From Petrochemical to Photosynthetic: Algae-Derived Polymers for Sustainable Industrial Applications

Authors

  • Temitope T. Dele-Afolabi School of Mechanical Engineering, College of Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
  • M.A. Azmah Hanim Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia (UPM), 43400 Serdang, Malaysia and Advanced Engineering Materials and Composites Research Center, (AEMC), Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
  • Hazim Ali Al-Qureshi Mobility Engineering, Federal University of Santa Catarina - UFSC, 8300, Dona Francisca Street, SC, Joinville, 89219-600, Brazil

DOI:

https://doi.org/10.6000/1929-5995.2025.14.13

Keywords:

Algae, Biopolymers, Algal polysaccharides, Polyhydroxyalkanoates, Drug delivery, Energy storage

Abstract

The demand for biopolymers made from photosynthetic organisms like algae is growing. This rise is driven by the global shift toward sustainable and renewable resources. This study examines the switch from conventional polymers based on petrochemicals to those derived from algae, emphasizing the potential of the latter for a variety of industrial uses. Algae, including both microalgae and macroalgae, are excellent feedstocks. They can produce various biopolymers such as alginate, carrageenan, agar, ulvan, and polyhydroxyalkanoates (PHAs). Algae grow quickly and do not compete with food crops, making them highly sustainable. Algae-derived biopolymers are useful in many applications, which include food packaging, biomedical devices, pharmaceuticals, and energy storage. Their key properties biodegradability, biocompatibility, film-forming ability, and gelling behaviormake them attractive alternatives. The study also discusses challenges such as scalability, processing methods, and market integration. It reviews the types of algae-based biopolymers, their production techniques, and performance characteristics. Overall, algae-derived polymers ultimately offer a viable route to more environmentally friendly industrial solutions, assisting in the development of a carbon-neutral and circular economy.

References

Mal N, Satpati G, Raghunathan S, Davoodbasha M. Current strategies on algae-based biopolymer production and scale-up. Chemosphere 2022; 289: 133178. DOI: https://doi.org/10.1016/j.chemosphere.2021.133178

Mohanty AK, Wu F, Mincheva R, Hakkarainen M, Raquez JM, Mielewski DF, Misra M. Sustainable polymers. Nature Reviews Methods Primers 2022; 2(1): 46. DOI: https://doi.org/10.1038/s43586-022-00124-8

Osório C, Machado S, Peixoto J, Bessada S, Pimentel FB, Alves RC, Oliveira MBP. Pigments content (chlorophylls, fucoxanthin and phycobiliproteins) of different commercial dried algae. Separations 2020; 7(2): 33. DOI: https://doi.org/10.3390/separations7020033

Wells ML, Potin P, Craigie JS, Raven JA, Merchant SS, Helliwell KE, Brawley SH. Algae as nutritional and functional food sources: revisiting our understanding. Journal of applied phycology 2017; 29: 949-982. DOI: https://doi.org/10.1007/s10811-016-0974-5

Stevenson J. Ecological assessments with algae: a review and synthesis. Journal of Phycology 2014; 50(3): 437-461. DOI: https://doi.org/10.1111/jpy.12189

Krause-Jensen D, Lavery P, Serrano O, Marbà N, Masque P, Duarte CM. Sequestration of macroalgal carbon: the elephant in the Blue Carbon room. Biology letters 2018; 14(6): 20180236. DOI: https://doi.org/10.1098/rsbl.2018.0236

Krishna PS, Styring S, Mamedov F. Photosystem ratio imba-lance promotes direct sustainable H2 production in Chlamy-domonas reinhardtii. Green Chemistry 2019; 21(17): 4683-90. DOI: https://doi.org/10.1039/C9GC01416K

Norouzi O, Jafarian S, Safari F, Tavasoli A, Nejati B. Promotion of hydrogen-rich gas and phenolic-rich bio-oil production from green macroalgae Cladophora glomerata via pyrolysis over its bio-char. Bioresource technology 2016; 219: 643-51. DOI: https://doi.org/10.1016/j.biortech.2016.08.017

Jessen C, Villa Lizcano JF, Bayer T, Roder C, Aranda M, Wild C, Voolstra CR. In-situ effects of eutrophication and overfishing on physiology and bacterial diversity of the Red Sea coral Acropora hemprichii. PLoS One 2013; 8(4): e6 2091. DOI: https://doi.org/10.1371/journal.pone.0062091

Wilhelm FM. Pollution of aquatic ecosystems I. In: Likens GE, editors. Encyclopedia of Inland Waters. Reference Module in Earth Systems and Environmental Sciences. London: Academic Press 2009; p. 110-19. DOI: https://doi.org/10.1016/B978-012370626-3.00222-2

Martín-León V, Paz S, D’Eufemia PA, Plasencia JJ, Sagratini G, Marcantoni G, Rubio-Armendáriz C. Human exposure to toxic metals (Cd, Pb, Hg) and nitrates (NO3−) from seaweed consumption. Applied Sciences 2021; 11(15): 6934. DOI: https://doi.org/10.3390/app11156934

