Systematic Parameter Optimization for Electrospraying of PVA and PVP Aqueous Solutions

Authors

  • Wilbert Arturo Vivas-Torrez Universidad Veracruzana, Facultad de Ingeniería Mecánica y Eléctrica, Poza Rica, Veracruz, Mexico
  • Héctor D. López-Calderón Universidad Veracruzana, Facultad de Biología, Xalapa, Veracruz, Mexico
  • Juan Rodrigo Laguna-Camacho Universidad Veracruzana, Facultad de Ingeniería Mecánica y Eléctrica, Poza Rica, Veracruz, Mexico
  • Andrea Guadalupe Martínez-López Universidad Veracruzana, Centro de Investigación en Micro y Nanotecnología, Boca del Río, Veracruz, México
  • Víctor Velázquez-Martínez Universidad Veracruzana, Facultad de Ingeniería Mecánica y Eléctrica, Poza Rica, Veracruz, Mexico
  • Javier Calderón-Sánchez Universidad Veracruzana, Facultad de Ingeniería Mecánica y Eléctrica, Poza Rica, Veracruz, Mexico
  • Jesús Enrique López-Calderón Universidad Veracruzana, Facultad de Ingeniería Mecánica y Eléctrica, Poza Rica, Veracruz, Mexico
  • Celia Calderón-Ramón Universidad Veracruzana, Facultad de Ingeniería Mecánica y Eléctrica, Poza Rica, Veracruz, Mexico

DOI:

https://doi.org/10.6000/1929-5995.2025.14.22

Keywords:

Electrospraying, Parameter Optimization, Polyvinyl Alcohol (PVA), Polyvinylpyrrolidone (PVP), Taylor Cone, Polymer Processing

Abstract

This study systematically optimizes the key electrospraying parameters—flow rate, applied voltage, and nozzle-collector distance—for generating polymer micro/nanospheres from aqueous solutions of polyvinyl alcohol (PVA) and polyvinylpyrrolidone (PVP). Solutions at concentrations of 10%–15% w/v were characterized by conductivity measurements, revealing a significant solvent-dependent effect (450 µS/m–590 µS/m for water vs. 44 µS/m–56 µS/m for ethanol). Through iterative testing, two distinct sets of optimal parameters were identified: 10% PVA at 20 µL/h, 25 kV, and 12 cm distance, and 15% PVP at 10 µL/h, 30 kV, and 14 cm distance. Statistical analysis (ANOVA) confirmed a significant interaction between polymer type and concentration on solution conductivity (p< 0.05). Strict environmental control (≤24 °C, ≤44% RH) was essential for process stability. Optical microscopy confirmed the formation of structures under the optimized conditions. This work establishes a reproducible parametric framework for the electrospraying of PVA and PVP, providing a critical foundation for the subsequent development of functional polymer particles for potential applications in catalysis and drug delivery.

References

Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM. Electrospray ionization for mass spectrometry of large biomolecules. Science 1989; 246(4926): 64-71. DOI: https://doi.org/10.1126/science.2675315

Bartoli C, von Rohden H, Thompson SP, Bloomers J. A liquid caesium field ion source for space propulsion. Journal of Physics D: Applied Physics 1984; 17(12). DOI: https://doi.org/10.1088/0022-3727/17/12/014

Gautam A, Clifford WJ, Densmore CL. Aerosol gene therapy. Mol Biotechnol 2003; 23: 51-60. DOI: https://doi.org/10.1385/MB:23:1:51

Deitzel JM, Kleinmeyer JD, Harris D, Beck-Tan NC. The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 2001; 42(1): 261-272.

González Molfino HM, Alcalde Yañez A, Valverde Morón VV, Villanueva Salvatierra DV. Electrospinning: Advances and applications in the field of biomedicine. Revista de la Facultad de Medicina Humana 2020; 20(4): 706-713. DOI: https://doi.org/10.25176/RFMH.v20i4.3004

Sánchez Fuentes A. Electrospinning vs Electrospraying para la optimización de los parámetros de deposición en el diseño de recubrimientos nanoestructurados de uso biomédico. Trabajo de fin de grado. Pamplona: Universidad Pública de Navarra, E.T.S de Ingeniería Industrial, Informática y de Telecomunicación; 2022.

Zafar M, Najeeb S, Khurshid Z, Vazirzadeh M, Zohaib S, Najeeb B, et al. Potential of Electrospun Nanofibers for Biomedical and Dental Applications. Materials 2016; 9(73). DOI: https://doi.org/10.3390/ma9020073

Haider A, Haider S, Kang IK. A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arabian Journal of Chemistry 2018; 11: 1165-1188. DOI: https://doi.org/10.1016/j.arabjc.2015.11.015

Kamoun EA, Kenawy ERS, Chen X. A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J Adv Res 2017; 8(3): 217-233. DOI: https://doi.org/10.1016/j.jare.2017.01.005

Ramírez A, Benitez JL, Rojas de Astudillo L, Rojas de Gáscue B. Materiales polimeros de tipo hidrogeles: revisión sobre su caracterización mediante ftir, dsc, meb y met. Revista Latinoamericana de Metalurgia y Materiales 2016; 36(2).

