Systematic Parameter Optimization for Electrospraying of PVA and PVP Aqueous Solutions
DOI:
https://doi.org/10.6000/1929-5995.2025.14.22Keywords:
Electrospraying, Parameter Optimization, Polyvinyl Alcohol (PVA), Polyvinylpyrrolidone (PVP), Taylor Cone, Polymer ProcessingAbstract
This study systematically optimizes the key electrospraying parameters—flow rate, applied voltage, and nozzle-collector distance—for generating polymer micro/nanospheres from aqueous solutions of polyvinyl alcohol (PVA) and polyvinylpyrrolidone (PVP). Solutions at concentrations of 10%–15% w/v were characterized by conductivity measurements, revealing a significant solvent-dependent effect (450 µS/m–590 µS/m for water vs. 44 µS/m–56 µS/m for ethanol). Through iterative testing, two distinct sets of optimal parameters were identified: 10% PVA at 20 µL/h, 25 kV, and 12 cm distance, and 15% PVP at 10 µL/h, 30 kV, and 14 cm distance. Statistical analysis (ANOVA) confirmed a significant interaction between polymer type and concentration on solution conductivity (p< 0.05). Strict environmental control (≤24 °C, ≤44% RH) was essential for process stability. Optical microscopy confirmed the formation of structures under the optimized conditions. This work establishes a reproducible parametric framework for the electrospraying of PVA and PVP, providing a critical foundation for the subsequent development of functional polymer particles for potential applications in catalysis and drug delivery.
References
Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM. Electrospray ionization for mass spectrometry of large biomolecules. Science 1989; 246(4926): 64-71. DOI: https://doi.org/10.1126/science.2675315
Bartoli C, von Rohden H, Thompson SP, Bloomers J. A liquid caesium field ion source for space propulsion. Journal of Physics D: Applied Physics 1984; 17(12). DOI: https://doi.org/10.1088/0022-3727/17/12/014
Gautam A, Clifford WJ, Densmore CL. Aerosol gene therapy. Mol Biotechnol 2003; 23: 51-60. DOI: https://doi.org/10.1385/MB:23:1:51
Deitzel JM, Kleinmeyer JD, Harris D, Beck-Tan NC. The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 2001; 42(1): 261-272.
González Molfino HM, Alcalde Yañez A, Valverde Morón VV, Villanueva Salvatierra DV. Electrospinning: Advances and applications in the field of biomedicine. Revista de la Facultad de Medicina Humana 2020; 20(4): 706-713. DOI: https://doi.org/10.25176/RFMH.v20i4.3004
Sánchez Fuentes A. Electrospinning vs Electrospraying para la optimización de los parámetros de deposición en el diseño de recubrimientos nanoestructurados de uso biomédico. Trabajo de fin de grado. Pamplona: Universidad Pública de Navarra, E.T.S de Ingeniería Industrial, Informática y de Telecomunicación; 2022.
Zafar M, Najeeb S, Khurshid Z, Vazirzadeh M, Zohaib S, Najeeb B, et al. Potential of Electrospun Nanofibers for Biomedical and Dental Applications. Materials 2016; 9(73). DOI: https://doi.org/10.3390/ma9020073
Haider A, Haider S, Kang IK. A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arabian Journal of Chemistry 2018; 11: 1165-1188. DOI: https://doi.org/10.1016/j.arabjc.2015.11.015
Kamoun EA, Kenawy ERS, Chen X. A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J Adv Res 2017; 8(3): 217-233. DOI: https://doi.org/10.1016/j.jare.2017.01.005
Ramírez A, Benitez JL, Rojas de Astudillo L, Rojas de Gáscue B. Materiales polimeros de tipo hidrogeles: revisión sobre su caracterización mediante ftir, dsc, meb y met. Revista Latinoamericana de Metalurgia y Materiales 2016; 36(2).
