European Journal of Engineering and Technology 2017; 5. www.idpublications.org (accessed March 11, 2025).

Gholampour A, Ozbakkaloglu T. A review of natural fiber composites: properties, modification and processing techniques, characterization, applications. J Mater Sci 2020; 55: 829-892. DOI: https://doi.org/10.1007/s10853-019-03990-y

Alsuwait RB, Souiyah M, Momohjimoh I, Ganiyu SA, Bakare AO. Recent Development in the Processing, Properties, and Applications of Epoxy-Based Natural Fiber Polymer Biocomposites. Polymers 2023; 15: 145. DOI: https://doi.org/10.3390/polym15010145

Kabir MM, Wang H, Lau KT, Cardona F. Chemical treat-ments on plant-based natural fibre reinforced polymer com-posites: An overview, Compos B Eng 2012; 43: 2883-2892. DOI: https://doi.org/10.1016/j.compositesb.2012.04.053

Bledzki AK, Gassan J. Composites reinforced with cellulose based fibres. Prog Polym Sci 1999; 24: 221-274. DOI: https://doi.org/10.1016/S0079-6700(98)00018-5

George J, Sreekala MS, Thomas S. A review on interface modification and characterization of natural fiber reinforced plastic composites. Polym Eng Sci 2001; 41: 1471-1485. DOI: https://doi.org/10.1002/pen.10846

Yang Y, Wang Z, Wang Y, Zhang J, Peng X, Fang P. EIS study on corona discharge degradation of epoxy resin: micro-structure evaluation and water diffusion. Journal of Materials Science: Materials in Electronics 2024; 35: 1-15. DOI: https://doi.org/10.1007/s10854-023-11755-2

Kalia S, Kaith BS, Kaur I. Pretreatments of natural fibers and their application as reinforcing material in polymer composites—A review. Polym Eng Sci 2009; 49: 1253-1272. DOI: https://doi.org/10.1002/pen.21328

Tserki V, Zafeiropoulos NE, Simon F, Panayiotou C. A study of the effect of acetylation and propionylation surface treatments on natural fibres. Compos Part A Appl Sci Manuf 2005; 36: 1110-1118. DOI: https://doi.org/10.1016/j.compositesa.2005.01.004

Faruk O, Bledzki AK, Fink HP, Sain M. Biocomposites reinforced with natural fibers: 2000-2010. Prog Polym Sci 2012; 37: 1552-1596. DOI: https://doi.org/10.1016/j.progpolymsci.2012.04.003

Deshmukh GS. Advancement in hemp fibre polymer composites: A comprehensive review. Journal of Polymer Engineering 2022; 42: 575-598. DOI: https://doi.org/10.1515/polyeng-2022-0033

Xiang C, Hu S, Zhang S, Gupta N. Compressive Characterization of Hemp Fiber-Epoxy Matrix Composite for Lightweight Structures JOM 2020; 72: 2324-2331. DOI: https://doi.org/10.1007/s11837-020-04024-8

Pickering KL, Efendy MGA, Le TM. A review of recent developments in natural fibre composites and their mechanical performance. Compos Part A Appl Sci Manuf 2016; 83: 98-112. DOI: https://doi.org/10.1016/j.compositesa.2015.08.038

Sood M, Dwivedi G. Effect of fiber treatment on flexural properties of natural fiber reinforced composites: A review. Egyptian Journal of Petroleum 2018; 27: 775-783. DOI: https://doi.org/10.1016/j.ejpe.2017.11.005

Li X, Tabil LG, Panigrahi S. Chemical treatments of natural fiber for use in natural fiber-reinforced composites: A review, J Polym Environ 2007; 15: 25-33. DOI: https://doi.org/10.1007/s10924-006-0042-3

Kiruthika AV, Khan A. Properties of Hemp Fibre Reinforced Polymer Composites 2021; 255-274. DOI: https://doi.org/10.1007/978-981-16-1854-3_11

La Mantia FP, Morreale M. Green composites: A brief review. Compos Part A Appl Sci Manuf 2011; 42: 579-588. DOI: https://doi.org/10.1016/j.compositesa.2011.01.017

Mohanty AK, Misra M, Drzal LT. Natural Fibers, Biopolymers, and Biocomposites, 1st ed., CRC Press, 2005. DOI: https://doi.org/10.1201/9780203508206

ASTM D638-14, Standard Test Method for Tensile Properties of Plastics, ASTM International, West Conshohocken, PA, United States, 2014.