Soroldoni S, Abreu F, Castro ÍB, Duarte FA, Pinho GLL. Are antifouling paint particles a continuous source of toxic chemicals to the marine environment?. Journal of Hazardous Materials 2017; 330: 76-82. DOI: https://doi.org/10.1016/j.jhazmat.2017.02.001

Khoo CG, Dasan YK, Lam MK, Lee KT. Algae biorefinery: Review on a broad spectrum of downstream processes and products. Bioresource technology 2019; 292: 121964. DOI: https://doi.org/10.1016/j.biortech.2019.121964

Wang SH, Huang CY, Chen CY, Chang CC, Huang CY, Dong CD, Chang JS. Isolation and purification of brown algae fucoidan from Sargassum siliquosum and the analysis of anti-lipogenesis activity. Biochemical Engineering Journal 2021; 165: 107798. DOI: https://doi.org/10.1016/j.bej.2020.107798

Pankiewicz R, Łęska B, Messyasz B, Fabrowska J, Sołoducha M, Pikosz M. First isolation of polysaccharidic ulvans from the cell walls of freshwater algae. Algal Research 2016; 19: 348-54. DOI: https://doi.org/10.1016/j.algal.2016.02.025

Yuan Q, Li H, Wei Z, Lv K, Gao C, Liu Y, Zhao L. Isolation, structures and biological activities of polysaccharides from Chlorella: A review. International Journal of Biological Macromolecules 2020; 163: 2199-2209. DOI: https://doi.org/10.1016/j.ijbiomac.2020.09.080

Zhu N, Ye M, Shi D, Chen M. Reactive compatibilization of bio-degradable poly (butylene succinate)/Spirulina microalgae composites. Macromolecular Research 2017; 25: 165-171. DOI: https://doi.org/10.1007/s13233-017-5025-9

Joshi JS, Langwald SV, Ehrmann A, Sabantina L. Algae-based biopolymers for batteries and biofuel applications in comparison with bacterial biopolymers—a review. Polymers 2024; 16(5): 610.

Hamid SS, Wakayama M, Ichihara K, Sakurai K, Ashino Y, Kadowaki R, Tomita M. Metabolome profiling of various seaweed species discriminates between brown, red, and green algae. Planta 2019; 249: 1921-47. DOI: https://doi.org/10.1007/s00425-019-03134-1

Madadi R, Maljaee H, Serafim LS, Ventura SP. Microalgae as contributors to produce biopolymers. Marine Drugs 2021; 19(8): 466. DOI: https://doi.org/10.3390/md19080466

Garbowski T, Richter D, Pietryka M. Analysis of changes of particle size distribution and biological composition of flocs in wastewater during the growth of algae. Water, Air, & Soil Pollution 2019; 230(6): 139. DOI: https://doi.org/10.1007/s11270-019-4188-8

Hirayama S, Ueda R. Production of optically pure D-lactic acid by Nannochlorum sp. 26A4. Applied biochemistry and biotechnology 2004; 119: 71-77. DOI: https://doi.org/10.1385/ABAB:119:1:71

Zhang C, Show PL, Ho SH. Progress and perspective on algal plastics–a critical review. Bioresource technology 2019; 289: 121700. DOI: https://doi.org/10.1016/j.biortech.2019.121700

Özçimen D, İnan B, Morkoç O, Efe A. A review on algal biopolymers. J. Chem. Eng. Res. Updates 2017; 4: 7-14. DOI: https://doi.org/10.15377/2409-983X.2017.04.2

Kumar CS, Ganesan P, Suresh PV, Bhaskar N. Seaweeds as a source of nutritionally beneficial compounds-a review. Journal of Food Science and Technology 2008;45(1): 1.

Cybulska J, Halaj M, Cepák V, Lukavský J, Capek P. Nanostructure features of microalgae biopolymer. Starch‐Stärke 2016; 68(7-8): 629-36. DOI: https://doi.org/10.1002/star.201500159

Rodriguez SA, Weese E, Nakamatsu J, Torres F. Development of biopolymer nanocomposites based on polysaccharides obtained from red algae chondracanthuschamissoi reinforced with chitin whiskers and montmorillonite. Polymer-Plastics Technology and Engineering 2016; 55(15): 1557-1564. DOI: https://doi.org/10.1080/03602559.2016.1163583

Raus RA, Wan Nawawi WMF, Nasaruddin RR.Alginate and alginate composites for biomedical applications. Asian Journal of Pharmaceutical Sciences 2020; 16(3): 280-306. DOI: https://doi.org/10.1016/j.ajps.2020.10.001

Yuan Y, Macquarrie DJ. Microwave assisted step-by-step process for the production of fucoidan, alginate sodium, sugars and biochar from Ascophyllum nodosum through a biorefinery concept. Bioresource Technology 2015;198: 819-27. DOI: https://doi.org/10.1016/j.biortech.2015.09.090

Charoensiddhi S, Lorbeer AJ, Lahnstein J, Bulone V, Franco CM, Zhang W. Enzyme-assisted extraction of carbohydrates from the brown alga Ecklonia radiata: Effect of enzyme type, pH and buffer on sugar yield and molecular weight profiles. Process Biochemistry 2016; 51(10): 1503-10. DOI: https://doi.org/10.1016/j.procbio.2016.07.014