Deitzel JM, Kleinmeyer J, Harris D, Beck Tan NC. The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 2001; 42(1): 261-272. DOI: https://doi.org/10.1016/S0032-3861(00)00250-0
Buwalda SJ, Boere KWM, Dijkstra PJ, Feijen J, Vermonden T, Hennink WE. Hydrogels in a historical perspective: From simple networks to smart materials. J Control Release 2014; 190: 254-73. DOI: https://doi.org/10.1016/j.jconrel.2014.03.052
Schmatz AD, Vieira Costa JA, Joanol da Silveira Mastrantonio D, Greque de Morais M. Encapsulation of phycocyanin by electrospraying: A promising approach for the protection of sensitive compound. Food and Bioproducts Processing 2020; 119: 206-215. DOI: https://doi.org/10.1016/j.fbp.2019.07.008
Lei L, Zhaoyang L, Bai H, Sun DD. Concurrent filtration and solar photocatalytic disinfection/degradation using high-performance Ag/TiO2 nanofiber membrane. Water Research 2012; 46(4): 1101-1112. DOI: https://doi.org/10.1016/j.watres.2011.12.009
Hassen T, Grah PA, Olfa H, Yehe DM, Didier R, Patrick D, et al. Solar Photocatalytic Decolorization and Degradation of Methyl Orange. J. Adv. Oxid. Technol 2016; 19(1). DOI: https://doi.org/10.1515/jaots-2016-0110
GI. Disintegration of water drops in an electric field. Royal Society 1964; 280(1382). DOI: https://doi.org/10.1098/rspa.1964.0151
Morad MR, Rajabi A, Razavi M, Pejman Sereshkeh SR. A Very Stable High Throughput Taylor Cone-jet in Electrohydrodynamics. Scientific Reports 2016: 3. DOI: https://doi.org/10.1038/srep38509
Shao J, Zhao Y, Wu Y, Xue Q. Recent progress in the synthesis of polyvinylpyrrolidone and its applications in batteries, sensors, and capacitors. J Mater Chem A 2020; 8(46): 24175-24203.
Teodorescu M, Bercea M, Morariu S. Biomaterials of PVA and PVP in medical and pharmaceutical applications: Perspectives and challenges. Biotechnol Adv 2019; 37(1): 109-131.
Rayleigh L. On the equilibrium of liquid conducting masses charged with electricity. Philos Mag 1882; 14(87): 184-6. DOI: https://doi.org/10.1080/14786448208628425
Jaworek A, Sobczyk AT. Electrospraying route to nanotechnology: An overview. J Electrostat 2008; 66(3-4): 197-219. DOI: https://doi.org/10.1016/j.elstat.2007.10.001
Cloupeau M, Prunet-Foch B. Electrohydrodynamic spraying functioning modes: a critical review. J Aerosol Sci 1994; 25(6): 1021-36. DOI: https://doi.org/10.1016/0021-8502(94)90199-6
Zhang S, Campagne C, Salaün F. Influence of solvent selection in the electrospraying process of polycaprolactone. Appl Sci 2019; 9(3): 402. DOI: https://doi.org/10.3390/app9030402
Teodorescu M, Bercea M, Morariu S. Biomaterials of PVA and PVP in medical and pharmaceutical applications: Perspectives and challenges. Biotechnol Adv 2019; 37(1): 109-31. DOI: https://doi.org/10.1016/j.biotechadv.2018.11.008
Hartman RPA, Brunner DJ, Camelot DMA, Marijnissen JCM, Scarlett B. Electrohydrodynamic atomization in the cone-jet mode physical modeling of the liquid cone and jet. J Aerosol Sci 1999; 30(7): 823-49. DOI: https://doi.org/10.1016/S0021-8502(99)00033-6
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Policy for Journals/Articles with Open Access
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work
Policy for Journals / Manuscript with Paid Access
Authors who publish with this journal agree to the following terms:
- Publisher retain copyright .
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work .