Deitzel JM, Kleinmeyer J, Harris D, Beck Tan NC. The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 2001; 42(1): 261-272. DOI: https://doi.org/10.1016/S0032-3861(00)00250-0

Buwalda SJ, Boere KWM, Dijkstra PJ, Feijen J, Vermonden T, Hennink WE. Hydrogels in a historical perspective: From simple networks to smart materials. J Control Release 2014; 190: 254-73. DOI: https://doi.org/10.1016/j.jconrel.2014.03.052

Schmatz AD, Vieira Costa JA, Joanol da Silveira Mastrantonio D, Greque de Morais M. Encapsulation of phycocyanin by electrospraying: A promising approach for the protection of sensitive compound. Food and Bioproducts Processing 2020; 119: 206-215. DOI: https://doi.org/10.1016/j.fbp.2019.07.008

Lei L, Zhaoyang L, Bai H, Sun DD. Concurrent filtration and solar photocatalytic disinfection/degradation using high-performance Ag/TiO2 nanofiber membrane. Water Research 2012; 46(4): 1101-1112. DOI: https://doi.org/10.1016/j.watres.2011.12.009

Hassen T, Grah PA, Olfa H, Yehe DM, Didier R, Patrick D, et al. Solar Photocatalytic Decolorization and Degradation of Methyl Orange. J. Adv. Oxid. Technol 2016; 19(1). DOI: https://doi.org/10.1515/jaots-2016-0110

GI. Disintegration of water drops in an electric field. Royal Society 1964; 280(1382). DOI: https://doi.org/10.1098/rspa.1964.0151

Morad MR, Rajabi A, Razavi M, Pejman Sereshkeh SR. A Very Stable High Throughput Taylor Cone-jet in Electrohydrodynamics. Scientific Reports 2016: 3. DOI: https://doi.org/10.1038/srep38509

Shao J, Zhao Y, Wu Y, Xue Q. Recent progress in the synthesis of polyvinylpyrrolidone and its applications in batteries, sensors, and capacitors. J Mater Chem A 2020; 8(46): 24175-24203.

Teodorescu M, Bercea M, Morariu S. Biomaterials of PVA and PVP in medical and pharmaceutical applications: Perspectives and challenges. Biotechnol Adv 2019; 37(1): 109-131.

Rayleigh L. On the equilibrium of liquid conducting masses charged with electricity. Philos Mag 1882; 14(87): 184-6. DOI: https://doi.org/10.1080/14786448208628425

Jaworek A, Sobczyk AT. Electrospraying route to nanotechnology: An overview. J Electrostat 2008; 66(3-4): 197-219. DOI: https://doi.org/10.1016/j.elstat.2007.10.001

Cloupeau M, Prunet-Foch B. Electrohydrodynamic spraying functioning modes: a critical review. J Aerosol Sci 1994; 25(6): 1021-36. DOI: https://doi.org/10.1016/0021-8502(94)90199-6

Zhang S, Campagne C, Salaün F. Influence of solvent selection in the electrospraying process of polycaprolactone. Appl Sci 2019; 9(3): 402. DOI: https://doi.org/10.3390/app9030402

Teodorescu M, Bercea M, Morariu S. Biomaterials of PVA and PVP in medical and pharmaceutical applications: Perspectives and challenges. Biotechnol Adv 2019; 37(1): 109-31. DOI: https://doi.org/10.1016/j.biotechadv.2018.11.008

Hartman RPA, Brunner DJ, Camelot DMA, Marijnissen JCM, Scarlett B. Electrohydrodynamic atomization in the cone-jet mode physical modeling of the liquid cone and jet. J Aerosol Sci 1999; 30(7): 823-49. DOI: https://doi.org/10.1016/S0021-8502(99)00033-6

Downloads

Published

2025-12-22

How to Cite

Vivas-Torrez, W. A. ., López-Calderón, H. D. ., Laguna-Camacho, J. R. ., Martínez-López, A. G. ., Velázquez-Martínez, V. ., Calderón-Sánchez, J. ., López-Calderón, J. E. ., & Calderón-Ramón, C. . (2025). Systematic Parameter Optimization for Electrospraying of PVA and PVP Aqueous Solutions. Journal of Research Updates in Polymer Science, 14, 215–222. https://doi.org/10.6000/1929-5995.2025.14.22

Issue

Section

Articles