Lorbeer AJ, Lahnstein J, Bulone V, Nguyen T, Zhang W. Multiple-response optimization of the acidic treatment of the brown alga Ecklonia radiata for the sequential extraction of fucoidan and alginate. Bioresource technology 2015; 197: 302-309. DOI: https://doi.org/10.1016/j.biortech.2015.08.103

Liu Z, Xiong Y, Yi L, Dai R, Wang Y, Sun M, Shao X, Zhang Z, Yuan S. Endo-β-1, 3-glucanase digestion combined with the HPAEC-PAD-MS/MS analysis reveals the structural differences between two laminarins with different bioactivities. Carbohydrate Polymers 2018; 194: 339-49. DOI: https://doi.org/10.1016/j.carbpol.2018.04.044

Becker S, Tebben J, Coffinet S, Wiltshire K, Iversen MH, Harder T, Hehemann JH. Laminarin is a major molecule in the marine carbon cycle. Proceedings of the National Academy of Sciences 2020; 117(12): 6599-6607. DOI: https://doi.org/10.1073/pnas.1917001117

Kadam SU, Tiwari BK, O'Donnell CP. Extraction, structure and biofunctional activities of laminarin from brown algae. International Journal of Food Science and Technology 2015; 50(1): 24-31. DOI: https://doi.org/10.1111/ijfs.12692

Moroney NC, O'Grady MN, Robertson RC, Stanton C, O'Doherty JV, Kerry JP. Influence of level and duration of feeding polysaccharide (laminarin and fucoidan) extracts from brown seaweed (Laminaria digitata) on quality indices of fresh pork. Meat Science 2015; 99: 132-41. DOI: https://doi.org/10.1016/j.meatsci.2014.08.016

Rioux LE, Turgeon SL, Beaulieu M. Structural characterization of laminaran and galactofucan extracted from the brown seaweed Saccharina longicruris. Phytochemistry 2010; 71(13): 1586-95. DOI: https://doi.org/10.1016/j.phytochem.2010.05.021

Becker S, Scheffel A, Polz MF, Hehemann JH. Accurate quantification of laminarin in marine organic matter with enzymes from marine microbes. Applied and environmental microbiology 2017; 83(9): e03389-16. DOI: https://doi.org/10.1128/AEM.03389-16

Rajauria G, Ravindran R, Garcia-Vaquero M, Rai DK, Sweeney T, O'Doherty J. Molecular characteristics and antioxidant activity of laminarin extracted from the seaweed species Laminaria hyperborea, using hydrothermal-assisted extraction and a multi-step purification procedure. Food Hydrocolloids 2021; 112: 106332. DOI: https://doi.org/10.1016/j.foodhyd.2020.106332

Church FC, Meade JB, Treanor RE, Whinna HC. Antithrombin activity of fucoidan: the interaction of fucoidan with heparin cofactor II, antithrombin III, and thrombin. Journal of Biological Chemistry1989;264(6): 3618-23. DOI: https://doi.org/10.1016/S0021-9258(18)94111-6

Colliec S, Fischer AM, Tapon-Bretaudiere J, Boisson C, Durand P, Jozefonvicz J. Anticoagulant properties of a fucoidan fraction. Thrombosis Research1991; 64(2): 143-54. DOI: https://doi.org/10.1016/0049-3848(91)90114-C

Mauray S, Sternberg C, Theveniaux J, Millet J, Sinquin C, Tapon-Bretaudiére J, Fischer AM. Venous antithrombotic and anticoagulant activities of a fucoidan fraction. Thrombosis and Haemostasis1995; 74(11): 1280-1285. DOI: https://doi.org/10.1055/s-0038-1649927

Baba M, Nakajima M, Schols D, Pauwels R, Balzarini J, De Clercq E. Pentosan polysulfate, a sulfated oligosaccharide, is a potent and selective anti-HIV agent in vitro. Antiviral research1988; 9(6): 335-43. DOI: https://doi.org/10.1016/0166-3542(88)90035-6

McClure MO, Moore JP, Blanc DF, Scotting P, Cook GM, Keynes RJ, Weiss RA. Investigations into the mechanism by which sulfated polysaccharides inhibit HIV infection in vitro. AIDS Research and Human Retroviruses1992;8(1): 19-26. DOI: https://doi.org/10.1089/aid.1992.8.19

Lefebvre R, Lo MC, Suarez SS. Bovine sperm binding to oviductal epithelium involves fucose recognition. Biology of Reproduction1997; 56(5): 1198-1 204. DOI: https://doi.org/10.1095/biolreprod56.5.1198

Riou D, Colliec-JouaultS, Pinczon du Sel D, Bosch S, Siavoshian S, Le Bert V, Roussakis C. Antitumor and antiproliferative effects of a fucan extracted from ascophyllum nodosum against a non-small-cell bronchopulmonary carcinoma line. Anticancer research 1996;16(3A): 1213-18.