Popelka A, Khanam PN, Almaadeed MA. Surface modification of polyethylene/graphene composite using corona discharge. J Phys D Appl Phys 2018; 51: 105302. DOI: https://doi.org/10.1088/1361-6463/aaa9d6

Sun D, Stylios GK. Fabric surface properties affected by low temperature plasma treatment. J Mater Process Technol 2006; 173: 172-177. DOI: https://doi.org/10.1016/j.jmatprotec.2005.11.022

Wang CX, Qiu YP. Two sided modification of wool fabrics by atmospheric pressure plasma jet: Influence of processing parameters on plasma penetration. Surf Coat Technol 2007; 201: 6273-6277. DOI: https://doi.org/10.1016/j.surfcoat.2006.11.028

Zheng Z, Tang X, Shi M, Zhou G. A study of the influence of controlled corona treatment on UHMWPE fibres in reinforced vinylester composites. Polym Int 2003; 52: 1833-1838. DOI: https://doi.org/10.1002/pi.1372

Ovaska SS, Geydt P, Rinkunas R, Lozovski T, Maldzius R, Sidaravicius J, Österberg M, Johansson LS, Backfolk K. Corona treatment of filled dual-polymer dispersion coatings: Surface properties and grease resistance. Polymers and Polymer Composites 2017; 25: 257-266. DOI: https://doi.org/10.1177/096739111702500402

Mittal KL, Netravali AN. Polymer Surface Modification to Enhance Adhesion, John Wiley & Sons, Ltd, 2024. DOI: https://doi.org/10.1002/9781394231034

Corbin A-C, Soulat D, Ferreira M, Labanieh A-R, Gabrion X, Malécot P, Placet V. Towards hemp fabrics for high-performance composites: Influence of weave pattern and features. Composites Part B 2019; 107582. DOI: https://doi.org/10.1016/j.compositesb.2019.107582

Sadeghi P, Cao Q, Abouzeid R, Shayan M, Koo M, Wu Q. Experimental and Statistical Investigations for Tensile Properties of Hemp Fibers. Fibers 2024; 12: 94. DOI: https://doi.org/10.3390/fib12110094

Dhaliwal GS, Dueck SM, Newaz GM. Experimental and numerical characterization of mechanical properties of hemp fiber reinforced composites using multiscale analysis approach. SN Appl Sci 2019; 1: 1-15. DOI: https://doi.org/10.1007/s42452-019-1383-6

Corbin AC, Soulat D, Ferreira M, Labanieh AR. Influence of Process Parameters on Properties of Hemp Woven Reinforcements for Composite Applications: Mechanical Properties, Bias-extension Tests and Fabric Forming. Journal of Natural Fibers 2022; 19: 714-726. DOI: https://doi.org/10.1080/15440478.2020.1761925

Natesan R, Krishnasamy P. Fiber and matrix-level damage detection and assessments for natural fiber composites. Journal of Materials Science 2024; 59: 16836-16861. DOI: https://doi.org/10.1007/s10853-024-10191-9

Çoban O, Bora MÖ, Sinmazçelik T, Cürgül I, Günay V. Fracture morphology and deformation characteristics of repeatedly impacted thermoplastic matrix composites. Mater Des 2009; 30: 628-634. DOI: https://doi.org/10.1016/j.matdes.2008.05.042

Palumbo D, De Finis R. Fatigue and Fracture Behavior of Composite Materials. Materials 2023; 16: 7292. DOI: https://doi.org/10.3390/ma16237292

Tamin MN. Damage and Fracture of Composite Materials and Structures, Springer Berlin Heidelberg, Berlin, Heidelberg 2012. DOI: https://doi.org/10.1007/978-3-642-23659-4

Shivanand. Effect of Strain Rate on Fracture Toughness of Hemp Fiber Composites. International Journal of Engineering Research & Technology 2018; 3.

Shahzad A. Effects of Fibre Surface Treatments on Mechanical Properties of Hemp Fibre Composites, Compos Interfaces 2011; 18: 737-754.

Kousik Kumaar R, Boopathy G, Bovas Herbert Bejaxhin A, Ramanan N. Considerations on Fractured Edge Dislocations of Mechanical Tested Hand Laid Hemp Flax GFRP Hybrid Polymer Composites with SEM Verifications. Journal of Polymer and Composites 2024; 11: 1-19.

Downloads

Published

2025-07-28

How to Cite

Patanapisalsin, K. ., Photiphitak, C. ., & Artnaseaw, A. . (2025). Impact of Corona Treatment on Mechanical Properties and Morphology of Hemp Fiber Reinforced in Epoxy Matrix Composite. Journal of Research Updates in Polymer Science, 14, 95–105. https://doi.org/10.6000/1929-5995.2025.14.10

Issue

Section

Articles