Sakai T, Ishizuka K, Shimanaka K, Ikai K, Kato I. Structures of oligosaccharides derived from Cladosiphonokamuranus fucoidan by digestion with marine bacterial enzymes. Marine Biotechnology 2003; 5: 536-44. DOI: https://doi.org/10.1007/s10126-002-0107-9

Knutsen SH, Myslabodski DE, Larsen B, Usov AI. A modified system of nomenclature for red algal galactans.Botanica Marina1994; 37(2): 163-70. DOI: https://doi.org/10.1515/botm.1994.37.2.163

Kim D, Kang SM. Red algae-derived carrageenan coatings for marine antifouling applications. Biomacromolecules 2020; 21(12): 5086-92. DOI: https://doi.org/10.1021/acs.biomac.0c01248

Qureshi D, Nayak SK, Maji S, Kim D, Banerjee I, Pal K. Carrageenan: A wonder polymer from marine algae for potential drug delivery applications. Current pharmaceutical design 2019; 25(11): 1172-86. DOI: https://doi.org/10.2174/1381612825666190425190754

Bouanati T, Colson E, Moins S, Cabrera JC, Eeckhaut I, Raquez JM, Gerbaux P. Microwave-assisted depolymerization of carrageenans from Kappaphycusalvarezii and Eucheuma spinosum: Controlled and green production of oligosaccharides from the algae biomass. Algal Research 2020; 51: 102054. DOI: https://doi.org/10.1016/j.algal.2020.102054

Bui VT, Nguyen BT, Renou F, Nicolai T. Structure and rheological properties of carrageenans extracted from different red algae species cultivated in Cam Ranh Bay, Vietnam. Journal of Applied Phycology 2019; 31: 1947-53. DOI: https://doi.org/10.1007/s10811-018-1665-1

Reis SE, Andrade RGC, Accardo CM, Maia LF, Oliveira LF, Nader HB, Medeiros VP. Influence of sulfated polysaccharides from Ulva lactuca L. upon Xa and IIa coagulation factors and on venous blood clot formation. Algal Research 2020; 45: 101750. DOI: https://doi.org/10.1016/j.algal.2019.101750

Trentin R, Custódio L, Rodrigues MJ, Moschin E, Sciuto K, Da Silva JP, Moro I. Exploring Ulva australis Areschoug for possible biotechnological applications: In vitro antioxidant and enzymatic inhibitory properties, and fatty acids contents. Algal Research 2020; 50: 101980. DOI: https://doi.org/10.1016/j.algal.2020.101980

Qi H, Sheng J. The antihyperlipidemic mechanism of high sulfate content ulvan in rats. Marine Drugs 2015;13(6): 3407-21. DOI: https://doi.org/10.3390/md13063407

Tran TTV, Truong HB, Tran NHV, Quach TMT, Nguyen TN, Bui ML, Thanh TTT. Structure, conformation in aqueous solution and antimicrobial activity of ulvan extracted from green seaweed Ulva reticulata. Natural product research 2018; 32(19): 2291-2296. DOI: https://doi.org/10.1080/14786419.2017.1408098

Aguilar-Briseño JA, Cruz-Suarez LE, Sassi JF, Ricque-Marie D, Zapata-Benavides P, Mendoza-Gamboa E, Trejo-Avila LM. Sulphated polysaccharides from Ulva clathrata and Cladosiphonokamuranus seaweeds both inhibit viral attachment/entry and cell-cell fusion, in NDV infection. Marine drugs 2015; 13(2): 697-712. DOI: https://doi.org/10.3390/md13020697

Hu Z, Hong P, Cheng Y, Liao M, Li S. Polysaccharides from Enteromorpha tubulosa: Optimization of extraction and cytotoxicity. Journal of Food Processing and Preservation 2018; 42(1): e13373. DOI: https://doi.org/10.1111/jfpp.13373

Bussy F, Salmon H, Delaval J, Berri M, Pi NC. Immunomodulating effect of a seaweed extract from Ulva armoricana in pig: Specific IgG and total IgA in colostrum, milk, and blood. Veterinary and animal science 2019; 7: 100051. DOI: https://doi.org/10.1016/j.vas.2019.100051

Jiao G, Yu G, Zhang J, Ewart HS. Chemical structures and bioactivities of sulfated polysaccharides from marine algae. Marine drugs 2011; 9(2): 196-223. DOI: https://doi.org/10.3390/md9020196

Alves A, Sousa RA, Reis RL. A practical perspective on ulvan extracted from green algae. Journal of Applied Phycology 2013; 25: 407-424. DOI: https://doi.org/10.1007/s10811-012-9875-4

Tran VHN, Mikkelsen MD, Truong HB, Vo HNM, Pham TD, Cao HTT, Van TTT. Structural characterization and cytotoxic activity evaluation of ulvan polysaccharides extracted from the green algae Ulva papenfussii. Marine Drugs 2023; 21(11): 556. DOI: https://doi.org/10.3390/md21110556

Cassuriaga APA, Freitas BCB, Morais MG, Costa JAV. Innovative polyhydroxybutyrate production by Chlorella fusca grown with pentoses. Bioresource Technology 2018; 265: 456-63. DOI: https://doi.org/10.1016/j.biortech.2018.06.026

Costa SS, Miranda AL, de Morais MG, Costa JAV, Druzian JI. Microalgae as source of polyhydroxyalkanoates (PHAs)—A review. International journal of biological macromolecules 2019;131: 536-547. DOI: https://doi.org/10.1016/j.ijbiomac.2019.03.099

Ramos FD, Delpino CA, Villar MA, Diaz MS. Design and optimization of poly (hydroxyalkanoate) s production plants using alternative substrates. Bioresource Technology 2019; 289: 121699. DOI: https://doi.org/10.1016/j.biortech.2019.121699

Sirohi R, Pandey JP, Gaur VK, Gnansounou E, Sindhu R. Critical overview of biomass feedstocks as sustainable substrates for the production of polyhydroxybutyrate (PHB). Bioresource Technology 2020; 311: 123536. DOI: https://doi.org/10.1016/j.biortech.2020.123536

Kavitha G, Kurinjimalar C, Sivakumar K, Palani P, Rengasamy R. Biosynthesis, purification and characterization of polyhydroxybutyrate from Botryococcusbrauniikütz. International Journal of Biological Macromolecules 2016; 89: 700-706. DOI: https://doi.org/10.1016/j.ijbiomac.2016.04.086

Das SK, Sathish A, Stanley J. Production of biofuel and bioplastic from Chlorella pyrenoidosa. Materials today: proceedings 2018; 5(8): 16774-16781. DOI: https://doi.org/10.1016/j.matpr.2018.06.020

Rueda E, García-Galán MJ, Ortiz A, Uggetti E, Carretero J, García J, Díez-Montero R. Bioremediation of agricultural runoff and biopolymers production from cyanobacteria cultured in demonstrative full-scale photobioreactors. Process Safety and Environmental Protection 2020; 139: 241-250. DOI: https://doi.org/10.1016/j.psep.2020.03.035

Peteiro C. Alginate production from marine macroalgae, with emphasis on kelp farming. In: Wang M, editor. Alginates and their biomedical applications. Singapore: Springer Singapore 2017; p. 27-66. DOI: https://doi.org/10.1007/978-981-10-6910-9_2

Morales-Jiménez M, Gouveia L, Yáñez-Fernández J, Castro-Muñoz R, Barragán-Huerta BE. Production, preparation and characterization of microalgae-based biopolymer as a potential bioactive film. Coatings 2020; 10(2): 1 20. DOI: https://doi.org/10.3390/coatings10020120

Steinbruch E, Drabik D, Epstein M, Ghosh S, Prabhu MS, Gozin M, Golberg A. Hydrothermal processing of a green seaweed Ulva sp. for the production of monosaccharides, polyhydroxyalkanoates, and hydrochar. Bioresource Technology 2020; 318: 124263. DOI: https://doi.org/10.1016/j.biortech.2020.124263

Flórez-Fernández N, Domínguez H, Torres MD. A green approach for alginate extraction from Sargassum muticum brown seaweed using ultrasound-assisted technique. International journal of biological macromolecules 2019; 124: 451-459. DOI: https://doi.org/10.1016/j.ijbiomac.2018.11.232

Gullón B, Gagaoua M, Barba FJ, Gullón P, Zhang W, Lorenzo JM. Seaweeds as promising resource of bioactive compounds: Overview of novel extraction strategies and design of tailored meat products. Trends in Food Science & Technology 2020; 100: 1-18. DOI: https://doi.org/10.1016/j.tifs.2020.03.039

Machmudah S, Kanda H, Goto M. Emerging seaweed extraction techniques: supercritical fluid extraction. In: Torres MD, Kraan S, Dominguez H, editors. Sustainable Seaweed Technologies. Netherlands: Elsevier 2020; p. 257-86. DOI: https://doi.org/10.1016/B978-0-12-817943-7.00010-X

Terme N, Hardouin K, Cortès HP, Peñuela A, Freile-Pelegrín Y, Robledo D, Bourgougnon N. Emerging seaweed extraction techniques: Enzyme-assisted extraction a key step of seaweed biorefinery?. In: Torres MD, Kraan S, Dominguez H, editors. Sustainable Seaweed Technologies. Netherlands: Elsevier 2020; p. 225-56. DOI: https://doi.org/10.1016/B978-0-12-817943-7.00009-3

Rostami Z, Tabarsa M, You S, Rezaei M. Relationship between molecular weights and biological properties of alginates extracted under different methods from Colpomenia peregrina. Process Biochemistry 2017; 58: 289-97. DOI: https://doi.org/10.1016/j.procbio.2017.04.037

Dianursanti, Khalis SA. The effect of compatibilizer addition on Chlorella vulgaris microalgae utilization as a mixture for bioplastic.E3S Web of Conferences 2018; 67: 03047. DOI: https://doi.org/10.1051/e3sconf/20186703047

Ciapponi R, Turri S, Levi M. Mechanical reinforcement by microalgal biofiller in novel thermoplastic biocompounds from plasticized gluten. Materials 2019; 12(9): 1476. DOI: https://doi.org/10.3390/ma12091476

Zeller MA, Hunt R, Jones A, Sharma S. Bioplastics and their thermoplastic blends from Spirulina and Chlorella microalgae. Journal of Applied Polymer Science 2013; 130(5): 3263-75. DOI: https://doi.org/10.1002/app.39559

Sabathini HA, Windiani L, Gozan M. Mechanical Physicial properties of chlorella-PVA based bioplastic with ultrasonic homogenizer. E3S Web of Conferences 2018; 67: 03046. DOI: https://doi.org/10.1051/e3sconf/20186703046

Machmud MN, Fahmi R, Abdullah R, Kokarkin C. Characteristics of red algae bioplastics/latex blends under tension. International Journal of Science and Engineering 2013; 5(2): 81-8. DOI: https://doi.org/10.12777/ijse.5.2.81-88

Montjovent MO, Mathieu L, Hinz B, Applegate LL, Bourban PE, Zambelli PY, Pioletti, DP. Biocompatibility of bioresorbable poly (L-lactic acid) composite scaffolds obtained by supercritical gas foaming with human fetal bone cells. Tissue engineering 2005; 11(11-12): 1640-49. DOI: https://doi.org/10.1089/ten.2005.11.1640

Bing Jin X, Sheng Sun Y, Zhang K, Wang J, Ping Shi T, Dong Ju X, Quan Lou S. Ectopic neocartilage formation from predifferentiated human adipose derived stem cells induced by adenoviral-mediated transfer of hTGF beta2. Biomaterials 2007; 28(19): 2994-3003. DOI: https://doi.org/10.1016/j.biomaterials.2007.03.002

Lee JS, Jin GH, Yeo MG, Jang CH, Lee H, Kim GH. Fabrication of electrospunbiocomposites comprising polycaprolactone/fucoidan for tissue regeneration. Carbohydrate polymers 2012; 90(1): 181-88. DOI: https://doi.org/10.1016/j.carbpol.2012.05.012

Kikionis S, Ioannou E, Toskas G, Roussis V. Electros punbiocomposite nanofibers of ulvan/PCL and ulvan/PEO. Journal of Applied Polymer Science 2015; 132(26): 42153. DOI: https://doi.org/10.1002/app.42153

Finosh GT, Jayabalan M, Vandana S, Raghu KG. Hybrid alginate-polyester bimodal network hydrogel for tissue engineering–Influence of structured water on long-term cellular growth. Colloids and Surfaces B: Biointerfaces 2015; 135: 855-864. DOI: https://doi.org/10.1016/j.colsurfb.2015.03.020

Thankam FG, Muthu J. Alginate–polyester comacromer based hydrogels as physiochemically and biologically favorable entities for cardiac tissue engineering. Journal of Colloid and Interface Science 2015; 457: 52-61. DOI: https://doi.org/10.1016/j.jcis.2015.06.034

Men Y, Thomasin C, Merkle HP, Gander B, Corradin G. A single administration of tetanus toxoid in biodegradable microspheres elicits T cell and antibody responses similar or superior to those obtained with aluminum hydroxide. Vaccine 1995; 13(7): 683-689. DOI: https://doi.org/10.1016/0264-410X(94)00046-P

El-Sherbiny IM, Abdel-Mogib M, Dawidar AAM, Elsayed A, Smyth HD. Biodegradable pH-responsive alginate-poly (lactic-co-glycolic acid) nano/micro hydrogel matrices for oral delivery of silymarin. Carbohydrate polymers 2011; 83(3): 1345-54. DOI: https://doi.org/10.1016/j.carbpol.2010.09.055

Beckmann‐Knopp S, Rietbrock S, Weyhenmeyer R, Böcker RH, Beckurts KT, Lang W, Fuhr U. Inhibitory effects of silibinin on cytochrome P‐450 enzymes in human liver microsomes. Pharmacology & toxicology 2000; 86(6): 250-256. DOI: https://doi.org/10.1111/j.0901-9928.2000.860602.x

Sonnenbichler J, Scalera F, Sonnenbichler I, Weyhenmeyer R. Stimulatory effects of silibinin and silicristin from the milk thistle Silybum marianum on kidney cells. The Journal of Pharmacology and Experimental Therapeutics 1999;290(3): 1375-83. DOI: https://doi.org/10.1016/S0022-3565(24)35045-1

Lange R, Weipert J, Homann M, Mendler N, Paek SU, Holper K, Meisner H. Performance of allografts and xenografts for right ventricular outflow tract reconstruction. The Annals of thoracic surgery 2001; 71(5): S365-67. DOI: https://doi.org/10.1016/S0003-4975(01)02552-8

Lee J, Tan CY, Lee SK, Kim YH, Lee KY. Controlled delivery of heat shock protein using an injectable microsphere/hydrogel combination system for the treatment of myocardial infarction. Journal of Controlled Release 2009;137(3): 196- 202. DOI: https://doi.org/10.1016/j.jconrel.2009.04.008

Liedel C. Sustainable battery materials from biomass. ChemSusChem 2020; 13(9): 2110-41. DOI: https://doi.org/10.1002/cssc.201903577

Singh R, Rhee HW. The rise of bio-inspired energy devices. Energy Storage Materials 2019; 23: 390-408. DOI: https://doi.org/10.1016/j.ensm.2019.04.030

Jeong J, Lee J, Kim J, Chun J, Kang D, Han SM, Jo C, Lee J. A biopolymer-based functional separator for stable Li metal batteries with an additive-free commercial electrolyte. Journal of Materials Chemistry A 2021; 9(12): 7774-81. DOI: https://doi.org/10.1039/D0TA12153C

Song Q, Li A, Shi L, Qian C, Feric TG, Fu Y, Yang Y. Thermally stable, nano-porous and eco-friendly sodium alginate/attapulgite separator for lithium-ion batteries. Energy Storage Materials 2019; 22: 48-56. DOI: https://doi.org/10.1016/j.ensm.2019.06.033

Joshi JS, Langwald SV, Ehrmann A, Sabantina L. Algae-based biopolymers for batteries and biofuel applications in comparison with bacterial biopolymers—a review. Polymers 2024; 16(5): 610. DOI: https://doi.org/10.3390/polym16050610

Thrisha K, Saratha R. Natural polymer-based electrolytes for energy storage devices—An overview. Ionics 2024; 30(3): 1245-66. DOI: https://doi.org/10.1007/s11581-023-05315-1

Lin A, Yang X. Seaweed extractions as promising polymer electrolytes for lithium batteries. In E3S Web of Conferences EDP Sciences 2021; 308: p01022 DOI: https://doi.org/10.1051/e3sconf/202130801022

Xu T, Liu K, Sheng N, Zhang M, Liu W, Liu H, Dai L, Zhang X, Si C, Du H, Zhang K. Biopolymer-based hydrogel electrolytes for advanced energy storage/conversion devices: Properties, applications, and perspectives. Energy Storage Materials 2022; 48: 244-62. DOI: https://doi.org/10.1016/j.ensm.2022.03.013

Zakaria Z, Kamarudin SK, Osman SH, Mohamad AA, Razali H. A review of carrageenan as a polymer electrolyte in energy resource applications. Journal of Polymers and the Environment 2023; 31(10): 4127-42. DOI: https://doi.org/10.1007/s10924-023-02903-0

Arockia Mary I, Selvanayagam S, Selvasekarapandian S, Chitra R, Leena Chandra MV, Ponraj T. Lithium ion conducting biopolymer membrane based on K-carrageenan with LiNO3. Ionics 2020; 26(9): 4311-26. DOI: https://doi.org/10.1007/s11581-020-03604-7

Rudati PS, Dzakiyyah Y, Fane R, Turnip MAF, Pambudi MT, Wulandari P. Biopolymer Kappa Carrageenan with Ammonium Chloride as Electrolyte for Potential Application in Organic Battery. Key Engineering Materials 2023; 950: 11-16. DOI: https://doi.org/10.4028/p-FW7xiu

Nithya M, Alagar M, Sundaresan B. Eco-friendly biopolymer kappa carrageenan with NH4Br application in energy saving battery. Materials Letters 2020; 263: 127295. DOI: https://doi.org/10.1016/j.matlet.2019.127295

Diana MI, Selvin PC, Selvasekarapandian S, Krishna MV. Investigations on Na-ion conducting electrolyte based on sodium alginate biopolymer for all-solid-state sodium-ion batteries. Journal of Solid State Electrochemistry 2021;25(7): 2009- 20. DOI: https://doi.org/10.1007/s10008-021-04985-z

Tamilisai R, Palanisamy PN, Selvasekarapandian S, Maheshwari T. Sodium alginate incorporated with magnesium nitrate as a novel solid biopolymer electrolyte for magnesium-ion batteries. Journal of Materials Science: Materials in Electronics 2021; 32(17): 22270-85. DOI: https://doi.org/10.1007/s10854-021-06713-9

Fernández‐Benito A, Martinez‐López JC, Javad Jafari M, Solin N, Martinez JG, Garcia‐Gimenez D, Carretero‐González J. Green and Scalable Biopolymer‐Based Aqueous Polyelectrolyte Complexes for Zinc‐Ion Charge Storage Devices. Chem Electro Chem 2023; 10(22): e 202300327. DOI: https://doi.org/10.1002/celc.202300327

Rhein-Knudsen N, Ale MT, Meyer AS. Seaweed hydrocolloid production: an update on enzyme assisted extraction and modification technologies. Marine drugs 2015; 13(6): 3340-59. DOI: https://doi.org/10.3390/md13063340

Zhu B, Ni F, Xiong Q, Yao Z. Marine oligosaccharides originated from seaweeds: Source, preparation, structure, physiological activity and applications. Critical Reviews in Food Science and Nutrition 2021; 61(1): 60-74. DOI: https://doi.org/10.1080/10408398.2020.1716207

Valero D, Díaz-Mula HM, Zapata PJ, Guillén F, Martínez-Romero D, Castillo S, Serrano M. Effects of alginate edible coating on preserving fruit quality in four plum cultivars during postharvest storage. Postharvest Biology and Technology 2013; 77: 1-6. DOI: https://doi.org/10.1016/j.postharvbio.2012.10.011

Ben-Fadhel Y, Ziane N, Salmieri S, Lacroix M. Combined post-harvest treatments for improving quality and extending shelf-life of minimally processed broccoli florets (Brassica oleracea var. italica). Food and bioprocess technology 2018; 11: 84-95. DOI: https://doi.org/10.1007/s11947-017-1992-2

Bojorges H, Ríos‐Corripio MA, Hernández‐Cázares AS, Hidalgo‐Contreras JV, Contreras‐Oliva A. Effect of the application of an edible film with turmeric (Curcuma longa L.) on the oxidative stability of meat. Food Science & Nutrition 2020; 8(8): 4308-19. DOI: https://doi.org/10.1002/fsn3.1728

Gopu M, Selvam K. Polysaccharides from marine red algae Amphiroa rigida and their biomedical potential: An in-vitro study. Biocatalysis and Agricultural Biotechnology 2020; 29: 101769. DOI: https://doi.org/10.1016/j.bcab.2020.101769

Srinithi R, Sangavi P, Nachammai KT, Kumar SG, Langeswaran K. Perspective of algae materials 2.0. In: Arunkumar K, Arun A, Raja R, Palaniappan R, editors. Algae Materials. London: Academic Press 2023; p. 383-97. DOI: https://doi.org/10.1016/B978-0-443-18816-9.00009-5

Kumar A, Kaushal S, Saraf SA, Singh JS. Microbial bio-fuels: a solution to carbon emissions and energy crisis. Front Biosci (Landmark) 2018; 23(10): 1789. DOI: https://doi.org/10.2741/4673

Dahman Y, Syed K, Begum S, Roy P, Mohtasebi B. Biofuels: Their characteristics and analysis. In: Verma D, Fortunati E, Jain S, Zhang X, editors. Biomass, biopolymer-based materials, and bioenergy. United Kingdom: Woodhead Publishing 2019; p. 277-325. DOI: https://doi.org/10.1016/B978-0-08-102426-3.00014-X

Kavitha S, Gondi R, Kannah RY, Kumar G, Banu JR. A review on current advances in the energy and cost effective pretreatments of algal biomass: Enhancement in liquefaction and biofuel recovery. Bioresource technology 2023; 369: 128383. DOI: https://doi.org/10.1016/j.biortech.2022.128383

Arun J, Vigneshwar SS, Swetha A, Gopinath KP, Basha S, Brindhadevi K, Pugazhendhi A. Bio-based algal (Chlorella vulgaris) refinery on de-oiled algae biomass cake: A study on biopolymer and biodiesel production. Science of the Total Environment 2022; 816: 151579. DOI: https://doi.org/10.1016/j.scitotenv.2021.151579

AlMomani F, Shawaqfah M, Alsarayreh M, Khraisheh M, Hameed BH, Naqvi SR, Varjani S. Developing pretreatment methods to promote the production of biopolymer and bioethanol from residual algal biomass (RAB). Algal Research 2022; 68: 102895. DOI: https://doi.org/10.1016/j.algal.2022.102895

Kumar AN, Chatterjee S, Hemalatha M, Althuri A, Min B, Kim SH, Mohan SV. Deoiled algal biomass derived renewable sugars for bioethanol and biopolymer production in biorefinery framework. Bioresource technology 2020; 296: 122315. DOI: https://doi.org/10.1016/j.biortech.2019.122315

Upadhyay U, Sreedhar I, Singh SA, Patel CM, Anitha KL. Recent advances in heavy metal removal by chitosan based adsorbents. Carbohydrate Polymers 2021; 251: 117000. DOI: https://doi.org/10.1016/j.carbpol.2020.117000

del Mar Orta M, Martín J, Santos JL, Aparicio I, Medina-Carrasco S, Alonso E. Biopolymer-clay nanocomposites as novel and ecofriendly adsorbents for environmental remediation. Applied Clay Science 2020; 198: 105838. DOI: https://doi.org/10.1016/j.clay.2020.105838

Liu J, Sun L, Xu W, Wang Q, Yu S, Sun J. Current advances and future perspectives of 3D printing natural-derived biopolymers. Carbohydrate polymers 2019; 207: 297-316. DOI: https://doi.org/10.1016/j.carbpol.2018.11.077

Ponthier E, Domínguez H, Torres MD. The microwave assisted extraction sway on the features of antioxidant compounds and gelling biopolymers from Mastocarpus stellatus. Algal Research 2020; 51: 102081. DOI: https://doi.org/10.1016/j.algal.2020.102081

Downloads

Published

2025-08-13

How to Cite

Dele-Afolabi, T. T. ., Hanim, M. A. ., & Al-Qureshi, H. A. . (2025). From Petrochemical to Photosynthetic: Algae-Derived Polymers for Sustainable Industrial Applications. Journal of Research Updates in Polymer Science, 14, 120–134. https://doi.org/10.6000/1929-5995.2025.14.13

Issue

Section

Articles